
Citation: Allen, C.; Mazanko, A.;

Abdehagh, N.; Eberl, H.J. A New

ODE-Based Julia Implementation of

the Anaerobic Digestion Model No. 1

Greatly Outperforms Existing

DAE-Based Java and Python

Implementations. Processes 2023, 11,

1899. https://doi.org/10.3390/

pr11071899

Academic Editors: Pietro Bartocci,

Qing Yang and Francesco Fantozzi

Received: 31 May 2023

Revised: 18 June 2023

Accepted: 20 June 2023

Published: 24 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

A New ODE-Based Julia Implementation of the Anaerobic
Digestion Model No. 1 Greatly Outperforms Existing
DAE-Based Java and Python Implementations
Courtney Allen 1 , Alexandra Mazanko 1, Niloofar Abdehagh 2 and Hermann J. Eberl 1,∗

1 Department Mathematics and Statistics, University of Guelph, Guelph, ON N1G 2W1, Canada;
callen15@uoguelph.ca (C.A.); amazanko@uoguelph.ca (A.M.)

2 CHFour Biogas, Manotick, ON K4M 1A4, Canada; nabdehagh@chfourbiogas.com
* Correspondence: heberl@uoguelph.ca

Abstract: The Anaerobic Digestion Model 1 is the quasi-industry standard for modelling anaerobic
digestion, and it has seen several new implementations in recent years. It is assumed that these imple-
mentations would give the same results; however, a thorough comparison of these implementations
has never been reported. This paper considers four different implementations of ADM1: one in Julia,
one in Java, and two in Python. The Julia code is a de novo implementation of the ODE formulation
of ADM1 that is reported here for the first time. The existing Java and Python codes implement the
more common DAE formulation. Therefore, this paper also examines how DAE implementations
compare to ODE implementations in terms of computational speed as well as solutions returned. As
expected, the ODE and DAE forms both return comparable solutions. However, contrary to popular
belief, the Julia ODE implementation is faster than the DAE implementations, namely by one to
three orders of magnitude of compute time, depending on the simulation scenario and the reference
implementation used for comparison.

Keywords: anaerobic digestion; ADM1; Julia programming language; Java programming language;
Python programming language; numerical methods; performance comparison

1. Introduction

We present a de novo implementation of the Anaerobic Digestion Model 1 (ADM1) in
the Julia programming language and compare our implementation against existing imple-
mentations in Python and Java. Our implementation is based on the ordinary differential
equation form of ADM1 and uses the Petersen matrix formulation for better modularity
and to more easily allow for future modifications. This is in contrast to existing implemen-
tations that hard-code the differential equations directly and are based on the Differential
Algebraic Equation (DAE) form of ADM1, which is assumed to be faster than the Ordinary
Differential Equation (ODE) implementation. When coding a tool for computer simulation,
assumptions are made that are often taken for granted—assumptions about the compu-
tational speed of different numerical methods, for example. This conventional wisdom
is often taken as fact, which limits experimentation. If one method is known to be faster
than another, then why experiment with the other method? The issue with this is that
these assumptions are often not rigorously tested but are treated as fact. Comparisons
between different numerical methods, such as the one performed in this paper, are im-
portant because they challenge such assumptions and allow for deeper insights into the
computational processes that underlie the simulation.

1.1. Anaerobic Digestion

Anaerobic digestion (AD) refers to the decomposition of organic waste material by
anaerobic micororganisms. It is an old environmental engineering technology that received

Processes 2023, 11, 1899. https://doi.org/10.3390/pr11071899 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11071899
https://doi.org/10.3390/pr11071899
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0009-0004-2019-7565
https://orcid.org/0000-0003-4371-9296
https://orcid.org/0000-0001-5558-0872
https://doi.org/10.3390/pr11071899
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11071899?type=check_update&version=2

Processes 2023, 11, 1899 2 of 17

new attention in recent decades, because methane, which is an end product of the process,
can be used as a renewable energy source [1,2]. Anaerobic digestion is a broadly applicable
technology that allows a variety of feedstock to be processed, for example from agricultural,
industrial, or municipal waste [3]. Among the advantages of anaerobic treatment processes
are a low production of waste biological solids, low nutrient requirements, the potential
to be a net producer of energy, and high organic loading; disadvantages include the low
growth of microorgansims, odor production, high buffer requirement for pH control and
poor removal efficiency with dilute wastes [4]. The main conversion processes taking
place in anaerobic digestion are disintegration of the particulate material, hydrolysis,
acidogenesis, acetogenesis, and methanogenesis [5,6]. Extensive mathematical modelling
work has been conducted for each of these processes, with the ultimate goal being to
assist in the design, analysis and operation and control of anaerobic digestion-based
technologies. This culminated in the development of a generic, encompassing process
model, the Anaerobic Digestion Model 1, in 2002.

1.2. The Anaerobic Digestion Model 1

The Anaerobic Digestion Model 1 (ADM1) is the quasi-industry standard for modelling
the processes of anaerobic digestion that result in the production of methane from waste
and wastewater. It was developed by the International Water Association (IWA) and
is based on several simpler models of anaerobic digestion [6]. The model considers a
continuously stirred tank reactor containing wastewater and 12 different bacterial groups
that consume/produce 12 different substrates. This scenario is described by a system of
24 ODEs [6]. The model also considers physio-chemical reactions within the substrate itself,
increasing the number of substrates to 23 and increasing the total number of state variables
to 35. These physio-chemical reactions are classified into two categories: acid–base reactions
and liquid–gas exchange, both of which can be modelled by ODEs, resulting in the total
system being described by 35 ODEs.

