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Abstract: Periodontal diseases are highly prevalent oral conditions associated with severe complications in
the oral cavity. These inflammatory diseases are caused by the oral microbiome and are influenced by several
factors, such as aging, tobacco usage, systemic illness and inadequate oral hygiene. Plant-derived phytochem-
icals are extensively utilized in managing various periodontal diseases due to the presence of antioxidant,
anti-inflammatory and antibacterial activities. Plant materials have shifted attention from conventional medicine
to indigenous medicine. Solanum xanthocarpum is a medicinal herb found in India. It exhibits various pharma-
cological properties essential for periodontal disease prevention and management. The current work analyzes
various pharmacological properties of S. xanthocarpum aqueous extract. The S. xanthocarpum extracts’ antioxi-
dant, anti-inflammatory and anti-microbial properties were ascertained by DPPH assay, HRBC membrane
stabilization assay and disk diffusion assay, respectively. S. xanthocarpum’s active phytochemical components
were detected using gas chromatography–mass spectrometry (GC-MS) estimation. Furthermore, molecular
docking and simulation analysis were conducted to determine the interaction between phytocompounds and
the RgpB protein of Porphyromonas gingivalis. Phytocompounds possessing anti-microbial, antioxidant and
anti-inflammatory properties were detected through GC-MS estimation. The molecular docking and simulation
analysis revealed the inhibitory mechanisms of the phytocompounds Solasodine, Lupeol and Quercetin against
arginine-specific gingipain RgpB protein. Insilico analysis revealed that Lupeol had the highest binding energy
of −263.879 Kcal/mol among the phytocompounds studied, followed by Solasodine with a binding energy
of −102.457 Kcal/mol and Quercetin with a binding energy of 33.6821 Kcal/mol. The study revealed that
S. xanthocarpum has significant potential as an herbal remedy for preventing and treating periodontal diseases.
This may facilitate drug development in the future.

Keywords: periodontal disease; Porphyromonas gingivalis; RgpB protein; Solanum xanthocarpum;
molecular docking
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1. Introduction

Periodontal diseases encompass widespread inflammatory conditions that affect the
tooth-supporting structures. Clinically, they are associated with loss of gingival connective
tissue attachment, destruction of the periodontal ligament and alveolar bone loss [1]. Micro-
bial communities mediate periodontal disease onset and progression. These communities,
upon interaction with the host defense system, produce dense immune-inflammatory in-
filtration and may eventually lead to tooth loss if not appropriately intervened. Biofilm
accumulation and oral microbiota are the major contributors; however, modifiable risk
factors such as diabetes mellitus, smoking, obesity, osteoporosis, calcium and vitamin D
deficiencies, and other non-modifiable factors such as genetic polymorphism can also be
leading contributors [2].

The disease persists in active and quiescent stages. If left unaddressed, it results
in tooth loss but also affects esthetics, masticatory efficacy and quality of life [3]. Thus,
removing plaque biofilm by the judicious use of toothbrushes and dental floss has been
the mainstay of controlling the disease. However, inadequate oral hygiene measures are
considered a significant risk factor for periodontal disease. It is reported that fair to poor
oral hygiene practices may account for a two- to fivefold increase in periodontitis [4].
Mechanical debridement is the standard therapy for periodontal diseases to ward off the
pathogenic microbial biofilm [5]. In addition, chemical plaque control agents and/or anti-
microbial agents play adjunctive roles in eliminating pathogenic microflora. However,
chlorhexidine mouth rinse (the gold standard) causes hypersensitivity, staining of the tooth
surface, mucosal irritation and altered taste [6]. Exponentially rising antibiotic resistance has
also warranted the development of novel antibacterial agents without adverse effects [7].

Phyto-therapy for oral health has received a lot of attention lately. Various clini-
cal trials involving herbal concoctions have been conducted due to the development of
anti-microbial resistance, hypersensitivity and gastric intolerance to conventional anti-
microbials [8,9]. Plants exhibit anti-inflammatory, anti-microbial and antioxidant properties.
The utilization of these herb properties can result in the secure and efficient management
of periodontal disease [10,11]. Solanum xanthocarpum (Sx) is generally recognized as the
yellow berried nightshade and is a perennial herb, prickly with a woody base. The plant
is found all over India, mainly in dry places and wastelands. The plant possesses vari-
ous medicinal properties, including antipyretic, antioxidant, anti-microbial, anti-tumor,
anti-inflammatory, hepatoprotective, anti-allergic, immunomodulatory and anti-filarial
activity [12–14]. The anti-microbial properties of Sx on cariogenic oral microbial flora,
namely, streptococcus mutans, actinomyces viscosus and lactobacillus, have been evaluated
and have shown statistically significant antibacterial activity when compared to the positive
control, chlorhexdine [13].

