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Abstract: This paper focuses on the trajectory tracking control for general nonlinear single-input
single-output (SISO) systems in which the output is not directly related to the control input. To address
the tracking problem with the consideration of possible model uncertainty, external disturbance,
and control input saturation, we employ the input-output feedback linearization technique and
design a finite-time disturbance observer-based terminal sliding mode controller to improve the
tracking performance and enhance the robustness. The stability analysis is carried out by using the
Lyapunov method. To alleviate the chattering while achieving an acceptable control performance, a
boundary layer method is adopted for the trade-off between the high-frequency control actions and
the bounded unavoidable nonzero steady-state error. The proposed method is evaluated on the two
typical nonlinear systems, which are fully linearizable and partially linearizable, respectively, and
compared to the state-of-the-art method in terms of tracking and robustness through comprehensive
numerical simulations. The results show that the proposed method not only renders the estimated
disturbance error tends to be zero in finite time , but also has superiority in the fast reaction to
disturbance and small tracking error without high-frequency chattering.

Keywords: disturbance observer; sliding mode control; feedback linearization; trajectory tracking
control; control saturation

1. Introduction

Proportional-integral-derivative (PID) is the most common control algorithm that
had been successfully applied in the processes industry due to algorithm simplicity and
satisfactory control performance [1]. However, PID is mainly used for linear single-input
single-output (SISO) systems while it may be intractable for highly nonlinear systems
with unpredictable disturbances. In past decades, robust nonlinear control methods were
maturely developed and successfully applied to a variety of fields, such as robust nonlinear
model predictive control (NMPC) [2–5], operator-based robust right coprime factoriza-
tion (RRCF) [6–8], and sliding mode control (SMC) control [9–13]. Among them, SMC,
also called variable structure control, is one of the most popular robust nonlinear con-
trol techniques due to the characteristic of rapid convergence with satisfactory transient
performance, insensitivity to model uncertainties and disturbances, and remarkable com-
putational simplicity [10].

Generally, the first and most important step in the design of SMC is to construct
an appropriate sliding surface, which determines the control performance of the system
to a certain extent [11]. The linear switching hyperplane was commonly adopted such
that the state could be asymptotically forced to the equilibrium point with an arbitrary
convergence rate. However, it may impose a strong control force and could not provide
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any information about the prescribed finite-time convergence, which is very desirable
for some applications with specific requirements, e.g., fast and high precision trajectory
tracking control [12]. In contrast to linear sliding surfaces, terminal sliding mode (TSM)
control provides asymptotic stability with finite-time convergence [13]. To further improve
the transient performance with faster convergence and achieve finite-time stability, the
fast terminal sliding mode control (FTSMC) method was developed, which combines the
advantage of linear sliding surface and nonlinear exponential terminal sliding surface such
that the fast transient convergence can be achieved regardless of the distance between the
system state and equilibrium [14]. To solve the singularity problem caused by the usage
of negative fractional power terms in FTSMC, its variants, such as nonsingular terminal
sliding mode control (NTSMC), were investigated [15]. In Ref. [16], the authors proposed a
global sliding mode (GSM) control scheme where the reaching phase was removed so that
the sliding mode exhibited invariants and robustness to system perturbations globally.

Based on the design of the sliding surface, the derived control law of SMC is also of
importance, which generally consists of an equivalent control law and a discontinuous
switching control law. The former, which is related to the nominal model dynamics, is
derived without disturbances to maintain the state (error) on the sliding surface while
sliding into the origin. The latter is basically obtained by using Lyapunov stability analysis
concerning the sliding surface (e.g, s(t)ṡ(t) < 0), and deployed in the reaching phase for
disturbance rejection at the cost of chattering. However, such chattering representing the
oscillations with finite frequency and amplitude in the vicinity of the equilibrium point may
result in unwanted wear and tear of the actuators, seriously affect the system performance,
and even lead to instability [17]. To effectively alleviate chattering, the commonly used
discontinuous sign(·) function that crosses the sliding manifold could be approximatively
replaced by using a continuous smoothing function (e.g, hyperbolic tangent function
tanh(·)) [18], or utilizing the boundary layer method in which the discontinuous switching
law is only applied outside a given boundary while the linear feedback control technique
is used inside the boundary [19]. By doing so, a nonzero steady-state error would be
inevitable. Another popular method for chattering alleviation is high-order SMC. This
method intentionally increases the relative degree between the input and output such that
the actual control input is the integration of the high-frequency switching terms through
imposing the variables and their successive derivative terms to be converged to zero,
e.g., s(t) = ṡ(t) = · · · = sr−1(t) for rth order SMC [11,18].