The basic form of ADM1 is:

d~u
dt

= P~r(~u) + Min~uin −Mout~u, (1)

where ~u ∈ R35 is the vector of state variables containing the concentration of each bacterial
species and substrate;~r(~u) ∈ R29 is a vector of process reaction rates and depends on the
concentrations of the components, ~u; P ∈ R35×29 is the transpose of the Petersen matrix,
which is a sparse matrix that describes how the concentrations of the components affect
the reaction rates; ~uin ∈ R35 is the vector of inflow concentrations; and Min ∈ R35×35

and Mout ∈ R35×35 are diagonal matrices of the inflow and outflow rate, respectively. P,
~r(~u), Min, and Mout contain the 104 model parameters that describe the system. These
parameters are listed in the Supplementary Material. Many implementations of ADM1
do not implement ADM1 directly in matrix form and instead opt to hard code each equa-
tion directly.

This system of equations is stiff, which typically results in increased computational
time due to the need for implicit solvers. In order to reduce the computational time,
the stiffness is often relaxed by rewriting the ordinary differential equations as differential
algebraic equations [7], which allows for explicit solvers to be used. It appears to be
generally accepted that the DAE form of ADM1 is faster than the ODE form, since that was
the purpose of its development [7].

1.3. Benchmark Simulation Model 2

The Benchmark Simulation Model 2 (BSM2) is a modified version of ADM1 that was
produced by the IWA [7]. The modifications that the BSM2 makes include, for example,
modifications to the equations for inorganic carbon and inorganic nitrogen. The BSM2
also supplies standard parameter values and inflow concentration values to provide a
benchmark for future research. All of the following implementations are based on the

Processes 2023, 11, 1899 3 of 17

system of equations given by the BSM2, which means that they should give comparable
results for the same inputs.

1.4. Purpose of Comparison

In recent years, there has been a call to examine the so-called reproducibility crisis
in science [8,9]. This crisis generally refers to the “Three R’s”, which we will define as
Repeatibility, Reproducibility, and Replicability. Although there is some variation in the
words themselves, their meanings are generally fixed. Repeatability is often interchanged
with Reliability, Robustness, or Rigour, but all three generally refer to the same basic idea:
that a result should be consistent and strongly indicative of the real world. Repeatability
encompasses Reproducibility and Replicability. A result that is reproducible can be obtained
by another researcher using the same equipment and methods, and a result that is replicable
can be obtained by a researcher re-creating the experiment from scratch using the same
methods. The “Three R’s” are an important component of scientific research, since research
is always built on the work of others. However, they are often neglected in scientific
computing, leading to programs that have only been minimally tested being used to develop
software solutions, particularly in the case of modelling complex biological systems [8].
This problem is particularly common when modelling complex biological systems, with one
2019 study estimating with 95% confidence that between 0.68% and 6.8% of hydrology
articles published in 2017 were reproducible [10]. This in turn leads to software that
becomes less and less trustworthy over time. This paper aims to examine the replicability
of the codes used to create the Anaerobic Digestion Model 1 and therefore to avoid that
build-up of error.

It is generally accepted that the ODE and DAE forms of ADM1 both yield similar
results. One IWA report lists the largest relative difference as 10−6 and the largest absolute
difference as 10−5 [11]; however, these numbers are only for three sets of parameter values,
and they only apply to the Matlab implementation of the BSM2 [7]. By comparing the Julia,
Java, and Python implementations for a larger dataset, it is possible to make more general
conclusions about how the ODE and DAE forms compare to each other. Including different
DAE implementations in the comparison gives a better sense of the aforementioned “Repli-
cability” of the results. If the difference between the ODE implementation and the DAE
implementations is no more significant than the differences between the DAE implementa-
tions, then how significant are the differences really? Likewise, the purpose of comparing
to two different Python implementations is to gauge the significance of any differences be-
tween the Python, Julia, and Java implementations. If there is a greater difference between
the two Python implementations than there is between the other solver methods, what
does that mean? After it has been established that two implementations give results that
differ within acceptable tolerances, the question of computational efficiency, specifically
compute time, arises. These questions will be further examined in Section 3, where we will
see that our de novo implementation outperforms all three reference implementations.

A further question when comparing different implementations of a model is how easy
it is for users to adapt and apply the simulation tool to scenarios beyond the test cases, say
to include a new process, or to modify existing process descriptions. While this is difficult
to measure quantitatively, this question entered the design of our new implementation
of ADM1.

2. Materials and Methods
2.1. The Python Implementations

The two Python implementations are written by Peyman Sadrimajd et al. [12] and
were validated in comparison with the MATLAB implementation of BSM2. One of the
implementations is older and considers a fixed inflow rate; this will be called the “SteadPy”
implementation, since it considers a steady inflow. The second Python implementation is
newer and considers a variable inflow rate; this will be referred to as “DynPy”, since this
implementation models dynamic inflow. Both of the Python implementations are in the

Processes 2023, 11, 1899 4 of 17

DAE form and hard code all of the equations directly: that is, they do not code them in
matrix form. The only real difference between DynPy and SteadPy is how they solve the
DAE system.

To solve the ODEs, both versions of the Python code use DOP853, which is an “explicit
Runge–Kutta method of order 8” [13]. DOP853 is a Python implementation of the DOP853
algorithm originally written in Fortran. It is an adaptive step-size method that is error
controlled. To solve the algebraic equations, the time span is broken into time steps, and at
each time step, the Newton–Raphson method is used to solve the algebraic equations,
as specified by the BSM2. SteadPy recomputes the algebraic equations every 15 min of
simulation time. Conversely, DynPy takes a vector of time steps and an array of inflow rates,
where each row of the array correspond to a time step, and it recomputes the algebraic
equations at each time step.

