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Abstract: To enhance fault characteristics and improve fault detection accuracy in bearing vibration
signals, this paper proposes a fault diagnosis method using a wavelet packet energy spectrum and
an improved deep confidence network. Firstly, a wavelet packet transform decomposes the original
vibration signal into different frequency bands, fully preserving the original signal’s frequency
information, and constructs feature vectors by extracting the energy of sub-frequency bands via
the energy spectrum to extract and enhance fault feature information. Secondly, to minimize the
time-consuming manual parameter adjustment procedure and increase the diagnostic accuracy, the
sparrow search algorithm–deep belief network method is proposed, which utilizes the sparrow search
algorithm to optimize the hyperparameters of the deep belief networks and reduce the classification
error rate. Finally, to verify the effectiveness of the method, the rolling bearing data from Casey
Reserve University were selected for verification, and compared to other commonly used algorithms,
the proposed method achieved 100% and 99.34% accuracy in two sets of comparative experiments.
The experimental results demonstrate that this method has a high diagnostic rate and stability.

Keywords: classification problem; bearing fault diagnosis; wavelet packet energy spectrum; SSA; DBN

1. Introduction

The deep integration of new-generation information technology and industry has
pushed the global manufacturing industry to enter into a new wave of change. The
importance of information and knowledge elements is growing, even more so than the
importance of hardware equipment [1]. The intelligence of machinery and equipment is
increasing, and the gathering of operational process data is becoming richer and better. To
monitor and improve the efficiency of machinery and equipment production, the timely
detection of equipment performance degradation or failure categories and the timely
maintenance and repair of equipment abnormalities have become the current research hot
spots. Many academics have conducted extensive studies on the subject of mechanical
equipment condition monitoring and problem diagnostics, which have also expanded into
a discipline that includes the knowledge of mechanics, mathematics, computers, etc. The
first studies on mechanical fault diagnoses were based on an examination of the failure
mechanism [2–5] established in mathematical or physical models, and they conducted
extensive studies on the causes of equipment failure in the form of simulations [6–8].
With the development of signal acquisition as well as signal-processing technology, some
researchers increasingly shifted their study attention to the investigation of defect diagnostic
systems based on vibration signal analyses [9–12].

For the extraction of bearing fault information, early fault detection approaches mostly
employed information-processing methods [13–16]. The focus of signal processing is to
filter the original data, extract useful information, and remove redundant signals. Time-
domain analyses are used to highlight some physical characteristic indicators that are
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inherent in vibration data by selecting sensitive parameters. The characteristic information
in a time-domain analysis is easily affected by the type and frequency of the fault and
is not very robust. When a time-domain analysis is used for a fault diagnosis, multiple
characteristic indicators are usually combined to conduct a qualitative and quantitative
analysis of the equipment’s health and operational state [17]. The frequency-domain
analysis method generally uses a Fourier transform or Hilbert transform to process the raw
data, containing the mapping relationship between the signal amplitude and the signal
frequency. The algorithms of this processing mode mainly include a spectrum analysis,
a power spectrum analysis, and resonance demodulation [18–20]. The time-frequency
analysis combines time-domain and frequency-domain analyses; not only does it focus
on the change in the vibration signal amplitude with time, but it can also analyze the
information task state and resting state, so it plays a key role in early research. Time-
frequency analysis methods can effectively separate signals from Gaussian noise, extract
fault characteristic information from the interference signal, and provide a powerful tool
for bearing fault diagnoses [21–23]. These vibration-signal-processing techniques have
yielded good results; however, most traditional vibration-signal-processing techniques are
not sensitive enough to characteristics, need a substantial amount of a priori information in
the signal extraction process, and are frequently rendered ineffective in the face of big data.

Machine learning models are widely used for their objective application in fault di-
agnoses [24]. Due to the advantages of machine learning in both linear and nonlinear
aspects, more and more researchers are combining a time-frequency analysis with machine
learning, reducing the need for prior knowledge in the decision-making stage. Compared
with traditional signal-processing methods, machine learning models have reduced the
dependence on expert knowledge, enhanced the learning ability, and allowed for more
effective data feature mining in rolling bearing fault diagnosis applications. Moreover,
a large number of experiments have shown that the fusion of signal-processing technol-
ogy and machine learning models significantly improves the fault diagnosis recognition
rate [25,26]. The authors of [27] established a gearbox defect diagnostic model using a
rapid clustering technique and a decision tree. The authors of [28] designed a bearing
defect diagnostic technique using improved fast spectral correlation. The authors of [29]
proposed and experimentally tested a dynamic clustering fault classification algorithm for
wind power systems. The authors of [30] developed a hybrid defect detection technique
using the sparrow search algorithm (SSA) to optimize support vector machines (SVMs) and
improve the classification accuracy. The authors of [31] applied a trained artificial neural
network (ANN) for the early fault diagnosis of transformers. Signal-processing techniques
combined with the advantages of machine learning in nonlinear relational data-learning
applied to defect feature extraction research have achieved certain results. However, there
are still limitations, such as a difficulty in discerning complicated information from raw
data successfully. Traditional machine learning, such as ANN, has a shallow structure that
restricts the capacity to understand complicated nonlinear correlation relationships in raw
data. Faced with the characteristics of industrial big data, these diagnostic methods have
limitations in big data processing and require the prior extraction and processing of fault
characteristics, which no longer meets current requirements. Early fault diagnosis methods
based on artificial intelligence have a series of problems, such as the limitation of feature
duplication in processing raw data, a long consumption time, and a large computational
complexity. Therefore, the development of more intelligent fault diagnosis methods is
becoming increasingly important.

