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Abstract: Uncertain variables, such as electric power system parameters, have significant impacts
on dynamic simulations of power systems. As traditional uncertainty analysis methods for power
system dynamic simulations, both the simulation method and the approximation methods are
difficult to balance the model complexity, computational efficiency, and simulation accuracy. In
order to balance the model complexity, computational efficiency, and simulation accuracy, this
paper proposes a method for uncertainty analysis for power system dynamic simulation based on
the Nataf transformation and Gaussian-Hermite quadrature. Firstly, the samples on the normal
distribution space are determined according to the Gaussian-Hermite quadrature points and the
Nataf transformation. Secondly, obtain the simulation samples by inverse Nataf transformation, and
perform power system dynamic simulation. Thirdly, the random output is approximated as a linear
combination of a single random input, and the mean and standard deviation of the random output
under the impact of a single random input are calculated by Gaussian-Hermite quadrature. Then,
calculate the mean and standard deviation of the random output under the impact of all random
input. Finally, the effectiveness of the proposed method is validated on the IEEE 9-bus system and
IEEE 39-bus system. Compared with Monte Carlo simulation and Latin Hypercube sampling, the
proposed method can greatly reduce the simulation time for uncertain dynamic simulations while
maintaining high accuracy.

Keywords: uncertainty analysis; power system dynamic simulation; Nataf transformation; Gauss-
Hermite quadrature

1. Introduction

With the integration of a large number of new energy generation equipment and
power electronic devices, the scale and complexity of modern power systems continue to
expand. Large power grids with numerous devices, complex structures, and multiple time
scales exhibit increasingly unpredictable dynamic behaviors, where local disturbances or
faults can result in the oscillations, instability, or even collapse of the entire power grid.
The complexity of modern power systems imposes higher requirements on the security
and stability analysis of power systems, and improving the accuracy of dynamic models
and parameters is of great significance. When a power outage occurred in the Western
Interconnection of the United States, the dynamic simulation software of its power system
could not obtain accurate results. Later analysis revealed that inaccurate load models
might cause a large amount of error in the simulation results, fully demonstrating the
importance of using correct load models and parameters for dynamic simulations of power
systems [1,2]. As numerous renewable energy sources are connected to the power grid and
the grid structure becomes more and more complex, the dynamic behavior of the power
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system is affected by more and more uncertain factors, such as renewable energy outputs
uncertainty, load power uncertainty, and parameter uncertainty. These uncertainties pose a
severe challenge to the simulation of power system dynamic behavior. For example, when
the output of the wind farm is a small value, the simulation results show that the power
system is stable. However, due to the uncertainty of wind speed, the actual output of the
wind farm is different from the value used in the simulation. The dynamic behavior of the
system changes with the change in the actual output of the wind farm, and the stability of
the system is a probability event.

However, most of the usual dynamic analysis uses deterministic theories and meth-
ods and rarely considers the influence of the uncertainty of the model, parameters, and
renewable energy outputs on power system simulations.