Besides the chattering in the SMC design, actuator physical constraints are also re-
quired to be considered in many practical control systems [20]. Input saturation as a
nonsmooth nonlinearity severely degrades the closed-loop system performance, which
may lead to undesirable inaccuracy or even cause instability. In Ref. [21], the authors
proposed an operator-based RRCF method to deal with the accurate position tracking
problem for ionic polymer metal composite actuator in the presence of model uncertainty
and input saturation. Relying on the extraordinary ability to handle constraints, a robust
model predictive control scheme was proposed for a linear uncertain system in the form
of polytopic and subject to actuator saturation [22]. In Ref. [23], the authors developed
an adaptive fuzzy control method-based small-gain technique for a nonstrict-feedback
nonlinear system with the consideration of unmodeled dynamics and input saturation.

In addition to control saturation, the unavoidable external disturbance in practical
applications needs to be further considered for performance improvement. A common
way to do this is to design a disturbance observer to approximate and compensate for the
lumped disturbance caused by the input saturation and external disturbance. In Ref. [24],
the authors designed a robust control law in conjunction with a constructed auxiliary
system for the dynamic positioning of ships in the presence of unknown time-varying dis-
turbances and input saturation. The estimated error of disturbance and positioning errors
were controlled to be globally uniform and ultimately bounded. In Ref. [25], the nonsmooth
saturation nonlinearity was firstly approximated by a smooth function. The bounded
approximation error and the external disturbance were solved by using an adaptive back-
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stepping approach to guarantee the transient tracking performance. In order to explicitly
consider input saturation in the control design of uncertain nonlinear systems [26], the au-
thors developed a finite-time nonlinear terminal SMC disturbance observer in which the
model uncertainties, external disturbances, and input saturation effect are included into a
single disturbance term acting on the system.

In this paper, we investigate the problem of trajectory tracking control for a class of
nonlinear SISO systems where the systems’ output is not directly related to control input
and may be subject to model uncertainties, external disturbances, and input saturation.
To the best of our knowledge, such systems are common in practical applications but rarely
discussed on the whole. To this end, we adopt a terminal sliding mode tracking control
scheme to achieve a satisfactory tracking control performance while possibly reducing the
chattering. The highlights and contributions of this paper can be summarized as follows:

• Input-output feedback linearization technique is applied to explicitly establish the
relationship between the system output and the control input.

• Sliding mode disturbance observer is designed to estimate the lumped disturbance
including the possible uncertainties, external disturbances, and input saturation, and is
able to significantly reduce the chattering while keeping a certain tracking performance.

• Disturbance observer-based terminal sliding mode tracking controller with boundary
layer method is further designed for the trade-off between the high-frequency chatter-
ing caused by the discontinuous sign(·) function and the nonzero steady-state error
caused by the continuous control within the boundary layer.

• The proposed method is evaluated by two typical nonlinear systems that are fully
linearizable and partially linearizable, respectively, and compared with the state-of-the-
art method in terms of tracking performance and robustness through
numerical simulations.

The structure of this paper is organized below. The problem formulation is firstly
presented in Section 2. Then, the finite-time sliding mode disturbance observer and the
terminal sliding mode tracking controller are designed in Section 3 and 4, respectively. The
proposed method is evaluated with illustrated simulations in Section 5. Last, we conclude
our work in Section 6.

2. Problem Formulation

In this paper, we consider a general class of nth order SISO nonlinear systems, which
is expressed as follows: {

ẋ = f (x) + g(x)u + d
y = h(x)

(1)

where x = [x1, x2, · · · , xn]T ∈ Rn is a state vector that is assumed to be available for
measurement, f (x) = [ f1(x), f2(x), · · · , fn(x)] and g(x) = [g1(x), g2(x), · · · , gn(x)] 6= 0
are smooth vector functions, h(x) denotes the smooth scalar function, u ∈ R is control
input, y ∈ R is system output, d = [d1(x), d2(x), ·, dn(x)] ∈ Rn that possibly include the
unmeasured disturbances caused by external disturbances and model uncertainty. From
Equation (1), it can be seen that the output y is not directly related to control input u, which
may require input-output feedback linearization for the nonlinearities cancellation and
controllers’ design [27]. Before the introduction of the sliding mode tracking controller, we
first present the relevant definition below.