To make DynPy model a system with constant inflow values (such as SteadPy and the
Julia implementation), it is only necessary to keep the row vector of inflow values constant
for every time step. To keep the comparison consistent, the vector of time steps for DynPy
was kept the same as it was originally coded. This vector is given in Table 1. Keeping the
inflow vector constant means DynPy and SteadPy solve the same system with the same
numerical methods; the only difference between them is then how often the algebraic
equations are recomputed.

Table 1. Vector of time steps used for DynPy. After time t = 10 days, the time steps increment by 5
until t = 205 days.

Time Step (Days)
0

6.27 × 10−5

0.000689664
0.00693381
0.014230415
0.031775873
0.051610754
0.088711557
0.135732573
0.212098681
0.311804414
0.474542448
0.722405853
1.163712693

2
4
5

10

2.2. The Java Implementation

The Java implementation was written by Liam Pettigrew et al. [14]. It is based on the
Matlab code for the BSM2 and implements the DAE version of ADM1. Like the Python
codes, it hard codes the equations instead of coding them in matrix form. This team has
also produced a modified version of the code [15] that considers changes to the process
rates. That version is not considered in this paper.

It uses the AdamsBashforthIntegrator class included in the org.apache.commons.
math3.ode.nonstiff package to solve the ODEs. This class implements an explicit lin-
ear multistep solver known as an Adams method [16]. AdamsBashforthIntegrator also
implements error control using an adaptive step size. Similarly to SteadPy, the Java imple-
mentation uses the Newton–Rhaphson method suggested by the BSM2 to recompute the
algebraic equations every 15 min of simulation time.

Processes 2023, 11, 1899 5 of 17

2.3. The Julia Implementation

The Julia code was created to meet two main demands: the first to be flexible to
model alterations, and the second to offer greater flexibility in the output. The Java and
Python implementations both hard code the equations, whereas the Julia code implements
the matrix form given by Equation (1). The matrix form is easier to make changes to,
since it only requires editing discrete entries of the Petersen matrix and rate equations
instead of going through and editing each equation individually. Additionally, the Java
implementation and SteadPy only output the system solution at a specified final time.
The DynPy outputs the solution at discrete times, but these times must be specified by the
input, which can lead to a greater build-up of error if the step sizes are chosen to be too
large, as can be seen in Section 3. Therefore, simulating a chain of reactors, where the
outflow of one reactor becomes the inflow of another, requires additional changes to these
programs, and it also introduces the possibility of a build-up of errors.

Since computational time is an important factor in the utility of an ADM1 implemen-
tation, the Julia implementation was developed to exploit the purported speed of Julia’s
DE solvers [17]. In contrast to the other implementations, the Julia implementation is not in
DAE form but is instead in ODE form. This choice was made because Julia’s ODE solvers
are more versatile than its DAE solvers, offering more flexibility in the coding.

The Julia implementation also returns the solution for a range of times t within the
specified time range, as opposed to only returning the final solution. Additionally, the Julia
implementation exclusively uses adaptive time-stepping methods without having to solve
any algebraic equations, so the final solution does not suffer from the same inaccuracies as
the dynamic Python implementation, which will be seen in Section 3. After testing several
solver methods, Rodas4P() was chosen. It is a “4th order A-stable stiffly stable Rosenbrock
method with a stiff-aware 3rd order interpolant [18]”. How the sole use of an adaptive
step size method will impact the accuracy of the solutions of systems with variable inflow,
and therefore how it will affect the solutions of multi-reactor systems, will be the subject of
another paper. Finally, some optimisations were made, such as using the Memoize package’s
@memoize macro on functions that repeatedly take the same inputs. @memoize stores the
solutions of a function for given inputs in memory, so that the function does not have to
be recomputed each time that those inputs are used. The @profile macro also found that
performing the linear algebra calculations with sparse matrices was a causing bottleneck,
so the matrices were all written in full matrix form.

2.4. Null-Hypothesis Significance Testing

To compare the solutions given by each of the implementations, we will use null-
hypothesis significance testing. This type of statistical analysis returns a p-value that
indicates whether a so-called “alternate hypothesis” can be accepted or rejected. To conduct
null hypothesis significance testing, both an alternate hypothesis and a null hypothesis are
required. In this case, our alternate hypothesis is that the mean values of our quantities
of interest will differ depending on the implementation of ADM1 used to compute them.
Our null hypothesis is therefore that the mean values will not differ depending on imple-
mentation. If the p-value is close to zero, then we reject the null hypothesis in favour of the
alternate hypothesis: that quantities of interest differ depending on the implementation
used to compute them.

Commonly used null-hypothesis tests are the Student’s t-test and one-way analysis of
variance (ANOVA). They compare the mean values of a quantity of interest with respect
to their variances. The two tests differ based on the number of groups that are being
considered; Student’s t-test only considers two groups of data, whereas ANOVA considers
more than two groups of data [19].

To use these two tests with large data sets, there needs to be an equality of variance [19].
That is, there must be an equal amount of variation around each of the mean values for both
the Student’s t-test and ANOVA to return accurate results. To determine if this condition
is met, Levene’s test [19] can be applied to the data. Levene’s test returns a p-value that

Processes 2023, 11, 1899 6 of 17

measures how different the variances of the data sets are from each other. If the p-value
returned by Levene’s test is significant, i.e., if the p-value is less than 0.05, the variances are
not significatly different, and one can conclude there is an equality of variance.