Relevant works study the replacement of traditional analysis methods to achieve
rapid and high-precision uncertainty analysis of power systems, mainly including interval
analysis, serial operation theory, fuzzy theory [3], and credibility theory [4], which have
been applied to power flow calculation, reliability assessment, power demand analysis,
power quality assessment, and other aspects. In contrast, few researchers focus on the
uncertainty analysis of power system dynamic simulation, mainly including sensitivity
analysis [5], probability analysis [6,7], and interval analysis. Among them, probability
analysis has been widely used in uncertainty analysis of power system dynamic simulation.
At present, probability analysis methods for uncertainty analysis of power system dynamic
simulation are mainly divided into two categories: simulation methods and approximation
methods. As a simulation method, Monte Carlo simulation (MCS) is the most direct and
effective probabilistic analysis method, when the sample size of MCS is large enough, the
results are generally considered accurate. However, MCS is computationally inefficient
and is usually used as a reference to verify the accuracy of other methods. Many studies
have developed a more effective sampling technique to generate low-bias samples to re-
place the pseudo-random samples of MCS in order to speed up convergence and shorten
computation time, among which Latin hypercube sampling (LHS) is the most popular
technique. Compared with MCS, the Latin hypercube sampling method improves the
convergence rate and thus the computational efficiency through a hierarchical sampling
of the sample space [8]. However, in order to achieve the desired accuracy, the number of
samples required for LHS is usually still large, so the computational efficiency of LHS in
complex power systems needs to be further improved. Among the approximation methods
for power system uncertainty analysis, the method based on polynomial chaos is the most
widely used. In [9], a method of power system uncertainty analysis based on generalized
polynomial chaos is proposed, which is more efficient than the MCS method. However,
this method is difficult to adapt to the complex equipment model of the power system,
and it requires a special differential algebraic equation solver. Reference [10] proposes a
method of power system uncertainty analysis based on the probabilistic collocation method,
which is suitable for quantifying the uncertainty of complex power systems. In [11,12],
a non-intrusive multi-element polynomial chaos method is used to solve the problem of
power system dynamic simulations with long-term uncertainty. The methods proposed
in [10–12] are suitable for quantifying the uncertainty of complex power systems, but they
do not consider the correlation between input random variables, and these methods could
reduce the precision if allocated points are improperly selected [9]. In the past few years,
many researchers have extended the application scope of the polynomial chaos method in
uncertainty analysis of power systems. In view of the unknown probability distribution
of random input, a data-driven polynomial chaos method is proposed in [13,14]. The
data-driven polynomial chaos method is efficient and useful, but References [13,14] do
not consider the correlation between the input random variables. In the power system,
the similar load power and the change of new energy power are often correlated, and
ignoring the correlation between these input random variables will produce a large er-
ror. In order to deal with the correlation between random inputs, Reference [15] uses a
whitening transformation to transform random input variables into independent random
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variables, and analyzes the uncertainty of the power system based on the data-driven
polynomial chaos method. In view of the unknown probability distribution of random
input, Reference [16] uses kernel density estimation to obtain the probability distribution
of random input and then uses the polynomial chaos method to analyze the uncertainty of
the power system. It should be pointed out that the method suitable for quantifying the
uncertainty of complex power systems needs to satisfy the following characteristics: (1) The
method can handle the correlation of input random variables; (2) The method needs to be
non-intrusive [17], in order to adapt to complex power system models and use fast dynamic
simulation algorithms [18,19]; (3) The method of determining dynamic simulation samples
must be definite, and the number of samples should be as small as possible. However,
the methods proposed in [8–16] cannot simultaneously satisfy these three characteristics.
For example, simulation methods such as MCS and LHS are not computationally efficient
enough. The approximation methods represented by polynomial chaos methods will suffer
from the curse of dimensionality, and some improved polynomial chaos methods have
difficulties in dealing with the correlation of random variables.

In view of the areas to be improved in the above research, this paper aims to propose
an effective uncertainty analysis method for power system dynamic simulation, which
can simultaneously satisfy the above three characteristics. In this paper, a fast power
system uncertainty simulation method based on Nataf transformation and Gauss-Hermite
quadrature is proposed. The main contributions are summarized as follows:

(1) The whitening transformation in [15] is easy to implement when dealing with random
input method dependencies, but this method has a large error when the random input
deviates from the normal distribution. At the same time, the random distribution of
the output of wind farms in the power system does not follow the normal distribution.
In order to deal with the correlation between input random variables more accurately,
this paper uses Nataf transformation to transform the original input random variable
into independent standard normal random variables.

(2) The objective of uncertainty analysis for power system dynamic simulation is to
calculate the mean and standard deviation of random output variables on each time
step, which is essentially a high-dimensional integral problem. Simulation methods
such as MCS and LHS usually have high accuracy, but they are not computationally
efficient enough. Simulation methods determine samples by random sampling, and
the weights corresponding to all samples are the same and calculate the mean and
standard deviation of output random variables according to the sample results. In
fact, the selection of appropriate samples and weights based on the distribution of
random inputs can greatly improve the speed of convergence and thus improve
computational efficiency. Nataf transformation can be used to transform the problem
into normal space, where Gauss Hermite quadrature has the highest precision. In
order to improve computational efficiency, this paper proposes a fast power system
uncertainty simulation method based on the Nataf transformation and Gauss-Hermite
quadrature. Similar to the simulation methods, the method used in this paper is
based on samples, so it is a non-intrusive method and can be applied to complex
power systems.

(3) Similar to the polynomial chaos methods, Gauss-Hermite quadrature also suffers
from the curse of dimensionality. In order to reduce the impact of the curse of
dimensionality, this paper approximates the high-dimensional objective function as a
linear combination of one-dimensional functions, uses Gauss-Hermite quadrature to
calculate the mean and standard deviation of one-dimensional functions, and finally
calculates the mean and standard deviation of high-dimensional objective functions
according to the mean and standard deviation of one-dimensional functions.
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2. Uncertainty Analysis of Power System Dynamic Simulation Based on Nataf
Transformation and Gauss-Hermite Quadrature

This section introduces the application of Nataf transformation and Gauss-Hermite
quadrature to uncertainty analysis of power system dynamic simulations. Firstly, the
process of converting the input random variable into an independent standard normal
random variable by Nataf transformation is introduced. Then, this section introduces the
method of determining the sample in the standard normal space and finally introduces
the process of calculating the mean value and standard deviation of the output random
variable based on the Gauss-Hermite quadrature.