Definition 1 (Relative degree). In nonlinear control, relative degree r ∈ Z represents the
smallest number of times that the system output y has to be differentiated until the control input
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u explicitly appears in yr, 0 < r ≤ n [28,29]. That is, LgLj
f h = 0 for j = 0, 1, · · · , r − 2 and

LgLr−1
f h 6= 0 with

yr =

:=a(z)︷ ︸︸ ︷
Lr

f h(x) +

:=b(z)︷ ︸︸ ︷
LgLr−1

f h(x) ·u +

dz︷ ︸︸ ︷
Lr−1

f+gu+dLdh(x) +
r−1

∑
λ=1

Lλ−1
f+gu+dLdLr−λ

f h(x) (2)

where, 

L f h(x) = ∂h(x)
∂x f (x) = ∑n

j=1
∂h(x)

∂xj
f j(x)

Ldh(x) = ∂h(x)
∂x d(x) = ∑n

j=1
∂h(x)

∂xj
dj(x)

Lr
f h(x) = L f (Lr−1

f h(x))

L0
f h(x) = h(x)

LgLr−1
f h(x) =

∂(Lr−1
f h(x))
∂x · g(x)

L f+gu+dLdh(x) = ∂(Ldh(x))
∂x ( f (x) + g(x)u + d)

(3)

According to Equation (2), the system (1) can be therefore transformed as yr = v via
input-output feedback linearization with control law

u =
1

LgLr−1
f h(x)

(v− Lr
f h(x)) (4)

According to Equation (2) and assuming r = n, the new state vector is set as:

zn = Ln−1
f h(x) + LgLn−2

f h(x) · u + Ln−2
f+gu+dLdh(x) +

n−2

∑
λ=1

Lλ−1
f+gu+dLdLn−1−λ

f h(x) (5)

which depends not only on the state vector of system (1) but also on high-order derivatives
of perturbations. We take the first-order and second-order derivatives with respect to y as
an example, then the derivative ẏ and ÿ can be expressed as follows:{

ẏ = ż1 = ∇h( f + g · u + d) = L f h(x) + Lgh(x)u + Ldh(x)
ÿ = z̈1 = L2

f h(x) + LgL f h(x)u + LdL f h(x) + L f+gu+dLdh(x)
(6)

where y = z1 = h(x), in accordance with (5), obviously, z2 = ż1, z3 = ż2 = z̈1, us-
ing the recursive higher-order Lie derivatives, we obtain the input-output linearizable
canonical form 

żi = zi+1, i = 1, 2, · · · , n− 1
żn = a(z) + b(z)u + dz

y = z1

(7)

where z = [z1, z2, · · · , zn]. For simplicty but without loss of generality, the referred dis-
turbances dj, j = 1, 2, · · · , n in z are assumed to be known in the context of input-output
feedback linearization. Further, if the system’s control input is subject to input saturation, i.e.,

u =


umax, i f ud > umax

ud, i f umin ≤ ud ≤ umax
umin, i f ud < umin

(8)
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where umax and umin are bounds, and ud is the designed control signal. Taking (8) into
account and substituting ū = u− ud into (7), we obtain

żi = zi+1, i = 1, 2, · · · , n− 1
żn = a(z) + b(z)(ud + ū) + dz = a(z) + b(z)ud + dL

y = z1

(9)

where dL := dz + b(z)ū represents the disturbances caused by the external disturbance
and the control saturation. The control object is to steer the system output y to follow a
desired bounded signal yd in the presence of disturbances and input saturation. Note that
the effects caused by the disturbance d in Equation (1) can be attenuated by the usage of a
feedforward technique if such a disturbance is measurable. However, in most cases, it is
impossible to be directly measured or too expensive to measure all the disturbances in d.
One intuitive method is to design a disturbance observer to approximately estimate the
disturbance from the measurable variables. Moreover, the effects caused by the mismatched
disturbance may be impossible to be completely eliminated no matter what kind of control
scheme adopted [30].

Remark 1. In Equation (7), the relative degree r is assumed to be equal to n, which is called fully
linearizable. However, in the case of partially linearizable, (i.e., r < n), the rest n− r state variables
are unobservable, which is called internal dynamics that may not be stable [31]. Since zero dynamics
only contains the internal dynamics, the stability analysis of internal dynamics can be simply carried
out by analyzing the stability of zero dynamics where the output is constantly kept at zero through
changing control actions [32,33] (see Lemma 1). Note that for linear systems, the stability of zero
dynamics means global stability of internal dynamics. Yet, in terms of nonlinear systems, only local
stability of internal dynamics holds even with global exponential stabilizing of zero dynamics [34].