The current study aims to assess the antibacterial efficacy of Sx fruit extract against
periodontal pathogens isolated from dental plaque biofilm. It also aimed to estimate the
antioxidant and anti-inflammatory properties. In addition, the investigation focuses on
identifying bioactive phytochemicals from Sx extracts by GC-MS estimation. Moreover,
insilico molecular docking and simulation analysis of the most potent bioactive compounds,
Solasodine, Lupeol and Quercetin, were identified from our analysis. These compounds
were targeted against the RgpB protein of Porphyromonas gingivalis, which is considered the
keystone pathogen involved in periodontal disease pathogenesis [15].

2. Materials and Methods
2.1. Collection of S. xanthocarpum Fruits and Extraction

S. xanthocarpum fruiting bodies were harvested from different parts of Chennai and
Tirunelveli, Tamil Nadu, India. A taxonomist botanically identified the herbal plant samples,
authenticated it, and a voucher specimen was submitted to the Plant Anatomy Research
Center in Chennai, Tamil Nadu, India, for future reference (no. PARC/2021/4483). The
study was also approved by the Institutional Ethics Committee of Sri Ramachandra Institute
of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
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(IEC/21/JUN/163/45), and Ragas Dental College and Hospital (No: 20170762). The
collected plant materials were cleaned in running tap water, shade-dried, powdered and
stored for further analysis. Soxhlet extraction was carried out for 7 h and 20 cycles using
hexane, ethyl acetate, ethanol, chloroform and distilled water separately to obtain a 20%
yield. At 40 ◦C, the final preparations were filtered and concentrated using a rotary
evaporator until they were completely desiccated. The final dried extracts were sterilized
overnight by UV irradiation and verified for sterility on the nutrient agar plates. The
extracts were preserved at 4 ◦C until further usage.

2.2. Preliminary Screening of Activities of Solanum xanthocarpum Extracts
2.2.1. Antioxidant Assay of Crude Extract

The free radical scavenging property of different solvent extracts was tested against
1,1-diphenyl-2-picrylhydrazyl (DPPH) [16]. The sample stock solution was diluted in
methanol to final concentrations of 20, 40, 60, 80 and 100 µg/mL. One mL sample of these
concentrations was mixed with the same quantity of 0.1 mM methanolic solution of DPPH
(0.39 mg in 10 mL methanol). Equal quantities of DPPH and methanol were added and used
as the control. Gallic acid of concentrations viz., 2, 4, 6, 8, 10, 12, and 14 µg/mL in distilled
water was used as the standard. After 20 min of incubation in the dark, the absorbance
was measured at 517 nm. The experiment was performed in triplicates. The following
equation was used to compute the percentage of scavenging: % DPPH radicalscavenging
(% of inhibition) = [(Absorbance of control − Absorbance of test Sample)/(Absorbance of
control)] × 100.

2.2.2. Anti-Inflammatory Assay of Crude Extract

The anti-inflammatory activity of the plant extracts was estimated using the human
red blood cell membrane stabilization (HRBC) assay [17]. Blood from human volunteers
was collected, combined with Alsever solution in equal amounts, and centrifuged with
isosaline. The supernatant was collected after the samples were centrifuged at 2500 rpm for
5 min. The cell suspension was centrifuged at 2500 rpm for 5 min after being cleaned with
sterile saline solution (0.9 percent w/v NaCl). This was carried out three times to obtain the
clear, colorless supernatant. The cellular component was employed in the assay after being
reconstituted to a 40% suspension (v/v) in phosphate-buffered saline (10 mM, pH 7.4).
The plant extracts were prepared in 250, 500 and 1000 mg/mL in different solvents (ethyl
acetate, hexane, distilled water, ethanol and chloroform). To 1 mL of HRBC suspension, an
equal quantity of plant extract prepared in respective solvents was added. It was incubated
at 37 ◦C for 30 min and centrifuged at 3000 rpm for 20 min. The hemoglobin content was
measured spectrophotometrically at 560 nm from the supernatant solution. The following
equation was used to compute the percentage of hemolysis:

Hemolysis(%) =
OD of Test

OD of Control
× 100

The percentage of membrane protection can be hence calculated using the equation:

Protection(%) = 100 − OD of Test
OD of Control

× 100

where, OD of test is the optical density of the test sample in hypotonic solution and OD
of control is the optical density of the Alsever solution with blood and without the plant
extracts (negative control).