2.1. Nataf Transformation

Under reasonable operating conditions, the random distribution of wind farm out-
put usually follows the Weibull distribution, which makes the whitening transformation
in [15] not applicable to the uncertainty analysis of power system dynamic simulation. To
more accurately handle correlations between random inputs, the Morgenstern transfor-
mation, Rosenblatt transformation and Nataf transformation [20,21] can all be adopted.
The Morgenstern transformation and Rosenblatt transformation require the joint distribu-
tion function of the random input variables, while the Nataf transform requires only the
marginal distribution function of the random input variables. In power systems, there are
often only marginal distribution functions and correlation coefficients of random variables.
In this case, it is not feasible to use the Morgenstern transformation and Rosenblatt trans-
formation for power system uncertainty analysis. In this section, the correlation of input
random variables will be processed based on the Nataf transformation.

Suppose X = [x1, x2, ..., xd]T is the d-dimensional random variable, Fi(xi) is the cu-
mulative probability distribution function corresponding to the random variable, and the
correlation coefficient matrix of the d-dimensional random variable is denoted by CX as

CX =


1 ρ12 · · · ρ1d

ρ21 1 · · · ρ2d
...

...
. . .

...
ρd1 ρd2 · · · 1

 (1)

Through the edge transformation corresponding to Equation (2), X can be trans-
formed into a set of standard normally distributed random variables which is denoted as
Y = [y1, y2, . . . , yd]T

yk = Φ−1(Fk(xk)), k = 1, 2, . . . , d (2)

Φ is the cumulative probability distribution function corresponding to the standard
normal distribution, and Φ−1 is its inverse function. The correlation coefficient matrix of Y
is denoted by CY as

CY =


1 ρ′12 · · · ρ′1d

ρ′21 1 · · · ρ′2d
...

...
. . .

...
ρ′d1 ρ′d2 · · · 1

 (3)

For the above transformation, the corresponding elements of CX and CY satisfy the
relation shown in Equation (4).

ρij =
+∞∫
−∞

+∞∫
−∞

( xi−µi
δi

)(
xj−µj

δj
)ϕ2(yi, yj, ρ′ij)dyidyj

(i 6= j)
(4)

In the above equations, µi and µj are the mean values of the random variables xi, xj, δi,
and δj are their corresponding standard deviations. Y is a set of standard, normally dis-
tributed random variables with correlation coefficient matrix CY, which can be transformed
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into a set of independent standard normally distributed random variables by Cholesky
decomposition.

Firstly, the Cholesky decomposition of CY is performed by Equation (5), which can be
expressed as

LLT = CY (5)

Then, the independent standard normally distributed random variable Z = [z1, z2, ..., zd]T

can be expressed as:
Z = L−1Y (6)

Equations (1)–(6) constitute the Nataf transformation process, while the inverse Nataf
transformation is the process of solving X when Z is known, which can be expressed by
Equation (7) as

Y = LZ,
xi = F−1

i (Φ(yi)), i = 1, 2, · · · , d
(7)

In Equation (7), Fi
−1 is the inverse function of Fi.

Reference [22] puts forward an empirical formula for solving Equation (4), which can
be expressed as

ρ′ij = Fρij (8)

F is a function of Fi(xi), Fj(xj), and ρij. For example, when xi and xj are both Weibull
distributions for wind power [23], Equation (9) can be obtained, which can be expressed as

F = 1.063− 0.04ρij − 0.2( δi
µi
+

δj
µj
)− 0.001ρ2

ij+

0.337( δ2
i

µ2
i
+

δ2
j

µ2
j
) + 0.007ρij(

δi
µi
+

δj
µj
)− 0.007

δiδj
µiµj

(9)

2.2. Uncertainty Analysis of Single Input Random Variable Based on Gauss-Hermite Quadrature

For a response function of one variable S = S(x), the sampling points and weights
are determined on the independent standard normal space according to the Hermite
polynomials. The sampling points and weights can be obtained directly by table lookup,
and the calculation time can be reduced without repeated calculation of sampling points.
Table 1 shows the sampling points and the corresponding integral weights when there are
3, 5, and 7 sampling points. In Table 1 zj is the jth sampling point, P is the sampling number
and Aj is the corresponding weight of the jth sampling point.