Lemma 1. For system (9), if the the relative degree r is less than the system order n, then define the
external dynamics z = [z1, z2, · · · , zr]T = [y, ẏ, · · · , y(r−1)]T , and choose the left unobserved sys-
tem states ς = [ς1, ς2, · · · , ς(n−r)]

T , there exists a local homeomorphism
Ξ(x) = [z1, z2, · · · , zr, ς1, ς2, · · · , ς(n−r)] such that [29]

z(r) = a(z, ς) + b(z, ς)u + dL

ς(n−r) = a′(z, ς) + b′(z, ς)u + d′L
y = z1

(10)

holds. According to (10), we have

ς(n−r) = a′(z, ς) +
b′(z, ς)(z(r) − a(z, ς)− dL)

b(z, ς)
+ d′L (11)

Utilizing the analysis of zero dynamics with z = 0, we obtain that

ς(n−r) = a′(0, ς)−
b′(0, ς)(a(0, ς) + dL(z=0))

b(0, ς)
+ d′L(z=0) (12)

If the stability of zero dynamics (12) is achieved, then the internal dynamics ς is locally stabilizing.

In the next Section 5.2, we will analyze such characteristics through example 2 in
which the complex nonlinear system has unmatched disturbances and unobserved internal
dynamics.

3. Design of Finite-Time Sliding Mode Disturbance Observer

In order to suppress or attenuate the negative effects caused by disturbances, the
disturbance observer is an alternative to achieve the desired performance. In general,
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the idea behind the disturbance observer is to lump disturbance and uncertainty together
for total estimation [35]. Depending on the recursive terminal sliding mode controller
based on the disturbance observer, the authors investigated the tracking problem for a
class of third-order chained–form nonholonomic systems in the presence of unknown
external disturbances [36]. In Ref. [37], a class of SISO nonlinear systems with mismatched
uncertainties and disturbances were solved by using the multiple-surface SMC-based
disturbance observer.

Apart from the design of the sliding mode controller, the sliding mode disturbance
observer has also attracted considerable research attention for the robust control of uncertain
nonlinear systems due to its simplicity, transparency, and strong ability of disturbance
attenuation and rejection [38]. Since the sliding mode disturbance observer does not rely
on the bounded disturbance of the model but is only related to its bounds [39], the observer
can be firstly developed for approximately estimating and compensating the unknown
disturbance. The approximation error of the disturbance observer could be theoretically
proved to be converged to zero in finite time. To effectively compensate for the unmeasured
disturbance, auxiliary variables are used for the design of a finite-time sliding mode
disturbance observer due to simplicity, transparency, and designability. In this paper,
the auxiliary variable sd and the intermediate variable ψ are introduced, where sd = ψ− zn
and ψ is given by [40]

ψ̇ = −ksd − βsign(sd)− ξs
p0
q0
d − |a(z)|sign(sd) + b(z)ud (13)

The relationship between auxiliary variables and other variables in the control system
would be described in detail in Figure 1 in Section 4. In Equation (13), p0 and q0 are odd
positive integers while p0 < q0, and the designed parameters k, β and ξ are also positive.
Then, Equation (14) is derived as

ṡd = ψ̇− żn = −ksd − βsign(sd)− ξs
p0
q0
d − |a(z)|sign(sd)− a(z)− dL (14)

Now, the terminal SMC estimated disturbance is given:

d̂L = −ksd − βsign(sd)− ξs
p0
q0
d − |a(z)|sign(sd)− a(z) (15)

Considering Equations (9), (13)–(15), we obtain

d̃L = d̂L − dL = −ksd − βsign(sd)− ξs
p0
q0
d − |a(z)|sign(sd)− a(z)− żn + a(z) + b(z)ud

= −ksd − βsign(sd)− ξs
p0
q0
d − |a(z)|sign(sd)− żn + b(z)ud

= ψ̇− żn = ṡd

(16)

Lemma 2. If there exists a positive definite function V(t) such that the differential inequality [26]:

V̇(t) + $V(t) + ΓVθ(t) ≤ 0, ∀t > t0 (17)

holds for t ≥ t0 and V(t0) ≥ 0, then V(t) converges to the equilibrium point in finite time with

ts ≤ t0 +
1

$(1− θ)
In

$V1−θ(t0) + Γ

Γ
(18)

where $ > 0, Γ > 0, 0 < θ < 1.