2.2.3. Antibacterial Activity of the Crude Extract

The microbial plaque samples were collected from patients diagnosed with stage
III or IV, grade A periodontitis according to the Periodontal and Peri-Implant Diseases
classification of the 2017 World Workshop at Ragas Dental College and Hospital, Chennai,
Tamil Nadu, India [18]. The patients’ written informed consent for sample collection was
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obtained. Subgingival plaque samples were collected using sterile curettes in Eppendorf
tubes, which contained phosphate-buffered saline solution and were stored at −20 ◦C
until processing.

The antibacterial activities of the crude plant extracts were screened against the plaque
microflora using the disc diffusion method. A colony of bacteria was selected using a
sterile loop, and it was suspended in 10 mL of nutrient broth to prepare a standardized
bacterial suspension. In sterile plates, nutrient agar medium was deposited aseptically,
and a bacterial inoculum was developed. The known concentrations of the test sample
solutions were prepared by dissolving the measured number of samples in the solvent.
Dried filter paper discs were prepared and loaded with different solvent extracts of the test
substance using a micropipette. Discs with the test material were placed in the nutrient
agar medium uniformly containing the bacterial inoculum. The culture plates were then
kept at 37 ◦C for 20 min for diffusion. The culture plates were then incubated at 37 ◦C
for 24 h. The antibacterial activity of the test substances was assessed by measuring the
inhibition zones (measured in millimeters) formed around the discs.

2.3. Column Chromatographic Fractionation of the Aqueous Extract
2.3.1. Separation and Identification of Bioactive Compounds

Silica gel (100–200 mesh size) was kept in a hot air oven at 110 ◦C for 60 min to activate
the silica. The slurry was made with hexane and stirred vigorously to remove the air.
Cotton was used to tightly pack the glass column (40 mm × 600 mm) and prevent silica
gel from draining during elution. The silica gel slurry was poured into the column using a
glass funnel and the knob was opened with moderate tapping for uniform packing. The
knob was closed and the setup was allowed to stand for a few hours with a small amount of
solvent to remain over the silica gel packing to prevent the column from forming air cracks.
A circle of filter paper was placed at the top of the column to avoid surface disturbance
during consequent loading. The aqueous extract was poured into the column through a
glass funnel and allowed to settle. The elution was initiated with a mobile phase of a non-
polar solvent, hexane, and the fractions were collected in test tubes. The flow rate of elution
was 1 mL/min with a gradient of 1000 mL of hexane/ethyl acetate (9:1 to 0:10). At last, the
column was eluted with methanol. Each fraction was subjected to activity-based screening.
The fractions that demonstrated the maximum potency for antibacterial, antioxidant and
anti-inflammatory activities were chosen for phytochemical characterization along with
the aqueous crude extract.

2.3.2. GC-MS Analysis of S. xanthocarpum

The characterization was undertaken using Agilent Technologies and GC-MS equipped
with an Elite-1 fused silica capillary column (30 mm × 250 µm ×0.25 µm) containing HP-
5MS 5% phenyl methyl silox, 60 ◦C. An electron impact ionization system with 70 EV of
ionizing energy was used for the GC-MS detection. Helium gas (99.999%) was used as
the carrier at a constant flow rate of 1 mL/min and an injection volume of 1 µL was used
with an injector temperature of 250 ◦C and ionsource temperature of 280 ◦C. The oven
temperature changed from 220 ◦C to 200 ◦C at a rate of 10 ◦C/min, followed by an increase
from 200 ◦C to 280 ◦C at a rate of 5 ◦C/min. The temperature was then held at 280 ◦C for
9 min. Mass spectra fragments were scanned from 40 to 700 Amu at intervals of 0.5 s. The
total GC running time was 120 min. The average peak area was compared to that of the
total area to estimate the relative percentage of each component. A Mass Hunter program
was adopted to manage mass spectra and chromatograms. Mass spectrum GC-MS was
interpreted using the National Institute of Standard and Technology (NIST) database with
more than 100,000 patterns.