Table 1. Partial Gaussian-Hermite quadrature points and corresponding integral weights.

P zj Aj

3
±1.7320508 0.16666667

0 0.66666667

5
±2.85697001 0.01125741
±1.35562618 0.22207592

0 0.53333333

7

±3.75043972 0.00054827
±2.36675941 0.03075712
±1.15440539 0.24012318

0 0.45714286

If inverse Nataf transformation is denoted as N−1, Equation (10) can be obtained as

S(x) = S(N−1(z)) (10)

In Equation (10), z represents the standard normal random variable. According to the
Gauss-Hermite quadrature formula [24,25], the mean µS and standard deviation σS of the
output random variable S can be obtained, as shown in Equation (11).
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µS ≈
P
∑

j=1
AjS(N−1(zj))

σS ≈
√

P
∑

j=1
Aj(S(N−1(zj))− µS)

2
(11)

2.3. Uncertainty Analysis of Multiple Input Random Variable Based on
Gauss-Hermite Quadrature

When there is only one input random variable, Equation (11) can calculate the mean
value and standard deviation of the output random variable. In practical applications,
where the number of input random variables is usually greater than 1, the response function
S is a function of the input random variables X = [x1, x2, ..., xd]T. In this case, the simplest
and most accurate method is to take P sampling points for each variable, so Pd samples are
needed for d input random variables. This method is simple to implement and can obtain
accurate mean and standard deviation of output random variables. However, this method
requires Pd calculations, and the calculation amount will show an exponential growth trend
with the increase in the number of input random variables.

In order to reduce the number of calculations, this paper adopts the method pro-
posed in [26] to approximate the target response function, which can be expressed by
Equation (12) as

S∑(X) ≈
d

∑
i=1

(Si(xi)− S∑(Xµ)) + S∑(Xµ) (12)

In Equation (12), SΣ(Xµ) represents the function value of the objective response func-
tion SΣ when all input random variables are mean values. In practical engineering applica-
tions, SΣ(Xµ) is the simulation value of the objective response function SΣ when all input
random variables are mean values. Si(xi) is the univariate function of SΣ(X) with respect
to xi, and all the other input random variables are the mean values. The input random
variables X are transformed into a set of independent standard normal random variables Z
by Nataf transformation, then Si(xi) can be expressed as

Si(xi) = Si(N−1(zi)) (13)

Through Equation (11), the mean µSi and standard deviation σSi of Si(xi) can be
expressed as

µSi ≈
P
∑

j=1
AjSi(N−1(zj

i))

σSi ≈
√

P
∑

j=1
Aj(Si(N−1(zj

i))− µSi )
2

(14)

After obtaining the mean µSi and standard deviation σSi of Si(xi), the mean µS∑
and

standard deviation σS∑
of the target response function SΣ can be expressed as

µS∑
≈

d
∑

i=1
(µSi − S∑(Xµ)) + S∑(Xµ)

σS∑
≈
√

d
∑

i=1
σ2

Si

(15)

This method requires that the computation times of the objective response function
SΣ are (P − 1) d + 1 and that the computation times of the objective response function
increase linearly with the number of input random variables d and the number of sampling
points P.
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2.4. Uncertainty Analysis of Power System Dynamic Simulation Based on
Gauss-Hermite Quadrature

The essence of dynamic simulations of power systems is to solve a set of nonlinear
differential-algebraic equations (DAEs) [27]. DAEs of the power system can be expressed as

dζ
dt = f(ζ, τ)
0 = g(ζ, τ)

(16)

In Equation (16), ζ represents the state variables vector of the power system, such
as generator power angle, generator speed, excitation voltage of the exciter, and output
power of the turbine. τ represents the algebraic variables vector of the power system, such
as voltage amplitude, voltage phase angle, and the current of each device. f and g are
nonlinear function vectors of ζ and τ. When there are uncertain parameters in the power
system, the DAEs are expressed as

dζ
dt = f(ζ, τ, X)
0 = g(ζ, τ, X)

(17)

In Equation (17), X are the input random variables. This paper considers the random-
ness of wind farm output and load power. Wind speed varies with time and place, and
its probability density function (PDF) is claimed to be Weibull. Therefore, wind speed is
modeled using the Weibull distribution function. In the linear operation region, the PDF of
wind farm output can be expressed as

PDF(Pw) =
β

ηβ
(Pw)

β−1 exp(−(Pw

η
)

β

) (18)

In Equation (18), Pw is the wind farm output, β is the shape parameter and η is the
scale parameter. The load power is usually modeled as the normal distribution.