If Levene’s test finds an equality of variance, then one can proceed with Student’s
t-test/ANOVA. However, if that is not the case, a different null-hypothesis test must be
used to compare the data. One such test is the Kruskal–Wallis test [20], which is used on
non-parametric data, i.e., data that lack an equality of variance.

With all statistical tests, it is important to determine where resulting conclusions stem
from. For this reason, post hoc tests are applied to examine the data more thoroughly.
In this analysis, two post hoc tests were used to assess results: Student’s t-test [21] and
Dunn’s test [22]. These tests were used to make pairwise comparisons between the means
to determine which implementations were significantly different from the others. Student’s
t-test was performed on the data sets that passed Levine’s test, and Dunn’s test, a non-
paramteric test that functions similarly to the Student’s t-test, was performed on the
remaining data sets.

2.5. Validating the Julia Code with the Python DAE Implementation

To first validate the code, the Julia implementation was compared against the latest
implementation of the Python code, DynPy. The same initial conditions, inflow vectors,
and model parameters were used in both cases. These parameters are given in the BSM2
and will be referred to as the “default” parameters. The solution was found on the time
interval (0.0, 200, 0) since at t = 200.0, the solution for these parameters will have had
time to reach steady state. The maximum relative difference between the two solutions is
defined as

Drel = max
i∈[1,35]

(∣∣∣∣∣
(
uju
)

i −
(
upy
)

i(
upy
)

i

∣∣∣∣∣
)

(2)

where uju is defined to be the final solution using the Julia code and upy is defined to be
the final solution using the Python code. The index i refers to the component of the vector
of state variables. Originally, the maximum relative difference was greater than 1000%.
The difference decreased when typos were discovered in the Petersen matrix. When the
Julia code returned a solution where the maximum relative difference between the solutions
was less than 5%, the code was considered validated, and the following more rigorous tests
were performed.

2.6. Comparison of Julia, Java, and Python Implementations
2.6.1. Datasets

To perform the comparisons, four different data sets were considered, each of which
is based on a different set of model conditions: one where the inflow concentrations were
varied within 50% of the BSM2 values, one where the inflow concentrations were varied
within 15% of the BSM2 values, and two where the model parameters are varied around
the BSM2 values. The two varied-parameter-values data sets are required because the Java
implementation does not accept pressure as an input; it needs to be specified by manually.
So, one data set varies the pressure, while the other keeps the pressure constant to allow the
Java results to be compared to the others. In both data sets where parameter values were
varied, some of the parameter values remain constant for all processes. Which parameters
were varied, and by what amount, is given in the Supplementary Materials. Each set of
model conditions contains 200 vectors each of which contains a set of inflow concentrations
or parameter values, depending on the set of model conditions being considered. Each set
of model conditions is then used to generate a data set of solutions at t = 200.0, which was
chosen for the same reason as in Section 2.5, to ensure that the solution has time to reach
steady state.

Processes 2023, 11, 1899 7 of 17

2.6.2. Comparison of Compute Times

To compare the compute times, we used an Acer Swift 3 laptop with an Intel Core
i5-8250U CPU and 8 GB of RAM that was running Windows 11 Home. Java 13.0.2, Python
3.8.5, and Julia 1.7.3 were used to run the simulations. We considered three data sets,
the BSM2 inflow +/− 50%, the BSM2 inflow +/− 15%, and the random parameter constant
pressure dataset; the other random parameter set was omitted, since it could not be run
on the Java code without modifying the Java code. Each implementation was run with
the first 30 entries of each set of model conditions. The mean computation time was then
computed, and the standard deviation was computed using the STDEV.S function in Excel,
which computes the standard deviation of a sample using the formula

σ =

√
∑n

i (xi − x̄)
n− 1

where xi are sample values, x̄ is the sample mean, and n is the sample size [23].

2.7. Statistical Analysis

All statistical analysis was performed using the statistical software included in the
R programming language. In order for these tests to be conducted using the R IDE,
supplementary packages had to be installed and called when the analysis was conducted.

For each of the four data sets described in Section 2.6.1, three quantities of interest
were compared: the weighted average of the solution, the concentration of carbon dioxide
gas, and the concentration of methane gas. The weighted average ū of a solution at time
tfinal is given by

ū(tfinal) =
∑35

i=1
ui(tfinal)

ui(0)

35
(3)

where ui(tfinal) is the solution for state variable i at time tfinal, so the value of the state
variable at time tfinal is weighted by its initial value, making the weighted average unitless.
In this case, as mentioned in Section 2.6.1, tfinal = 200. The sum is from 1 to 35, since there
are 35 state variables in ADM1. It was decided to take a weighted average to attempt
to ensure that the value of each state variable affects the mean equally. Since the initial
conditions given in the BSM2 were chosen to be close to the steady-state solutions, the initial
conditions were also chosen to be the weights.

For each of the three quantities of interest, Levene’s test was used to determine if there
was an equality of variance between the mean of the values given by each implementation,
and then, ggbetweenstats was used to perform the statistical analysis and plot the data.
The tibble package [24] was used to convert the .csv files containing the data sets into
tibble type data frames that could be interpreted by R. To determine whether the data
were parametric or not, the function leveneTest from the car package [25] was used to
perform Levene’s test. The ggbetweenstats function in the ggstatsplot package [26] was
then used to plot the data and perform the statistical tests. The ggstatsplot package uses
functions from various packages to perform the statistical tests and functions from the
ggplot2 package [27] to plot.