2.4. Molecular Docking Analysis

To understand the inhibitory mechanisms of phytocompounds, namely, Solasodine,
Lupeol and Quercetin from the Sx extract, molecular docking analysis was carried out
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against the RgpB protein of Porphyromonas gingivalis. P. gingivalis is an opportunistic
pathogen established in up to 85% of periodontitis cases [19]. It has been reported that
P.gingivalis impairs innate immunity and alters the growth and maturity of the whole
biofilm, eliciting a destructive pattern in the host–microbial homeostatic interaction in the
periodontium. Hence, it has been considered a keystone pathogen among the disease-
aggravating periodontopathic microflora leading to oral microbiome dysbiosis and peri-
odontitis development [15]. This pathogen possesses several virulence factors [19] such
as the lipopolysaccharide, capsule, fimbriae, proteolytic enzymes, surface ligands and,
most importantly, cysteine proteinases, viz., gingipains, which include arginine-specific
gingipains (Rgp, including RgpA and RgpB) and lysine-specific gingipain (Kgp) [20]. Al-
though the gingipains are involved in several mechanisms of destruction of the periodontal
structures, the RgpB protein is known to exhibit some distinct mechanisms of destruction.
A study reported that RgpB inactivated elafin, which is a strong proteinase-3 inhibitor and
neutrophil elastase secreted by the epithelial cells at the inflamed sites. This inactivation
embodies the organisms’ specific adaptation to disrupt the balance between the protease
and its inhibitors at the infected sites and eventually promotes the degradation of the
proteins and the generation of a rich supply of nutrients for the organism to thrive [21].
Moreover, another study demonstrated that RgpB protein can be considered as a specific
biomarker for the detection of this pathogen. Hence, the RgpB protein was used as a target
of the phytocompounds in this study [22].

The complete structure of Gingipain R2 (RgpB) (Uniprot ID: P95493) of P. gingivalis
was predicted by AlphaFold using the sequence retrieved from Uniprot [23,24]. Using the
CHARMm forcefield, the protein was subjected to energy minimization until a satisfactory
gradient tolerance was reached. The stereochemical features of the modelled protein
were verified using the PROCHECK server [25]. The structures of ligand molecules with
proven pharmacological activity, such as antioxidant, anti-inflammatory and antimicrobial
properties identified from GC-MS analysis, were retrieved from the PubChem database [26].
The molecules were prepared using ligands tools and the structures were minimized in
energy using CHARMm forcefield. The protein and ligand molecules were prepared in
BIOVIA Discovery Studio v.2022.

The binding of RgpB protein with the ligand molecules was further investigated
using a molecular docking approach. Blind docking was carried out using CHARMm-
based molecular docking module of BIOVIA Discovery Studio v.2022 to generate docking
poses of the ligands. Hundreds of ligand conformations were produced from the initial
ligand structure for all three ligands under high-temperature (1000 K) MD simulation
(1000 steps) followed by random rotations. The ligand poses were generated by dynamics-
based simulated annealing refinement. Around 30 different binding poses were sorted and
ranked based on CDOCKER energy. The final docked conformations and interactions were
visualized using the 2D representation feature of BIOVIA Discovery Studio v.2022.

2.5. Molecular Dynamics Simulation of Apo-Protein and Protein–Ligand Complexes

The apo Gingipain R2 protein and ligand-docked protein complexes’ poses were
chosen based on their binding energies from the previous docking analysis. The structures
were subjected to molecular dynamics and simulation (MDS) independently. MDS runs
were carried out in Gromacs 2019.4 version using a Gromos54a7 forcefield [27]. The
topology files for the ligand structures were produced using the PRODRG2 server [28].
All 4 systems were solvated in cubic boxes with counter-ions and water molecules. The
systems utilized the steepest minimization algorithm for energy minimization. The first
equilibration was conducted using NVT ensembles with a 1 ns V-scale thermostat. The
second equilibration step was carried out using an NPT ensemble with a Parrinello–Rahman
barostat for 1 ns. During the simulation runs, the protein backbone was restrained and
counter-ions and solvent molecules were allowed to move. A final production MD of 50 ns
under periodic boundary conditions was carried out for all four systems independently.
The results were analyzed according to root mean square deviation (RMSD), the radius of
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gyration (Rg), root mean square fluctuation (RMSF), principal component analysis (PCA)
and hydrogen bonds. Comprehensive intermolecular interactions were analyzed only for
the complex systems using the MM/PBSA approach [29]. For each complex, 1000 snapshots
were extracted from the trajectories and used for the calculation of binding energy using
the following formula:

∆Gbind = <GProtein-Ligand complex − GProtein−GLigand>

where, GProtein-Ligand complex, GProtein and GLigand are the free energies of the
complex, protein and ligand, respectively.