Considering the input random variables X, the following relation can be obtained as

ζt = Ft(X), ζ ∈ ζ
τt = Gt(X), τ ∈ τ

(19)

In Equation (19), ζt and τt are the values of ζ and τ at time t, respectively. Ft and
Gt are target response functions similar to SΣ in Equation (12), so the mean and standard
deviation of ζt and τt can be obtained by Equations (12)–(15).

The detailed steps of uncertainty analysis for dynamic simulation of power system
based on Gauss-Hermite quadrature are shown in Figure 1 and the general steps are
as follows

(1) Input the correlation coefficient matrix CX, the number of random input variables d,
and the number of Gauss-Hermite quadrature points P.

(2) Calculate matrix CY by Equation (4), and calculate matrix L by Equation (5).
(3) Based on the Gauss-Hermite quadrature points and weight listed in Table 1, determine

the samples corresponding to Z in the normal space.
(4) Based on the samples corresponding to Z, determine the samples corresponding to

the input random variables X by Equation (7).
(5) Solve Equation (17) according to each sample in X, and obtain the values of ζ and τ at

time t.
(6) Calculate the mean and standard deviation of each random variable xi in X according

to Equations (13) and (14).
(7) Calculate the mean and standard deviation of the response function of multiple

random variables X by Equation (15).
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3. Case Studies

The IEEE 9—bus system and IEEE 39—bus system are used for the case study. The
simulation is performed in MATLAB 2021a on a personal computer with a 2.9 GHz i5
processor and 16 GB RAM. Regarding random input variables, this paper considers the
influence of the randomness of wind farm output and load power on power system
dynamic simulation. Power angle stability, frequency stability, and voltage stability are
the three important parts of power system stability analysis, so this paper analyzes the
influence of random input on power system dynamic simulation from the perspectives of
rotation angle, rotation speed, and voltage amplitude. When the sample size of MCS is
large enough, the method will converge to an exact value, so this paper uses the mean and
standard deviation of the random output calculated by convergent MCS as the standard
values. To verify the accuracy of the proposed method, the mean and standard deviation
calculated by the proposed method are compared with the standard values. Furthermore,
the proposed method will be compared with LHS for the purpose of comparing the accuracy
and computational efficiency of the two methods.

3.1. Case study of the IEEE 9-Bus System
3.1.1. Simulation Setup Description

The topology of the IEEE 9—bus system is illustrated in Figure 2. Partial static
parameters for the IEEE 9—bus system can be found in Table A1. Other static parameters
can be found in [28]. Synchronous generators adopt the classical model and loads adopt the
constant impedance model. For the bus with a generator and the bus without a generator,
the dynamic model adopted can be expressed as Equations (20) and (21), respectively.
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dδi
dt = ωsωi
dωi
dt = 1

2H (Pmi − Pei − Diωi)
Pei = Vdi Idi + Vqi Iqi + (I2

di + I2
qi)Rai[

sin δi cos δi
− cos δi sin δi

][
Idi
Iqi

]
= 1

R2
ai+X′di

2

[
Rai X′di
−X′di Rai

][ E′qi cos δi − sin δiVdi − cos δiVqi

E′qi sin δi + cos δiVdi − sin δiVqi

]
0 = (Vdi Idi + Vqi Iqi)− PLi −Vmi

nb
∑

j=1
Vmj(Gij cos θij + Bij sin θij)

0 = (−Vdi Iqi + Vqi Idi)−QLi −Vmi
nb
∑

j=1
Vmj(Gij sin θij − Bij cos θij)

PLi = PLi0

(
Vmi
Vmi0

)2
, QLi = QLi0

(
Vmi
Vmi0

)2
, θij = θi − θi, Vdi + jVqi = Vmi(cos θi + j sin θi)e−j(δi−π/2)

i ∈ G

(20)

0 = −PLi −Vmi
nb
∑

j=1
Vmj(Gij cos θij + Bij sin θij)

0 = −QLi −Vmi
nb
∑

j=1
Vmj(Gij sin θij − Bij cos θij)

PLi = PLi0

(
Vmi
Vmi0

)2
, QLi = QLi0

(
Vmi
Vmi0

)2
, θij = θi − θi

i ∈ NG

(21)

where δi and ωi are state variables, representing the rotation angle and rotation speed
deviations of generator i; Vdi, Vqi, Idi, Iqi, and Pei are d- and q-axes voltages and currents and
the electrical power; Vmi and θi are the voltage amplitude and voltage phase angle; G and
NG denote the sets of a bus with generator and bus without generator respectively, and
nb represents the number of buses. PLi0 and QLi0 are the initial active power and initial
reactive power of the load. Pmi and E’qi are the mechanical power and q-axes transient field
voltages of generator i. The initial values of variables satisfy Equation (22), where PGi and
QGi are the active power and reactive power of the generator, and the subscript 0 represents
the initial value of the variable. All others are parameters, details can be found in Tables A2
and A3.