Deep learning has progressively emerged as a new method for big data processing; it
has an excellent ability to handle complex recognition tasks, discover connections between
data points, identify quantitative phenomena that trigger qualitative changes, continuously
train and learn using massive amounts of data, retain valuable information, and automati-
cally extract corresponding feature classifications from a large amount of unlabeled data.
This has attracted many researchers to conduct theoretical and applied research [32–35].
Zhang [36] used a three-layer convolutional neural network (CNN) structure for fault
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identification and classification. Under limited sample conditions, the authors of [37] inves-
tigated a defect diagnostic approach using improved transfer learning (TL), which showed
a good performance in its training accuracy and time. In [38], an enhanced recurrent neural
network (RNN) was used to identify and categorize defects in wind energy conversion
systems. A deep belief network (DBN) was proposed by Prof. Hinton in 2006 [39], which
iteratively updated the relevant parameters of each layer of neural nodes continuously and
internally through greedy learning, relying on the data details of the target object, and could
continuously abstract the underlying raw data details to the higher levels layer-by-layer to
abstract more specific high-level features, obtain data attribute types or features, and learn
and recognize objects automatically more easily. In recent years, attempts have been made
to use a DBN to deal with small-sample problems, and promisingly, good results have been
achieved. The weight parameters of each node in a DBN are generated iteratively based on
the selection of hyperparameters, and the final model is obtained based on the final weight
parameters. However, this process is influenced by random factors, and there is no certainty
that the training results are the model’s optimal weight parameters. Typically, researchers
must train the model several times to change the network’s hyperparameters and increase
the model’s accuracy. The authors of [40] created an offline recognition algorithm based
on fine composite multi-scale discrete entropy (RCMDE) and a DBN-ELM, and used the
DBN’s powerful unsupervised learning ability and the ELM’s generalization ability to
identify industrial equipment status. The authors of [41] optimized the parameters of DBN
nodes using the particle swarm optimization (PSO) method and identified faults using
variational mode decomposition (VMD).

To achieve rolling bearing fault identification, we studied and researched the relevant
fault diagnosis theories, starting with two aspects of fault feature vector extraction and
a fault diagnosis model. Firstly, using the wavelet packet energy spectrum (WEPS), the
fault features in a rolling bearing vibration signal were extracted. Secondly, a DBN network
was used to train and learn the feature vectors to achieve fault diagnoses. Among them,
to reduce the effect of random parameters in the DBN and increase the proper diagnostic
accuracy, the SSA was used to optimize the important weight parameters in the DBN
network, assemble an improved DBN, and finally, construct the WPES-SSA-DBN model.

The rest of this paper is structured as follows: Section 2 describes the relevant methods
used, including the WPES, SSA, and DBN. Section 3 presents the proposed model WPES-
SSA-DBN. Experiments are carried out in Section 4 to demonstrate the proposed model’s
validity. Finally, Section 5 provides conclusions and briefly describes future work.

2. Theoretical Background
2.1. Wavelet Packet Energy Spectrum

Feature extraction is the process of determining different parameters and forming
feature vectors to represent signal characteristics using feature signals as source signals.
The signal is sampled in the time-frequency domain specified. After wavelet packet de-
composition (WPD), the signal is separated into high-frequency and low-frequency signals,
and the two signals occupy half of the bandwidth. When the second WPD is performed,
the former low-frequency component is also decomposed, but the high-frequency part
is no longer decomposed, which might result in a loss of detailed information. WPD
overcomes the shortcomings of the wavelet decomposition, projects the signal onto a group
of wavelet-basis function space, divides the signal into different frequency bands, and
reduces the interference between signals through multi-channel filtering. WPD can not only
further process the high-frequency part of the wavelet transform, which cannot be further
subdivided, but can also select the appropriate frequency band and spectrum based on
the signal characteristics and analytical needs. The original signal frequency information
is totally retained, which may be used in signal feature extraction. The WPD process is
shown in Figure 1.
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The WPD of the signal is:

ω(t) =
√

2∑
n

h(n)ω(2t− n) (1)

ϕ(t) =
√

2∑
n

g(n)ϕ(2t− n) (2)

where ω(t) is the orthogonal scale function; ϕ(t) is the orthogonal wavelet function; and
h(n) and g(n) represent the filter coefficients in the multiscale function.