Assumption 1. The unknown disturbance dL in (9) is bounded with |dL| < β.

Theorem 1. Considering the nonlinear SISO systems (9) with disturbances and input saturation,
the finite time terminal sliding mode disturbance observer (15) is designed such that the disturbance
approximation error (16) converges to zero in finite time ts.
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Proof. Considering the Lyapunov function

Vd =
1
2

s2
d (19)

and utilizing the Equation (14) and Assumption 1, the derivative of Vd is given

V̇d = sd ṡd = sd(−ksd − βsign(sd)− ξs
p0
q0
d − |a(z)|sign(sd)− a(z)− dL)

= −ks2
d − β|sd| − ξs

p0+q0
q0

d − |a(z)||sd| − a(z)sd − sddL)

≤ −ks2
d − β|sd| − ξs

p0+q0
q0

d + |sd||dL|

≤ −ks2
d − ξs

p0+q0
q0

d

≤ −2kVd − 2
p0+q0

2q0 ξV
p0+q0

2q0
d

(20)

According to Lemma 2 and Equation (20), the auxiliary variable sd converges to the
equilibrium point in finite time ts, i.e.,

ts ≤ t0 +
q0

k(q0 − p0)
In(

2k( 1
2 s2

d)
q0−p0

2q0 (t0)

2
p0+q0

2q0 ξ

+ 1)

< t0 +
q0

k(q0 − p0)
In(

ks
q0−p0

q0
0 (t0)

ξ
+ 1)

(21)

Consequently, ṡd converges to zero in finite time, which shows that the estimated
disturbance error = d̃L = d̂L − dL in Equation (16) is also convergent to zero in finite time.

4. Terminal Sliding Mode Control

In order to achieve a satisfactory tracking control performance in the presence of
disturbance and input saturation, in this section, we adopt a terminal sliding surface that
combines the linear surface with the designed sliding mode observer. First, as a linearized
stable differential operator, the linear sliding surface sl(t) in the conventional SMC is
concerned with tracking error e(t) and its derivatives, which can be designed as

sl(t) = CTe (22)

Here, e = [e1, e2, · · · , en−1, en], n indicates system’s order, e1 = y − yd, ėi = ei+1,
C = [c1, c2, · · · , cn−1, 1]T represents the bandwidth of error dynamics and set to be positive
constants such that the roots of polynomial c1 + c2s + · · ·+ cn−1sn−2 + sn−1 lie in the open
left half (Hurwitz) plane. Then, the terminal sliding surface is designed as

sn(t) = sl(t) + sd(t) (23)

Theorem 2. For a class of nonlinear systems (9) that is subject to disturbance and input satura-
tion, assume all the states are available, and based on the designed sliding mode observer d̂L in
Equation (15), the system’s output tracking control performance can be guaranteed and the desired
trajectory can be attained in finite time by the designed control law with

ud(t) = −
1

b(z)
(

n−1

∑
j=1

cjej+1 − y(n)d + a(z) + d̂L + ηsn + σs
p
q
n ) (24)
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Proof. Consider the Lyapunov function

V =
1
2

s2
n (25)

calculate the time derivative of V, and utilize the system Equation (9), the linear sliding
hyperplane sl(t) in (22) and the control law in (24), we obtain

V̇ = sn ṡn = sn(ṡl(t) + ṡd(t)) = sn(
n−1

∑
j=1

cj ėj +

=y(n)−y(n)d︷︸︸︷
ėn +ṡd)

= sn(
n−1

∑
j=1

cj ėj + a(z) + b(z)ud + dL − y(n)d + ṡd)

= sn(

−ṡd︷ ︸︸ ︷
−d̂L + dL +ṡd − ηsn − σs

p
q
n )

= −ηs2
n − σs

p+q
q

n

≤ −2ηV − 2
p+q
2q σV

p+q
2q

(26)

which shows that the desired trajectory can be convergently tracked in finite time according
to Lemma (2), i.e.,

ts < t0 +
q

η(q− p)
In(

ηs
q−p

q
0 (t0)

σ
+ 1) (27)

where p and q are odd positive integers while p < q, η > 0 and σ > 0.

Finally, the block diagram of the proposed method is described in Figure 1.
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Figure 1. Block diagram of sliding mode tracking control-based finite-time disturbance observer and
input-output feedback linearization.