f or i ∈ G, θij0 = θi0 − θi0

0 = PGi − PLi0 −Vmi0
nb
∑

j=1
Vmj0(Gij cos θij0 + Bij sin θij0)

0 = QGi −QLi0 −Vmi0
nb
∑

j=1
Vmj0(Gij sin θij0 − Bij cos θij0)

Pmi0 = Pei0, ωi0 = 0
EQi = Vmi0(cos θi0 + j sin θi0) + (Rai + jX′di)

PGi−jQGi
Vmi0(cos θi0+j sin θi0)

δi0 = angle(EQi), E′qi = abs(EQi)

f or i ∈ NG, θij0 = θi0 − θi0

0 = −PLi0 −Vmi0
nb
∑

j=1
Vmj0(Gij cos θij0 + Bij sin θij0)

0 = −QLi0 −Vmi0
nb
∑

j=1
Vmj0(Gij sin θij0 − Bij cos θij0)

(22)

In this case, PG2 and PG3 are the random inputs of interest. PG2 and PG3 are subject to
two-parameter Weibull distribution, which is measured in megawatts, the scale parameters
are 30, and the shape parameters are 4. The correlation coefficient between the active
power output of G2 and G3 is 1/10. The simulation time step is 1 millisecond, and the total
simulation time is 5 s. At 0.9 s, a three-phase gold short circuit occurs in bus 8, and the
fault is cleared at 1 s by cutting outlines 8–9. The Monte Carlo simulation method (MCS)
of 10,000 times is used as the comparison standard. The method proposed in this paper is
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denoted as NGHQ. The NGHQ is compared with MCS and the Latin hypercube sampling
(LHS) in [29]. P is the number of samples, and the results of three different P are analyzed.
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3.1.2. Simulation Results Analysis

The relative rotation angle of generator 1 and generator 2 is denoted as δ21. Figure 3
shows the mean value of δ21 calculated by three different methods when the P value of
NGHQ is 5. Figure 4 shows the standard deviation of δ21 calculated by three different
methods. The relative variation of the rotation speed of generator 1 and generator 2 is
denoted as ω21. Figure 5 shows the mean value of ω21 calculated by three different methods.
Figure 6 shows the standard deviation of ω21 calculated by three different methods. From
Figures 2–5, it can be seen that the mean values of state variables calculated by method
NGHQ have little difference with MCS and LHS. In addition, the accuracy of the standard
deviations of the state variables calculated by NGHQ and LHS are slightly lower than that
of MCS, and the errors of NGHQ and LHS accumulate over the simulation time. At the
same time, the accuracy of LHS (1000 times) is slightly higher than that of NGHQ (P = 5). It
should be pointed out that the accuracy of standard deviation obtained by method NGHQ
and LHS are satisfactory for practical engineering applications over a long period of time.
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The voltage amplitude of bus 5 is denoted as Vm5. Figure 7 shows the mean value of
Vm5 calculated by three different methods when the P-value of NGHQ is 5. Figure 8 shows
the standard deviation of Vm5 calculated by three different methods. From Figures 7 and 8,
it can be seen that the mean values and standard deviation of algebraic variables calculated
by method NGHQ have little difference with LHS. The mean values of NGHQ and LHS
are very close to that of MCS, but the standard deviations of these two methods have an
acceptable error. To more intuitively compare the accuracy of the proposed method and
LHS, Table 2 shows the mean values and standard deviations of each voltage amplitude
at 1 s. As can be seen from Table 2, the mean values calculated by the three methods are
the same, while the accuracy of LHS is slightly higher than that of NGHQ in terms of
standard deviations. In practice, the accuracy of both LHS and NGHQ is acceptable, but
the computational efficiency of NGHQ is much higher than that of LHS.
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Table 2. Mean values and standard deviations of each voltage amplitude of different methods at 1 s.