3. Results and Discussion
3.1. Antioxidant Activity of S. xanthocarpum Extracts

The fruit body Sx extracts at various concentrations were tested using the DPPH
assay. Figure 1a displays the IC50, which represents the minimum extract concentration
needed to reduce the target substrate by 50%. Solvent extracts exhibited potent antioxidant
properties. Among them, at the concentration of 100 µg/mL, the aqueous extract showed
the maximum antioxidant activity of 82.32% with an IC50 of 55.74 µg/mL, while the hexane
extract demonstrated the least activity of 71.29% with an IC50 of 69.24 µg/mL (Figure 1b).
The results indicate that the Sx extracts demonstrated free radical scavenging effects on
DPPH radicals. These findings corroborate the results of Sridevi Muruhan et al., who
found that Solanum surettense leaf extract, at comparable concentrations, demonstrated
strong antioxidant properties [30]. Their DPPH assay demonstrated the IC50 value of
S. surettense ethanolic leaf extract to be 55.62 µg/mL. This was equivalent to that of our
present study’s aqueous extract. Another study also suggested that different extracts of
Sx fruits demonstrated about 80% of free radical scavenging potential at 250 µg/mL [12].
In another report, the methanolic extract of the aerial parts of S. surettense displayed
the highest activity of 83.15% at 150 µg/mL, which supported and validated the current
findings in which the aqueous extract exhibited a similar value of 82.32% at 100 µg/mL [31].
The potent antioxidant activity of the Sx fruit extracts could be attributed to flavonoids
and phenolic components in the extract. Flavonoids also possess free radical scavenging
properties in their broad biological spectrum [32]. In the present study, quercetin, one of
the major flavonoids, was isolated and identified using GC-MS analysis.

3.2. Anti-Inflammatory Activity of S. xanthocarpum Extracts

Synthetic diclofenac sodium exhibited 72.14% anti-inflammatory activity at a concen-
tration of 50 µg/mL, as determined by the assay results. The anti-inflammatory activity
of five extracts (Figure 1c) was evaluated at a concentration of 1000 µg/mL. The ethanol
extract exhibited the highest activity (71.88%), followed by the aqueous extract (61.16%),
hexane extract (57.68%), ethyl acetate extract (57.39%) and chloroform extract (53.33%).
The results indicate that Sx fruit extracts can be utilized as anti-inflammatory agents.
Such potential could be attributed to stigmasterol and triterpenes such as lupeol present
in Sx. Previous studies have also shown that stigmasterol and lupeol are potent anti-
inflammatory agents [33,34]. Lupeol targets key molecular pathways involving nuclear
factor κ B (NFκB), Wnt/β-catenin, etc. [34]. Our current findings validate the use of Sx by
traditional practitioners for managing inflammation-related diseases. Efficient and valuable
anti-inflammatory agents are necessary for successful drug development and to validate
the use of medicinal plants by traditional practitioners.
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3.3. Antibacterial Activity of S. xanthocarpum Extracts

The susceptibility of plaque microbiota to various solvent extracts was determined
by the presence of a zone of inhibition around the discs. Almost all Sx extracts except
hexane extract showed significant antibacterial activity against plaque microbiota. The
aqueous and chloroform extracts exhibited the highest zone of inhibition against microbes
in most samples, with a maximum of 15 mm. This was compared to the standard antibiotic,
Streptomycin 10 µg/vol. (See Figures 2 and 3). Several previous studies have also reported
the significant anti-microbial activity of Sx extracts against an array of pathogens [35].

The anti-microbial activity could be attributed to alkaloids, glycosides, tannins, ter-
penoids, etc. These substances could have penetrated the bacterial cell wall and either
suppressed or lysed the organism. A study by Abbas et al. evaluated the anti-microbial
activity of various solvent extracts of Sx fruits at 20 mg/mL and demonstrated that the
aqueous extract and methanol extract showed the maximum anti-microbial efficacy against
Gram-negative organisms, E. coli and S. typhi, and Gram-positive organisms, S. aureus and
Micrococcus luteus, in comparison to the other extracts [36]. The maximum efficacy of the
aqueous extract indicates that water was found to be most potent for extracting the highest
percent of highly polar components present in Sx fruits. These results suggest that the
extract made with solvents of higher polarity possess greater potential for antibacterial
activity than those made with less polar solvents. The overall results of the antibacterial
assay indicate that the microbes in the dental plaque samples were sensitive to all Sx
extracts except hexane.
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3.4. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis

The GC-MS chromatogram of the crude aqueous extract and subfractions of Sx
(fractions 1 and 2) showed 15, 5 and 7 peak areas. These peaks were identified as bioactive
phytochemicals based on their retention times, peak areas and height, as well as mass
spectral fragmentation patterns that matched those of the NIST library compounds. See
Figure 4 and Tables 1–3 for details. The crude extract showed the presence of various
sterols such as Stigmasterol, Lanosterol and Taraxasterol. Stigmasterol is known for its
anti-inflammatory activity [37]. Lanosterol accumulation increases the membrane’s fluidity
and the production of reactive oxygen species (ROS), thus activating phagocytosis and
eliminating pathogens such as bacteria [38]. Taraxasterol is reported to possess anti-allergic,
anti-inflammatory and antioxidant properties [39]. Phytol identified in the crude extract
exhibits antioxidant activity [40]. The crude extract, which includes Quercetin, promotes
balanced periodontal homeostasis by inhibiting inflammation. In addition, it promotes
periodontal host and microbiome tissue homeostasis [41]. It also exhibits various beneficial
effects on oral health as a preventive and therapeutic agent for dental caries [42]. The crude
extract and selected fraction 1 contained Solasodine, which exhibits potent antioxidant,
anti-inflammatory and anti-microbial properties [43]. A major component in fraction 2
was Lupeol, an active terpenoid involved in anti-inflammatory activities [34]. Based on
the anti-microbial, anti-inflammatory and anti-oxidant potential, three compounds Sola-
sodine (PubChem CID-5250), Quercetin (PubChem CID-5280343) and Lupeol (PubChem
CID-259846) were chosen for further molecular docking analysis to target the RgpB protein
of P. gingivalis.

Table 1. Phytochemical components identified in the aqueous crude extract of S. xanthocarpum by
GC-MS analysis.

S. No. RT Name of the Compound Molecular Formula MW Peak Area %

1 5.329 Pyridine C5H5N 79.0999 3.70
2 6.032 3-Hexen-2-one C7H12O 112.1696 0.67
3 6.7544 2-Pentanone,4-Hydroxy-4-methyl- C6H12O2 116.1583 62.11
4 17.709 Diethyl phthalate C12H14O4 222.2372 1.54
5 20.457 Bicyclo[3.1.1]heptane,2,6,6-trimethyl- C10H18 138.2499 2.07
6 21.307 Hexadecanoic acid, methyl ester C17H34O2 270.4507 3.22
7 23.021 9,12-Octadecadienoic acid (Z,Z)-, methyl ester C19H34O2 294.4721 2.97
8 23.080 9,12,15-Octadecatrienoic acid, methyl ester C19H32O2 294.4562 3.67
9 23.183 Phytol C20H40O 296.5310 1.90

10 23.306 Octadecanoicacid, methylester C19H34O2 294.4721 1.00
11 23.705 Quercetin C15H10O7 302.2360 2.76
12 33.203 Stigmasterol C29H48O 412.6908 1.72
13 34.003 Solasodine C27H43NO2 413.6331 8.63
14 35.221 Lanosterol C30H50O 426.7174 2.08
15 35.437 Taraxasterol C30H50O 426.7174 3.10
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Table 2. Phytochemical components identified in the sub-fraction 1 of aqueous crude extract of
S. xanthocarpum by GC-MS analysis.

S. No. RT Nameofthe Compound Molecular Formula MW Peak Area %

1 11.965 1-Dodecene C12H24 168.31 4.45
2 21.347 Hexadecanoic acid, methyl ester C17H34O2 270.4507 5.75
3 21.762 n-Hexadecanoicacid C16H32O2 256.4241 2.78
4 23.072 9,12,15-Octadecatrienoic acid, methyl ester C19H32O2 294.4562 4.87
5 33.996 Solasodine C27H43NO2 413.6331 4.41

Table 3. GC-MS analysis revealed the presence of phytochemical components in sub-fraction 2 of
aqueous crude extract of S. xanthocarpum.

S. No. RT Nameofthe Compound Molecular Formula MW Peak Area %

1 17.747 Diethyl phthalate C12H14O4 222.2372 9.36
2 18.967 Heptadecane C17H36 240.4677 5.02
3 20.774 1-Nonadecene C19H38 266.5050 3.68
4 21.209 Hexadecanoic acid, methyl ester C17H34O2 270.4507 4.25
5 21.337 n–Hexadecanoicacid C16H32O2 256.4241 18.49
6 23.045 9,12-Octadecadienoic acid (Z,Z)-, methyl ester C19H34O2 294.4721 26.16
7 26.623 Lupeol C30H50O 426.7174 6.13