Remark 2. There are kinds of variants concerning the sliding mode surface sl . For simplicity but
without loss of generality, we take the second-order nonlinear systems as an example, e.g., PID-type
terminal sliding mode sl(t) = c1e(t) + ė(t) + µ

∫ t
0 e(τ)q/pdτ in [13], linear adaptive sliding

mode sl(t) = (1 + α̂)(c1e(t) + ė(t)) in [26], fast terminal sliding mode sl(t) = c1e(t) + ė(t) +
β1e(t)p1/q1 in [40]. Note that on the basis of the above sliding hyperplanes, the respective control
laws can be derived by meeting the Lyapunov stability. Although introducing the additional
parameter may provide more flexibility in the controller’s design, it aggravates the burden of
parameter tuning. We would like to point out that the usage of a discontinuous sign function in the
disturbance observer (15) and control law (24) results in high robustness to disturbance but with
possible high-frequency chattering. Such a chattering phenomenon could be relieved by simply using
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the boundary layer method. However, by doing so, a nonzero steady-state error may be unavoidable.
We analyze the relationship between the boundary layer and chattering through illustrative examples
in Section 5.

5. Illustrative Examples

Since various systems such as robotics, electronics, and mechanics can be modeled as
a nonlinear second-order or third-order structure [41], it is necessary to investigate such
systems with respect to stabilization and tracking. Therefore, in this section, we take two
typical nonlinear systems as examples and study the trajectory tracking problem with
consideration of disturbance and control saturation.

5.1. Example 1

Considering the Van der Pol circuits system [42],
ẋ1 = x2

ẋ2 = −2x1 + 3(1− x2
1)x2 + u + d

y = x1

(28)

where x = [x1, x2] ∈ R is state, y ∈ R is output, u ∈ [umin, umax] is control input,
d is external disturbance. The desired trajectory is set as yd = 2sin(0.2t) and the distur-
bance signal is chosen as d = 2sin(0.1πt)+ 3sin(0.2

√
t + 1)+ ds, where ds = 5, 15 < t < 20.

The control input is limited within u ∈ [−20, 15], the initial conditions are set as
x1(0) = x2(0) = 0.1. Since y is not directly related to u, we first apply the input-output
feedback linearization technique for coordinate transformation. It can be seen that the
relative degree is equal to the system order (i.e., r = n = 2), and u explicitly appears in y(2).
Then, according to Equation (7), a(z) = −2x1 + 3(1− x2

1)x2, b(z) = 1 and dz = d can be
derived, respectively. According to (24), the terminal sliding mode controller based on the
disturbance observer is given as

ud(t) = −c1(ẋ1 − ẏd) + y(2)d + 2x1 − 3(1− x2
1)x2 − d̂L − ηs2 − σs

p
q
2 (29)

where

sd = ψ− z2 = ψ− x2

ψ̇ = −ksd − βsign(sd)− ξs
p0
q0
d −

∣∣−2x1 + 3(1− x2
1)x2

∣∣sign(sd) + ud

sl(t) = CTe = c1e1 + c2 ė1 = c1(y− yd) + c2(ẋ1 − ẏd)

s2(t) = sl(t) + sd(t)

d̂L = −ksd − βsign(sd)− ξs
p0
q0
d −

∣∣−2x1 + 3(1− x2
1)x2

∣∣sign(sd) + 2x1 − 3(1− x2
1)x2

(30)

To achieve a good tracking performance, the parameters of the sliding mode controller
are chosen as c1 = 66, c2 = 1, k = 30, β = 6, ξ = 0.5, p0 = p = 5, q0 = q = 7, η = 10,
σ = 1. The simulation results are given below. In Figure 2, it can be seen that although there
exists a large estimate error that is mainly caused by the control input saturation and the
imposed additional step signal, the designed sliding mode observer is able to approximate
the disturbance such that the estimated error tends to zero in finite time. According to
Equation (27) and the parameter setting, the finite time is calculated as ts = 1.0086, which
can be verified in Figure 3. In Figure 4, we observe that due to the high robustness to
disturbance, the perfect tracking performance is achieved but at the expense of high-
frequency chattering, c.f., Figures 2 and 3. Such unexpected chattering may seriously
aggravate the burden of actuators and therefore affect the closed-loop system performance.
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Figure 2. Disturbance estimate under the discontinuous control signal with the resulting
high−frequency chattering.
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Figure 4. Perfect trajectory tracking with high−frequency switching control actions at the cost
of chattering.