Mean Values/pu Standard Deviations/pu

MCS LHS NGHQ MCS LHS NGHQ

Vm1 1.0326 1.0326 1.0326 3.5476 × 10−7 3.5917 × 10−7 3.6209 × 10−7

Vm2 1.0234 1.0234 1.0234 2.3199 × 10−7 2.3801 × 10−7 2.1877 × 10−7

Vm3 1.0180 1.0180 1.0180 3.0728 × 10−7 3.1996 × 10−7 3.4154 × 10−7

Vm4 1.0052 1.0052 1.0052 7.9225 × 10−7 8.1212 × 10−7 8.0810 × 10−7

Vm5 0.9935 0.9935 0.9935 4.1470 × 10−6 4.2455 × 10−6 4.2142 × 10−6

Vm6 1.0175 1.0175 1.0175 2.5313 × 10−6 2.5851 × 10−6 2.6270 × 10−6

Vm7 1.0051 1.0051 1.0051 1.0861 × 10−6 1.1121 × 10−6 1.1459 × 10−6

Vm8 1.0184 1.0184 1.0184 3.0746 × 10−7 3.1716 × 10−7 3.2355 × 10−7

Vm9 0.9546 0.9546 0.9546 1.0169 × 10−6 1.0425 × 10−6 1.0332 × 10−6
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At the same time, it can be seen from the results of Figures 9 and 10 that there is no
significant difference in the results obtained by method NGHQ under different P. The
errors of method NGHQ are mainly derived from Equations (11) and (12), and different P
only affect the errors of Equation (11). That is to say, in this example, when P = 3, the error
of Equation (11) already meets the requirements, and increasing the number of sampling
points will have little impact on the accuracy. Table 3 shows the number of deterministic
dynamic simulations N and the total calculation time T in various scenarios. As can be
seen from Table 3, compared to MCS and LHS, the proposed method can reduce a large
number of dynamic simulation times, thus greatly improving the computational efficiency.
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9—bus system.
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Table 3. Simulation times and calculation time of different scenarios in the IEEE 9—bus system.

Scenarios N T/s

MCS 10,000 9610.25
NGHQ − P = 3 5 4.93
NGHQ − P = 5 9 8.71
NGHQ − P = 7 13 12.34

LHS 1000 963.42

3.2. Case Study of the IEEE 39-Bus System
3.2.1. Simulation Setup Description

The description of the IEEE 39—bus system can be found in [30] and the static param-
eters can be found in [28]. A 6th-order generator model, a 1st-order exciter, a 1st-order
governor, and the load model with ZIP are adopted for the IEEE 39—bus system. The
percentages of constant-impedance, constant-current, and constant-power components of
all loads are 70%, 10%, and 20%. The dynamic model used in this case is similar to that
used in the IEEE 9—bus system, except that the generator model is more complex, so the
model will not be described here. The detailed equations of the dynamic model can be
found in [31]. The dynamic parameters used in this paper are the same as those in [18,31].
In this case study, the initial values of PL1 and PL18 are the random inputs of interest, and it
is assumed that active power in Load 1 follows the Gaussian distribution with the mean
being the original load active power and the standard deviation being 5%. The active
power in Load 18 also follows the Gaussian distribution with the mean being the original
load active power and the standard deviation being 5%. The correlation coefficient between
the active power of Load 1 and Load 18 is 1/2. The simulation time step is 1 millisecond,
and the total simulation time is 5 s. At 1 s, a three-phase line break occurs on lines 8–9. The
NGHQ, which 5 quadrature points are used for, is compared with MCS of 20,000 times
simulation and LHS of 1000 times simulation.
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3.2.2. Simulation Results Analysis

The rotor angle of Generator 2 with respect to that of Generator 1, δ21, and its relative
rotation speed variation, ω21, are selected to analyze the results. Figure 11 shows the
mean value of δ21 calculated by three different methods. Figure 12 shows the standard
deviation of δ21 calculated by three different methods. Figure 13 shows the mean value of
ω21 calculated by three different methods. Figure 14 shows the standard deviation of ω21
calculated by three different methods.
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From Figures 11–14, it can be seen that the mean values of δ21 and ω21 calculated by
method NGHQ and LHS have little difference with MCS. In addition, the accuracy of the
standard deviations of δ21 and ω21 calculated by NGHQ and LHS is slightly lower than
that of MCS, which is negligible in practical engineering applications. It is worth noting
that the error always increases at the top and bottom of the peak. The mean and standard
deviation of δ21 and ω21 calculated by NGHQ and LHS are very close. Compared with the
IEEE 9—bus system, the standard deviations of δ21 and ω21 in the IEEE 39—bus system
are much smaller, because the dynamic model of the IEEE 39—bus system is more stable.
To further verify the effectiveness of the proposed method, Table 4 gives the mean values
and standard deviations of each rotation angle at 4 s. It can be seen from Table 4 that the
mean values and standard deviations calculated by NGHQ have the same accuracy as
those calculated by LHS.
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Table 4. Mean values and standard deviations of each rotation angle of different methods at 4 s.