To specify whether the ggbetweenstats function performs a parametric or non-
parametric test, the optional argument type is set equal to either parametric or non-
parametric. If parametric is specified, an ANOVA test is performed using the func-
tion oneway.test with the optional argument var.equal = TRUE. The Student’s t-test
is performed using the pairwise.t.test function from the stats package [28]. If the
non-parametric argument is specified, the kruskal.test from the stats performs the
Kruskal–Wallis test, and the Dunn test is performed using the kwAllPairsDunnTest func-
tion from the PMCMRplus package [29].

All results were then analysed using the generated p-values to determine if they were
statistically significant or not in order to determine if the null hypothesis (that the solutions
do not differ based on implementation) could be accepted. The greater the p-value, the less

Processes 2023, 11, 1899 8 of 17

significant the differences between the implementations are. A level of significance, α, is
generally chosen, below which the p-value is said to be significant. In this case, the level
of significance was α = 0.05, meaning that if the p-value was less than 0.05, then the null
hypothesis was rejected.

3. Results
3.1. Comparison of Solutions

We begin our assessment of the new ADM1 implementation by comparing the model
solutions with those of the existing implementations. The results of the statistical tests of
this comparison are given in Figures 1–4. Each figure shows the p-value for the ANOVA or
Kruskal–Wallis test as well as the pholm-adj-value given by the post hoc tests (Student’s t-test
or Dunn test, depending on whether ANOVA or Kruskal–Wallis was used) shows which
pairs of data have a statistically significant difference. The DynPy implementations gave
three negative solutions for the concentration of CO2 gas. These negative CO2 concentra-
tions were significant with respect to their positive counterparts, and they had an average
value of−9.2× 10−4 KgCOD m−3 which is 6% of the average of the positive concentrations,
1.4× 10−2 KgCOD m−3. The negative values therefore cannot be considered small enough
to be floating point approximations of zero, but they were instead indicative of some failure
in the code. These data were excluded from our analysis.

The number of such omitted data for each trial is given in Table 2, along with the mean
concentrations of CO2 gas for both the excluded cases and positive cases, and a comparison
of both cases.

Looking at Figures 1–4, we can conclude that the Julia, Java, and SteadPy imple-
mentations all return results that show no statistically significant difference. This can be
seen by looking at the pholm-adj value between each of them. However, the p-values for
the ANOVA and Kruskal–Wallis tests are not always greater than 0.05. Looking at the
pholm-adj values, this is due to the results given by the DynPy implementation, which have
statistically significant differences with the other implementations. These differences occur
for the concentration of CO2 gas and concentration of CH4 gas when the inflow is varied
within 50% of BSM2 values (Figure 1), for the concentrations of CO2 gas and CH4 gas when
the inflow is varied within 15% of BSM2 values (Figure 2b,c), and are not seen when the
parameters are varied (Figures 3 and 4).

In both cases where the parameters are varied, all of the implementations give some
solutions where the weighted averages are very high (>1000), as seen in Figures 3a and 4a,
and some solutions where the methane concentrations are near zero, as seen in Figures 3c
and 4c. A discussion of these phenomena can be found in the Supplementary Material.

Table 2. Number of DynPy solutions that were omitted for each data set. The average values of CO2

gas (Sgasco2
) at time t = 200 for both the negative and positive concentrations and the ratio between

them are also shown, indicating the negatives were significant and not approximations of zero.

Dataset # Omitted Mean Sgasco2 neg Mean Sgasco2 pos Ratio |Mean Neg.|
Mean Pos.

inflow ± 50 3 −0.00092 0.014 0.063
inflow ± 15 none N/A N/A N/A
rand params 7 −0.0076 0.015 0.50
rand params

const. P 5 −0.010 0.015 0.68

Processes 2023, 11, 1899 9 of 17

(a)

(b)

(c)

Figure 1. Statistical tests of data when inflow randomised within (+/−)%50 of BSM2 values. If the
Levene test returned a p-value less than 0.05, a Kruskal–Wallis test was performed; otherwise, ANOVA
was performed. The values of the Levene tests were: (a) 8.34× 10−19, (b) 1.37× 10−21, (c) 3.64× 10−8.

Processes 2023, 11, 1899 10 of 17

(a)

(b)

(c)

Figure 2. Statistical tests of data when inflow randomised within (+/−)%15 of BSM2 values. If the
Levene test returned a p-value less than 0.05, a Kruskal–Wallis test was performed; otherwise,
ANOVA was performed. The values of the Levene tests were: (a) 1.37× 10−21, (b) 7.55× 10−14,
(c) 4.34× 10−11.

Processes 2023, 11, 1899 11 of 17

(a)

(b)

(c)

Figure 3. Statistical tests of data when parameter values randomised around BSM2 values. If the
Levene test returned a p-value less than 0.05, a Kruskal–Wallis test was performed; otherwise, ANOVA
was performed. The values of the Levene tests were: (a) 0.455, (b) 0.0546, (c) 0.178.

Processes 2023, 11, 1899 12 of 17

(a)

(b)

(c)
Figure 4. Statistical tests of data when parameter values randomised around BSM2 values and
pressure is kept constant. If the Levene test returned a p-value less than 0.05, a Kruskal–Wallis test
was performed; otherwise, ANOVA was performed. The values of the Levene tests were: (a) 0.902,
(b) 0.0466, (c) 0.394.

Processes 2023, 11, 1899 13 of 17

3.2. Computational Time

Tables 3–5 show the average computation times and their standard deviations for
the simulation runs reported in the previous section. From these tables, it is clear that
Julia outperforms the other implementations, with computational times that are around
1/10th the speed of the next fastest implementation, Java. The Python implementations
are the slowest, with DynPy taking around 20 times longer than the Java code and SteadPy
taking around three times as long as DynPy. It is also worth noting that changing the
parameter values increases the computation time by a factor of about two for all of the
implementations, with the exception of SteadPy, which sees a time decrease of around 15%
when the parameter values are varied.