To alleviate the high-frequency control actions, the above discontinuous control func-
tion sign(·) can be replaced by a saturation function, i.e.,

sat(s) =


1, s > ∆,
κs, |s| ≤ ∆, κ = 1

∆
−1, s < −∆

(31)

where ∆ > 0 represents the thickness of the boundary layer. In Figure 5, we test three
different thicknesses of boundary layer and conclude that the thicker the boundary layer,
the smaller the chattering, the slower the reaction to disturbance, and the larger the nonzero
steady-state tracking error. To further evaluate the tracking performance and show the
robustness of the proposed method, a PID controller and a sliding mode controller under
input-output feedback linearization technique are adopted, respectively [43], i.e.,{

upid = kpe(t) + ki
∫ t

0 e(τ)dτ + kd ė(t)

uI
smc = y(2)d + cI ė + 2x1 − 3(1− x2

1)x2 + ηIsat(sl)
. (32)

The controllers’ gains are tuned to achieve the minimum possible tracking error through
experimental study, where kp = 35, ki = 0.5, kd = 10 and cI = 20, ηI = 15. In Figure 6, we
find that both PID and sliding mode controllers are effective manners to follow the desired
trajectory. However, among them, the proposed method (i.e., esmc2 marked by the green line)
has the smallest tracking error and fastest reaction to unpredictable disturbances.

Remark 3. Note that the usage of a boundary layer can reduce the chattering to a certain extent,
but gives rise to the nonzero steady-state error, which means that the sliding mode controller with a
boundary layer does not guarantee asymptotic stability but rather uniform ultimate boundedness.
In practical applications, the trade-off between the unwanted high-frequency control actions and
the unavoidable bounded steady-state error should be taken into consideration. A simple and
possible remedy way is using a time-varying boundary layer ∆ instead of the traditional fixed values
according to the variations of tracking error e1, i.e, ∆ = ∆1χ + ∆2(1− χ), where ∆1 and ∆2 are
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different boundary layers, ∆1 > ∆2 > 0, χ = 1 for |e1| > e0 and χ = 0 for |e1| ≤ e0, e0 < ∆ is a
positive value [44].
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Figure 5. Control input and tracking error under different boundary layer thicknesses.
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Figure 6. Comparison of tracking performance between PID and SMC for Van der Pol circuits system.
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5.2. Example 2

In this part, we consider a classical three-order nonlinear system with time-varying
disturbance [29], i.e., 

ẋ1 = sinx2 + (x2 + 1)x3 + d1

ẋ2 = x5
1 + x3 + d2

ẋ3 = x2
1 + u + d3

y = x1

(33)

where x = [x1, x2, x3] ∈ R3 is state, y ∈ R is output, d1 = sint is the imposed disturbance
signal while {d2, d3} = sint represents the unknown disturbances caused by the external
disturbances and model uncertainty. Similar to system (28), the control input u also
explicitly appears in y(2), but the relative degree is less than the system order, which needs
to analyze the stability of internal dynamics. According to Equations (2) and (9), we obtain

ż1 = z2,
ż2︷︸︸︷

y(2) =

:=a(z)︷ ︸︸ ︷
L2

f h(x) +

:=b(z)︷ ︸︸ ︷
LgL f h(x) ud +

:=dL︷ ︸︸ ︷
LdL f h(x) + L f+gu+dLdh(x) + b(z)ū

y = z1

(34)

where 
a(z) = (cosx2 + x3)(x5

1 + x3) + (x2 + 1)x2
1

b(z) = x2 + 1
LdL f h(x) = (cosx2 + x3)d2 + (x2 + 1)d3

L f+gu+dLdh(x) = ḋ1

(35)

The terminal sliding mode controller based on the disturbance-observer is given as

ud(t) = −
1

x2 + 1
(c1(ẋ1 − ẏd)− y(2)d + a(z) + d̂L + ηs2 + σs

p
q
2 ) (36)