Mean Values/rad Standard Deviations/rad2

MCS LHS NGHQ MCS LHS NGHQ

δ1 1.3273 1.3273 1.3273 5.9834 × 10−5 6.1518 × 10−5 6.1397 × 10−5

δ2 2.0395 2.0395 2.0395 4.0177 × 10−4 4.1266 × 10−4 4.1283 × 10−4

δ3 1.9673 1.9673 1.9673 1.0033 × 10−4 1.0307 × 10−4 1.0297 × 10−4

δ4 2.0502 2.0502 2.0502 7.3284 × 10−5 7.5274 × 10−5 7.5164 × 10−5

δ5 1.9172 1.9172 1.9172 7.5808 × 10−5 7.7867 × 10−5 7.7758 × 10−5

δ6 1.9540 1.9540 1.9540 7.4994 × 10−5 7.7030 × 10−5 7.6920 × 10−5

δ7 2.0810 2.0811 2.0811 7.5099 × 10−5 7.7139 × 10−5 7.7029 × 10−5

δ8 2.0639 2.0639 2.0639 5.7510 × 10−5 5.9114 × 10−5 5.8996 × 10−5

δ9 2.2011 2.2011 2.2011 6.3321 × 10−5 6.5059 × 10−5 6.4950 × 10−5

δ10 0.8818 0.8818 0.8818 3.1527 × 10−5 3.2491 × 10−5 3.2356 × 10−5

The voltage amplitude of bus 20 is denoted as Vm20. Figure 15 shows the mean value
of Vm20 calculated by three different methods. Figure 16 shows the absolute error of the
standard deviation of Vm20 calculated by three different methods. The effectiveness of the
proposed method can be verified in Figures 15 and 16. From Figures 15 and 16, it can be
seen that the voltage amplitude is much less affected by load uncertainty than the rotation
angle and rotation speed. This is because dynamic components such as synchronous
generators are the root cause of driving system state changes, and the voltage amplitude
changes with the change of system state in order to make the network power balance.
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Table 5 shows the number of deterministic dynamic simulations N and the total
calculation time T in various scenarios. As can be seen from Table 5, compared to MCS and
LHS, the proposed method can reduce a large number of dynamic simulation times, thus
greatly improving the computational efficiency.
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Table 5. Simulation times and calculation times of different scenarios in the IEEE 39-bus system.

Scenarios N T/s

MCS 20,000 44,011.35
NGHQ − P = 5 9 19.94

LHS 1000 2213.18

4. Conclusions

In this paper, a fast power system uncertainty simulation method based on Nataf
transformation and Gauss-Hermite quadrature is proposed. Firstly, the sampling samples
of input random variables are determined based on Nataf transformation and inverse
Nataf transformation. Secondly, the dynamic simulation of power systems is carried out
according to the samples. Finally, the mean and standard deviation of state variables and
algebraic variables are calculated based on the Gauss-Hermite quadrature.

The simulation results of the IEEE 9-bus system (Appendix A) and IEEE 39-bus
system show that compared with the traditional MCS and LHS, the proposed method
can obtain accurate mean values of state variables and algebraic variables. Although the
standard deviation accuracy is worse than that of the Monte Carlo simulation method,
the computational efficiency can be greatly improved. As a non-intrusive method, the
proposed method is suitable for complex dynamic models of power systems and can deal
with the correlation between input random variables.
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Appendix A

Table A1. The static active power (PL0), static reactive power (QL0), and the static voltage (V0) of the
loads in the IEEE 9-bus system.

Bus PL0 (MW) QL0 (Mvar) V0 (pu)

1 0 0 1.04
2 0 0 1.025
3 0 0 1.025
4 0 0 1.026
5 90 30 1.013
6 0 0 1.032
7 100 35 1.016
8 0 0 1.023
9 125 50 0.996

Table A2. The dynamic parameters of the generators in IEEE 9-bus system.

Generator
Number Bus D (pu) Ra (pu) ωs (rad/s) H (pu) Xd’ (pu)

1 1 0.0125 0.0041 120π 23.64 0.0608
2 2 0.0068 0.0026 120π 6.40 0.1198
3 3 0.0048 0.0035 120π 3.01 0.1813

Table A3. Symbol description in the IEEE 9-bus system.

Symbol Description

D damping

Ra internal resistance

ωs rated angular velocity

H inertia

Xd’ d-axis sub-transient reactance
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