3.5. InSilico Analysis
3.5.1. Molecular Docking Using CDOCKER

Initially, the stereochemical quality of the modeled and energy-minimized protein
structure of RgpB (Figure 5a) was checked by analyzing the overall and residue by residue
geometry using the PROCHECK server. The residue distribution in the disallowed regions
on the Ramachandran plot was around 0.3% (Table 4). Hence, the predicted structure was
highly efficient for the docking study. The study analyzed the CDOCKER energy and
binding site residues (Table 5) to determine the optimal binding mode of the ligands in the
RgpB protein’s active site. Based on the CDOCKER energy ranking, Quercetin was ranked
first, followed by Lupeol and Solasodine. Lupeol favored Pi-Alkyl interactions within the
binding site with Leu265, Tyr301, Ile535, Arg537, Leu574 and Ile608. Solasodine formed a
single hydrogen bond with Arg263 and Pi-Alkyl interactions with Arg537, Leu574, Ile608
and Ile622. In addition, Lupeol also showed an intermolecular steric clash with Arg263.
Quercetin favored hydrogen bonds with Glu235, Lys236, Glu237 and Arg537 and Pi-Alkyl
interactions with Ile608 and Ile622. A closer look at the interacting residues revealed that
Lupeol and Solasodine shared similar residues involved in Pi-Alkyl interactions. Arg537
was involved in the formation of Pi-Alkyl interactions with Lupeol and Solasodine, while
it favored hydrogen bonds with Quercetin. Most residues showing interactions were con-
served in all three ligand molecules, revealing that the binding site was favored by all three
ligands (Figure 5b). The interaction patterns also revealed that non-bonded interactions
were preferred by the ligands rather than conventional hydrogen bonds (Figure 6). The
results of docking analysis revealed that all three compounds show binding preference
towards RgpB protein. The further stability of the docked complexes was assessed us-
ing molecular simulation by comparing the ligand-bound protein complexes and free
RgpB protein.
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Figure 5. (a) Modeled and energy-minimized structure of RgpB protein shown in cartoon representa-
tion. (b) Structure of RgpB protein bound with the ligand molecules. The protein is shown as surface,
and ligand molecules as sticks (Lupeol—red, Quercetin—green, Solasodine—blue).

Table 4. Ramachandran plot statistics of the modeled protein.

Region Percentage of Residues (%)

Residues in the most favored region 89.2
Residues in additionally allowed region 9.8

Residues in the generously allowed region 0.6
Residues in the disallowed region 0.3

Table 5. CDOCKER energy of the ligand compounds.

Compounds CDOCKER Energy (kcal/mol)

Lupeol −263.879
Solasodine −102.457
Quercetin 33.6821

3.5.2. Molecular Dynamics and Simulation Analysis

The molecular dynamic simulation further verified the stability of docked complexes
and binding interactions. The apo-protein and ligand-anchored protein complexes were
compared to understand the binding influence of all three ligands upon the protein.
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tion. (a) Lupeol, (b) Solasodine and (c) Quercetin.

3.6. Root Mean Square Deviation

The dynamic stability of the apo-protein over the simulation period of 50 ns was
analyzed using the backbone RMSD, as illustrated in Figure 7. The RMSD of the apo-protein
exhibits initial fluctuations, and small peaks were observed throughout the simulation
period and remained within 1 nm throughout the entire simulation period. The RMSD of
the apo-protein and ligand-bound protein complexes was further examined to assess the
effect of the ligands on the protein. All the ligand complexes exhibited lower RMSD values
than the apo-protein. The Lupeol–protein complex exhibited an initial deviation of 1.5 nm
up to 20 ns and stabilized after 30 ns with an RMSD reaching around 1 nm. The Quercetin–
protein complex showed less deviation than apo-protein throughout the simulation time.
The RMSD of the Quercetin–protein complex remained within 0.75 nm until the end of the
simulation period. The Solasodine complex showed lesser deviations when compared with
the apo-protein in the majority of the time frame; however, the deviations remained within
0.75 nm throughout the time frame. The RMSD of the protein–ligand complexes revealed
that all the complexes remained stable throughout the simulation period, since the RMSD
of complexes remained less than 2 nm.
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3.7. Root Mean Square Fluctuation

The flexibility of the residues in the apo-protein and ligand-bound protein complexes
was calculated using RMSF, as shown in Figure 8. The magnitude of the peaks in the RMSF
plot describes the flexibility of the residues over the simulation period. The comparison of
residual fluctuations revealed that residues from 39 to 568 exhibited smaller fluctuations.
The residual fluctuations for residues from 569 to 736 were higher in all ligand-bound
protein complexes. Lupeol and Solasodine complexes showed higher residual fluctuations
than Quercetin and apo-protein. The lowest residual fluctuation was observed in the
Quercetin complex.
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3.8. Radius of Gyration