Table 3. Average computation times for the Julia and Python implementations when the inflow
vector is varied within 50% of BSM2 values.

Implementation Average Time (s) STDEV

Julia 0.22 0.15
SteadPy 194 2
DynPy 59 4
Java 3.51 0.01

Table 4. Average computation times for the Julia and Python implementations when the inflow
vector is varied within 15% of BSM2 values.

Implementation Average Time (s) STDEV

Julia 0.24 0.12
SteadPy 194 2
DynPy 56.5 0.9
Java 3.51 0.02

Table 5. Average computation times for the Julia and Python implementations when the parameter
values are varied around the BSM2 values.

Implementation Average Time (s) STDEV

Julia 0.54 0.50
SteadPy 166 22
DynPy 96 11
Java 4.4 1.4

4. Discussion
4.1. Reproducibility and Validation

Validating an implementation of a mathematical model is one of the biggest challenges
of coding computer simulations—in some cases because no data are available, and in
others because data are limited, and translating known physical parameters to the model
parameters is difficult. Implementations of ADM1 suffer from both issues. ADM1 has
104 model parameters, including reaction rates and yield coefficients, the exact values of
which can only be estimated. This is why the BSM2 only examines three different physical
cases. Independent implementations offer another way of evaluating the code. Every
additional implementation that produces the same results serves to validate the previous
implementations. Additionally, if any discrepancies are detected between implementations,
finding their source can reveal more information about the strengths and weaknesses
of the implementations. For example, the greater number of discrepancies between the
DynPy implementation and the others can be explained by the time step size between
recomputations of the algebraic equations. While a constant step size of dt = 15 min
appears sufficiently accurate when compared to the variable step size method used by the

Processes 2023, 11, 1899 14 of 17

Julia implementation, the gradual increase in step size from dt ≈ 5 s to dt = 5 days used in
DynPy can result in a loss of accuracy.

4.2. Compute Time: Why It Matters

Naïvely, it may seem like the speed increase from the Java implementation to the Julia
implementation is not a significant result, since a compute time of 3 s is already pretty
quick. However, for many computational problems, the 10-fold speed increase makes
a significant difference. For example, for a model of the size of ADM1, optimal control
problems, automatic parameter calibrations, and sensitivity analyses can easily require the
generation of thousands of model simulations to determine the effect that the different state
variables and parameters have on the system. The amount of computations needed for
these problems increases with the number of state variables and parameters. So, to perform
a sensitivity analysis on ADM1, each of the 104 model parameters needs to be varied
several times to determine the model’s sensitivity to that parameter. If each parameter is
varied only ten times, the total computation time is approximately an hour for the Java
code and only around four minutes for the Julia code. The computation time difference
only grows as more and more data are required, so it is best to reduce the computation
time as much as possible in order to perform more detailed analyses of the model.

Additionally, if a model has a fast computation time, the model can be connected to a
physical reactor to make real-time predictions based on data as it is measured, for example
in digital twin applications. These predictions allow engineers to make informed opera-
tional decisions. However, the more parameters the model has, the more computationally
expensive it is to calibrate the model to match the physical reactor. So, increasing the speed
of the compute time increases the feasibility of linking the model to the physical reactor. In
this regard, we argue that our de novo implementation offers a significant improvement on
existing implementations, which might allow a model-supported design and operation of
anaerobic digestion processes that are currently not in reach.

4.3. DAE vs. ODE Formulations of ADM1

The DAE form was developed to increase the computational speed of ADM1 [7]; how-
ever, the results of this study show that the DAE form is not necessarily faster than the ODE
form. In fact, it seems that which numerical methods are used makes a bigger difference on
computational time than the form of the DAE. When designing the Julia implementation,
four different solver methods were tested, Rosenbrock23(), Rodas5(), Rodas4P() and
radau(). Each solver method was tested for absolute and relative tolerancess of 10−1, 10−2,
10−4, 10−6, 10−8, and 10−10. These tests showed that the choice of both the solver method
and the tolerances had a significant impact on the computation time, with times varying
from 0.6 s to over five minutes for a single solver method depending on the tolerances used.
Additionally, some solver methods were more reliably fast, which is why the Rodas4P()
method with absolute and relative tolerances of 10−4 was ultimately chosen. Although this
appears to be a rather large tolerance, the simulation results obtained agree very well with
those given by other, slower implementations. This indicates that the commonly held
beliefs about the computation speed of the DAE form may be steering people away from
examining the root causes of computational slowdown.

4.4. Use of the Petersen Matrix Formulation of ADM1

Other than the choice of DAE form vs. ODE form, the most significant difference
between the Julia implementation and the other implementations examined in this paper is
the choice to implement ADM1 directly in the matrix form given by Equation (1) as opposed
to typing out all of the differential equations. Although ADM1 itself was developed as a
generic and widely applicable model of anaerobic digestion processes, many applications
might require adaptation to the specifics of the particular problem being studied. This
can take the form of modifying process rates, refining process descriptions or including
processes that are not included in the generic ADM1. The new Julia implementation

Processes 2023, 11, 1899 15 of 17

can be adapted by providing an updated Petersen matrix and a corresponding vector
of reaction rates; the user is not required to alter the affected and modified differential
equations individually. This design choice improves the usability of the code compared
to the reference implementations that went the more traditional route of implementing
each differential equation directly. However, implementing the matrix form might seem
like it would negatively impact the computation time, since the Petersen matrix is sparse
and therefore results in a lot of multiplications by zero. One possible work around could
be declaring the Petersen matrix as Sparse and using sparse linear algebra techniques.
However, when comparing both versions of the Julia code, keeping the Petersen matrix
as a full array actually results in a faster computation time. If we again look back to our
results on computation time, the Julia implementation is actually significantly faster than
the others despite performing all of the multiplications by zero. So, implementing the
matrix form offers flexibility without any noticeable impact on computation time, contrary
to what might be expected.