In accordance with (15) and similar to (30), the designed terminal sliding mode surface
sd and disturbance observer d̂L can also be derived. The parameters of sliding mode
controller are chosen as c1 = 9, c2 = 1, k = 65, β = 5, ξ = 2, p0 = p = 5, q0 = q = 9,
η = 8, σ = 0.5. Similar to example 1, the simulation results concerning the disturbance
observer, and the trajectory tracking and control input are obtained in Figure 7 and Figure 8,
respectively. In Figure 7, we observe that the disturbance estimate error tends to zero in
finite time after a short period of oscillation. According to Equation (27) and parameter
settings, the finite time is computed as ts = 0.7706, which can be verified in Figure 8.
Similar to example 1, the two types of controllers defined by Equation (32) are compared to
the proposed method in terms of tracking performance and robustness. kp = 50, ki = 0.5,
kd = 10 are chosen for PID setting while cI = 10, ηI = 3 for SMC. In Figure 9, we observe
that SMC-type controllers outperform PID in terms of tracking performance and fast and
robust response to time-varying disturbance. On the downside, however, good tracking
performance is achieved at the cost of high-frequency control actions for the SMC with
feedback linearization and linear sliding surface. On the basis of the designed sliding mode
disturbance observer, satisfactory tracking performance is attained while suppressing the
chattering to a great extent. For sure, the boundary layer could be further adopted for
chattering attenuation but may sacrifice a certain tracking performance. There are other
points that we would like to highlight:
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• Regarding the parameters in the terminal sliding mode control law based on the
disturbance observer, β is determined such that the Assumption 1 holds. The pa-
rameters cj, j = 1, 2, · · · are chosen such that the roots of polynomial c1 + c2s + · · ·+
cn−1sn−2 + sn−1 lie in the open left half (Hurwitz) plane. The finite-time convergence
of disturbance estimate error is subject to the combination of k, ξ, p0, q0 while the
parameters η, σ, p, q are selected for the finite-time convergence concerning the tra-
jectory tracking error. In these parameters, p0 < q0 and p < q must hold. As for the
left parameters, in general, there is no rule for the deterministic parameters tuning
procedure to achieve the perfect tracking with fast convergence and without chattering.
Such parameters may be determined by the trial-and-error method according to the
accuracy requirement of tracking, allowable chattering frequency for the actuator, and
different initial conditions.

• In example 2, since the relative degree is less than the system order, there exists one
unobservable state. According to Lemma 1, we choose {y, ẏ, x3} as the new state set
and utilize the method of zero dynamics analysis to keep the system output and its
successive derivatives to be zero through changing control actions. In accordance with
Equations (34) and (35), the stability of internal dynamics x3 can be guaranteed when
x2 ∈ (−1, π

2 ). The conclusion is verified in Figure 10 where the system output and its
successive derivatives are kept at zero while the internal dynamics x3 are bounded
along with the variation of external dynamics x2. Further, the variations of x2 and x3
in the context of trajectory tracking are presented in Figure 11, where both x2 and x3
are bounded input bounded output (BIBO) stable.
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Figure 7. Disturbance estimate in the presence of time−varying disturbance.
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Figure 8. Finite−time trajectory tracking with sliding mode control−based disturbance observer.
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Figure 9. Comparison of tracking performance and control input with different types of controllers.
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Figure 10. The variations of the bounded external dynamics x2 and internal dynamics x3 under
zero dynamics.
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Figure 11. The variations of the bounded external dynamics x2 and internal dynamics x3.

6. Conclusions and Outlook

In this paper, we investigated the problem of trajectory tracking for a class of nonlinear
SISO systems in which the system output was not directly related to the control input.
To acheive a satisfactory tracking performance in the presence of possible model uncertainty,
disturbance, and control saturation, a sliding mode disturbance observer-based terminal
sliding mode tracking controller was theoretically designed, which combines the advantage
of traditional linear sliding hyperplane and nonlinear terminal sliding surface. The finite-
time convergence was proved by using Lyapunov stability analysis. The effectiveness of
the proposed method was demonstrated through numerical simulations in comparison to
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PID and sliding mode controller based on the linear sliding surface and the input-output
feedback linearization technique. The results show that the proposed method is superior to
the state-of-the-art method on responsiveness and robustness to unpredictable disturbance,
resulting in a smaller tracking error. In particular, the designed disturbance observer was
able to suppress the chattering caused by the discontinuous control actions to a certain
extent. Further, the unexpected chattering could be alleviated by using the boundary layer
method but at the expense of a nonzero steady-state error. Moreover, the unobserved
internal dynamics may exist in the process of feedback linearization. If so, the stability of
internal dynamics and zero dynamics need to be further considered.

In the design of the disturbance observer and terminal sliding mode controller, it refers
to some parameters that are of significant importance for guaranteeing and improving
tracking performance. Yet, tuning such parameters in an allowable range to accomplish a
good performance is time-consuming and challenging, especially for multi-input multi-
output (MIMO) systems. Moreover, although the boundary layer method is convenient
for chattering alleviating, it deteriorates the tracking performance. Therefore, adaptively
tuning the controller’s parameters, especially for the boundary layer, could be a future
research direction.
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