The structural stability of all four systems was further assessed using a radius of
gyration (Rg). Figure 9 shows the Rg value, which measures the compactness of the protein.
The Rg of apo-protein stabilized after 40 ns, indicating its equilibration. The apo-protein
Rg converged at 3 nm at the end of the simulation period. The Lupeol complex converged
at 3.4 nm at 50 ns. The Lupeol complex showed a higher Rg value than the apo-protein.
The binding of Lupeol induced protein flexibility, making the protein less compact. The
Solasodine complex exhibited initially high Rg values and converged below the apo-protein
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at the end of the simulation. Initially, the binding of Solasodine increased the protein’s
flexibility; however, as the simulation progressed, the protein became more compact. The
Quercetin complex showed a lower Rg at the beginning of the simulation. In the middle
of the simulation time period, the Rg value grew above the apo-protein, but at the end,
the Rg of Quercetin dropped below the apo-protein. Upon the binding of Quercetin, the
compactness of the protein increased initially, but as the simulation proceeded, the protein
became flexible. Finally, at the end of the simulation, the complex became compact again.
The overall Rg analysis indicated that the binding of Lupeol decreased the compactness of
the protein. In contrast, the binding of Quercetin and Solasodine increased the compactness
at the end of the simulation time, though they induced initial flexibility.
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3.9. Principal Component Analysis

A principal component analysis was carried out to further assess the compactness
and motion of the apo-protein and ligand-bound complexes. The projections of principal
components (PC1 and PC2) map the motion of apo-protein and ligand-bound complexes.
The mapping of the first two eigenvectors indicated that they account for more than 90% of
the motions of the protein backbone atoms, as shown in Figure 10. The comparison of the
ligand-anchored complexes with apo-protein indicated that the ligand-to-protein bond has
increased the flexibility of the protein by increasing the sampling of phase space coverage.

3.10. Hydrogen Bonds and Interaction Energy Analysis

The hydrogen bonds formed between the protein and ligands indicate their affinity
for each other. Lupeol complexes exhibited at least one hydrogen bond throughout the
simulation period, although no hydrogen bonds were observed in the starting structure.
The Quercetin complex maintained a minimum of one and a maximum of two hydrogen
bonds during the 50 ns simulation; however, many hydrogen bonds were lost during the
simulation run. The Solasodine complex maintained at least one and a maximum of four
hydrogen bonds throughout the simulation time (Figure 11).
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The three ligand complexes were scored using the MM-PBSA method (Table 6). The
comparison of the ligand complexes’ binding energies revealed that the Lupeol complex
showed higher binding energy than other ligand complexes favoring the formation of
non-bonded interactions. All the complexes showed high van der Waals energy compared
to other contributors. The comparison of the MDS results of the apo-protein and complexes
revealed that the ligand molecules induced structural disturbances upon binding. The
overall analysis indicated that the compounds may exhibit the required inhibitory effect on
the RgpB protein.

Table 6. MM-PBSA calculations and binding free energy of the protein–ligand complexes.

Complex Binding Energy
kJ/mol

Van der Waals
Energy
kJ/mol

Electrostatic Energy
kJ/mol

Polar Solvation
Energy
kJ/mol

SASA Energy
kJ/mol

Lupeol −130.003 ± 12.336 −170.912 ± 7.731 −2.223 ± 2.030 61.079 ± 14.458 −17.948 ± 0.931
Quercetin −103.109 ± 12.604 −169.565 ± 12.181 −6.578 ± 3.867 90.583 ± 19.978 −17.549 ± 0.827
Solasodine −62.814 ± 18.379 −70.180 ± 9.281 −1.051 ± 5.078 16.112 ± 19.498 −7.694 ± 1.561

4. Side Effects, Limitations and Future Directions

No known severe side effects are reported in the literature for Solanum xanthocarpum.
In addition, Sx is used to manage several ailments in folk medicine [12]. Furthermore, the
edible fruits are being cooked and consumed in different parts of India [44,45]. However,
studies must be conducted to rule out any possible evidence of cytotoxicity. The limitation
of the current study is that a single virulent protein was targeted to prove the interactions of
protein and ligands. Further studies with large sample sizes with multiple protein targets
in periodontal biofilm need to be evaluated to prove their efficacy. In the future, well-
documented clinical trials have to be undertaken to validate their pharmacological actions
and eventually for the development of effective chemotherapeutics for the prevention and
management of periodontal diseases.

5. Conclusions

The present study demonstrated the pharmacological activities of various Solanum xanthocarpum
extracts of the fruiting body, including antioxidant, anti-inflammatory and antibacterial
activity. Phytochemical components including Solasodine, Lupeol and Quercetin were
identified through GC-MS analysis. These components possess potential properties that
could be utilized in therapeutics for the prevention and management of periodontal disease.
The molecular docking and dynamics analysis also substantiated the phytochemicals’ ability
to bind and inhibit the function of the RgpB protein of P. gingivalis. Based on our analyses,
the current work emphasizes and sheds light on the usage of S. xanthocarpum extracts
in preventing and treating periodontal diseases. Further investigations to determine its
toxicity profile and clinical studies are crucial for broad-spectrum drug discovery.
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