5. Conclusions

It may seem like implementing new software to solve a problem that has existing
software solutions available is merely retreading established work or at most serves as an
independent validation of existing results. However, not only do new implementations
validate existing implementations, they also offer deeper insight into the more complex
issues of how to implement a model, and they can serve to challenge naïve assumptions.
Without these observations, innovation and improvement is not possible. We have shown
that, contrary to popular belief, the ODE form of ADM1 is not necessarily slower than
the DAE form, and that the numerical methods used play a much bigger role. We have
also shown that implementing the matrix form of ADM1 does not have a noticeable
effect on compute time. Both of these combined allow for a more efficient and flexible
implementation that would not exist if the conventional wisdom regarding computational
speed was not tested.

Our conclusions about the performance of the new implementation of ADM1 relative
to earlier implementations are based on a large number of simulations and on the strong
statistical significance of our results. Therefore, we think they will carry over generally to
situations where ADM1 is an appropriate model.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr11071899/s1.

Author Contributions: Conceptualisation, C.A., N.A. and H.J.E.; methodology, C.A and H.J.E.; soft-
ware, C.A. and A.M.; validation, C.A. and A.M.; formal analysis, C.A. and A.M.; investigation, C.A.,
N.A. and H.J.E.; resources, H.J.E. and N.A.; data curation, C.A.; writing—original draft preparation,
C.A. and A.M.; writing—review and editing, C.A., N.A. and H.J.E.; visualisation, C.A.; supervision,
H.J.E.; project administration, H.J.E. and N.A.; funding acquisition, H.J.E. and N.A. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering and Research Council
of Canada (NSERC) [grant number ALLRP 560564] and by the Ontario Centre for Innovation (OCI)
[grant number #34231].

Data Availability Statement: The supplementary material includes a link to the database containing
the Julia code used to generate the data.

Acknowledgments: The authors thank Mohammad Zaker for assistance with the java codes.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/pr11071899/s1
https://www.mdpi.com/article/10.3390/pr11071899/s1

Processes 2023, 11, 1899 16 of 17

Abbreviations
The following abbreviations are used in this manuscript:

AD Anaerobic Digestion
ADM1 Anaerobic Digestion Model Number 1
ANOVA Analysis of Variances
BSM2 Benchmark Simulation Model 2
DAE Differential–Algebraic Equation
ODE Ordinary Differential Equation
STDEV Standard Deviation

References
1. Kunatsa, T.; Xia, X. A review on anaerobic digestion with focus on the role of biomass co-digestion, modelling and optimisation

on biogas production and enhancement. Bioresour. Technol. 2022, 344, 126311. [CrossRef] [PubMed]
2. Uddin, M.N.; Siddiki, S.Y.A.; Mofijur, M.; Djavanroodi, F.; Hazrat, M.A.; Show, P.L.; Ahmed, S.F.; CHu, Y.M. Prospects of

Bioenergy Production From Organic Waste Using Anaerobic Digestion Technology: A Mini Review. Front. Energy Res. 2021,
9, 627093 . [CrossRef]

3. Uddin, M.M.; Wright, M.M. Anaerobic Digestion Fundamentals, Challenges, and Technological Advances. Phys. Sci. Rev. 2022.
[CrossRef]

4. Rittmann, B.E.; McCarty, P.L. Environmental Biotechnology: Principles and Applications; McGraw-Hill: New York, NY, USA, 2001.
5. Meegoda, J.N.; Li, B.; Patel, K.; Wang, L.B. A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. Int.

J. Environ. Res. Public Health 2018, 15, 2224. [CrossRef] [PubMed]
6. Batstone, D.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.; Pavlostathis, S.; Rozzi, A.; Sanders, W.; Siegrist, H.; Vavilin, V. Anaerobic

Digestion Model No. 1 (ADM1); Scientific and Technical Report, no. 13; IWA Publisher: London, UK, 2002.
7. Alex, J.; Benedetti, L.; Copp, J.; Gernaey, K.; Jeppsson, U.; Nopens, I.; Pons, M.; Rosen, C.; Steyer, J.; Vanrolleghem, P. Benchmark

Simulation Model No. 2 (BSM2); International Water Association: London, UK, 2019.
8. Gavaghan, D. Problems with the Current Approach to the Dissemination of Computational Science Research and Its Implications

for Research Integrity. Bull. Math. Biol. 2018, 80, 3088–3094. [CrossRef] [PubMed]
9. Schnell, S. “Reproducible” Research in Mathematical Sciences Requires Changes in our Peer Review Culture and Modernization

of our Current Publication Approach. Bull. Math. Biol. 2018, 80, 3095–3105. [CrossRef] [PubMed]
10. Stagge, J.H.; Rosenberg, D.E.; Abdallah, A.M.; Akbar, H.; Attallah, N.A.; James, R. Assessing Data Availability and Research

Reproducibility in Hydrology and Water Resources. Sci. Data 2019, 6, 190030. [CrossRef] [PubMed]
11. Rosén, C.; Jeppsson, U. Aspects on ADM1 Implementation within the BSM2 Framework; Department of Industrial Electrical

Engineering and Automation, Lund University: Lund, Sweden, 2006; pp. 1–35.
12. Sadrimajd, P.; Mannion, P.; Howley, E.; Lens, P.N.L. PyADM1: A Python Implementation of Anaerobic Digestion Model No. 1.

bioRxiv 2021. [CrossRef]
13. Hairer, E.; Nørsett, S.; Wanner, G. Explicit Runge-Kutta Methods of Higher Order. In Solving Ordinary Differential Equations

I: Nonstiff Problems; Springer Series in Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 2008; Chapter II,
pp. 181–184.

14. Pettigrew, L.; Hubert, S.; Groß, F.; Delgado, A. Implementation of Dynamic Biological Process Models into a Reference Net
Simulation Environment. In Proceedings of the ASIM Dedicated Conference Simulation in Production and Logistics, Dortmund,
Germany, 24 September 2015.

15. Pettigrew, L.; Gutbrod, A.; Domes, H.; Groß, F.; Méndez-Contreras, J.M.; Delgado, A. Modified ADM1 for high-rate anaerobic
co-digestion of thermally pre-treated brewery surplus yeast wastewater. Water Sci. Technol. 2017, 76, 542–554. [CrossRef]

16. Hairer, E.; Nørsett, S.; Wanner, G. Chapter III.1 Classical Linear Multistep Formulas. In Solving Ordinary Differential Equations I:
Nonstiff Problems; Springer Series in Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 1993; pp. 356–361.

17. Rackauckas, C. A Comparison Between Differential Equation Solver Suites in MATLAB, R, Julia, Python, C, Mathematica, Maple,
and Fortran. Winnower 2018. [CrossRef]

18. Rackauckas, C.; Nie, Q. Differentialequations.jl–a Performant and Feature-Rich Ecosystem for Solving Differential Equations in
Julia. J. Open Res. Softw. 2017, 5. [CrossRef]

19. Fox, J. Applied Regression Analysis and Generalized Linear Models, 3rd ed.; Sage: Newcastle upon Tyne, UK, 2008.
20. Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [CrossRef]
21. Kalpić, D.; Hlupić, M.L.N. International Encyclopedia of Statistical Science; Springer: Berlin/Heidelberg, Germany, 2011;

pp. 1559–1563.
22. Dunn, O.J. Multiple Comparisons Using Rank Sums. Technometrics 1964, 6, 241–252. [CrossRef]
23. Microsoft Support: STDEV.S Function. 2023. Available online: https://support.microsoft.com/en-us/office/stdev-s-function-

7d69cf97-0c1f-4acf-be27-f3e83904cc23 (accessed on1 May 2023).
24. Müller, K.; Wickham, H. tibble: Simple Data Frames. 2022. R Package Version 3.1.7. Available online: https://CRAN.R-project.

org/package=tibble (accessed on1 May 2023).

http://doi.org/10.1016/j.biortech.2021.126311
http://www.ncbi.nlm.nih.gov/pubmed/34780910
http://dx.doi.org/10.3389/fenrg.2021.627093
http://dx.doi.org/10.1515/psr-2021-0068
http://dx.doi.org/10.3390/ijerph15102224
http://www.ncbi.nlm.nih.gov/pubmed/30314318
http://dx.doi.org/10.1007/s11538-018-0499-y
http://www.ncbi.nlm.nih.gov/pubmed/30324270
http://dx.doi.org/10.1007/s11538-018-0500-9
http://www.ncbi.nlm.nih.gov/pubmed/30232583
http://dx.doi.org/10.1038/sdata.2019.30
http://www.ncbi.nlm.nih.gov/pubmed/30806638
http://dx.doi.org/10.1101/2021.03.03.433746
http://dx.doi.org/10.2166/wst.2017.227
http://dx.doi.org/10.15200/winn.153459.98975
http://dx.doi.org/10.5334/jors.151
http://dx.doi.org/10.1080/01621459.1952.10483441
http://dx.doi.org/10.1080/00401706.1964.10490181
https://support.microsoft.com/en-us/office/stdev-s-function-7d69cf97-0c1f-4acf-be27-f3e83904cc23
https://support.microsoft.com/en-us/office/stdev-s-function-7d69cf97-0c1f-4acf-be27-f3e83904cc23
https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=tibble

Processes 2023, 11, 1899 17 of 17

25. Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019.
26. Patil, I. Visualizations with Statistical Details: The ‘ggstatsplot’ approach. J. Open Source Softw. 2021, 6, 3167. [CrossRef]
27. Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016.
28. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2022. Available online: https://www.R-project.org/ (accessed on 1 May 2023).
29. Pohlert, T. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended. 2022. R Package Version 1.9.5.

Available online: https://CRAN.R-project.org/package=PMCMRplus (accessed on 1 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.21105/joss.03167
https://www.R-project.org/
https://CRAN.R-project.org/package=PMCMRplus

	Introduction
	Anaerobic Digestion
	The Anaerobic Digestion Model 1
	Benchmark Simulation Model 2
	Purpose of Comparison

	Materials and Methods
	The Python Implementations
	The Java Implementation
	The Julia Implementation
	Null-Hypothesis Significance Testing
	Validating the Julia Code with the Python DAE Implementation
	Comparison of Julia, Java, and Python Implementations
	Datasets
	Comparison of Compute Times

	Statistical Analysis

	Results
	Comparison of Solutions
	Computational Time

	Discussion
	Reproducibility and Validation
	Compute Time: Why It Matters
	DAE vs. ODE Formulations of ADM1
	Use of the Petersen Matrix Formulation of ADM1

	Conclusions
	References