The recursive formula of the wavelet packet coefficient is:

d2k
i+1 = ∑

n

h(n− 2t)dk
i (n) (3)

d2k+1
i+1 = ∑

n

g(n− 2t)dk
i (n) (4)

The wavelet packet reconstruction formula is:

dk
i (n) = 2

∑
τ

h(n− 2t)d2k+1
i+1 (n) +∑

τ

g(n− 2t)d2k
i+1(n)

 (5)

where dk
i (n) is the n coefficient corresponding to node (i,k) after WPD and node (i,k)

represents the k band of layer i.
The WPES improves the stability of the WPD coefficient by extracting the energy of

the sub-band to generate the feature vector. According to Parseval’s identity, there is an
equal relationship between the wavelet packet energy and the initial energy:∫ +∞

−∞
| f (x)|2dx = ∑|d(i, n)|2 (6)
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The collected signals are decomposed using the wavelet packet, and the corresponding
energy of the j frequency band at layer i is:

Ej,i =

m

∑
n=0

∣∣dj,i(n)
∣∣2, i = 1, 2, 3, · · · , 2j (7)

where m is the length of the j frequency band and dj,i(n) is the n wavelet packet coefficient
corresponding to node (i,j) after WPD. The energy spectrum of all nodes was normalized
to obtain the feature vectors:

T =

[
E1,i

Ei
,

E2,i

Ei
,

E3,i

Ei
, · · · ,

Ej,i

Ei

]
(8)

where Ei = ∑τ

j=0Ej,i represents the total energy of each frequency band at layer I
after decomposition.

2.2. Deep Belief Networks

A DBN is a deep learning neural network model that is unsupervised and has a
multi-layer learning network based on probability statistics. The basic framework of a DBN
network comprises restricted Boltzmann machines (RBMs) and works mainly through
the training of a hidden layer and a visible layer in the RBM structure, layer-by-layer,
constantly updating and optimizing the weight and transfer parameters between layers.
While updating and optimizing the parameters layer-by-layer, the tasks of fault feature
identification and extraction can be realized, and finally, a fault diagnosis model with a
high fault identification accuracy can be established.

As a symmetric network, the RBM is an undirected graph with a bipartite graph
structure. The RBM’s fundamental structure is shown in Figure 2. The visible layer v
represents the observation data and the hidden layer h can be approximated as the feature
extraction layer, with no interlayer connections and complete interlayer connections. W is
the weight between layers, ai is the bias of the visible layer neuron, and bj is the bias of the
hidden layer neuron. In a basic RBM, both the visible layer and hidden layer units are binary
variables with vi ∈ {0, 1} and hj ∈ {0, 1}, where 0 represents inactivity and 1 represents
activity. All units constitute a state of the RBM, and these states obey a certain distribution.
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We assumed that the RBM had n and m neurons located in the visible and hidden
layers, respectively. For a given set of (v, h), its energy expression is:

E(v, h|θ) = −
n

∑
i=1

aivi −
m

∑
j=1

bjhj −
n

∑
i=1

m

∑
j=1

viwijhj (9)
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where θ =
{

wij, ai, bj
}

is an RBM model parameter; ai is the i neuron’s bias in the visible
layer; bj is the j neuron’s bias in the hidden layer; and wij is the neuron connection weight.

Equation (10) may be represented by a joint probability distribution for each state (v,
h), as illustrated in Equation (11):

P(v, h|θ) = exp(−E(v, h|θ))
Z(θ)

(10)

Z(θ) = ∑
v,h

exp(−E(v, h|θ)) (11)

where Z(θ) is the dimensional factor. According to the structural characteristics of the RBM,
the activation state conditions of each neuron in the hidden layer are independent of each
other at a given v.

According to Equation (12), the probability when hj is activated can be obtained.
Because the RBM has symmetric characteristics, the neuron activation probability in the
visible layer is given by Equation (13), just as it is for the hidden layer state.

P
(
hj = 1

∣∣v, θ
)
= sigmoid

bj +∑
i

viwij

 (12)

P(vi = 1|h, θ) = sigmoid

ai +∑
j

hjwij

 (13)

The purpose of RBM training is to find a suitable parameter that fits the given visible
layer state. By using a contrastive divergence algorithm, a sufficient approximate v0 can be
obtained only by k step Gibbs sampling, and the simple and fast training of the RBM can
lay a foundation for the formation of a deep confidence network by stacking the RBM later.
The update method of each parameter is as follows:

∆Wij = η
(〈

vihj
〉

P(h|v(t),θ) −
〈
vihj

〉
recon

)
∆ai = η

(
〈vi〉P(h|v(t),θ) − 〈vi〉recon

)
∆bj = η

(〈
hj
〉

P(h|v(t),θ) −
〈

hj
〉

recon

)
(14)

where 〈.〉recon is the state distribution of the visible layer reconstruction and η is the
learning rate.

A DBN is a probabilistic generation model. Figure 3 shows the basic framework
structure of the DBN, which is nested with m RBMS and finally nested with a classification
layer on the stacked RBMs. DBN training is carried out by training the RBM layer-by-layer.
A greedy algorithm is used to conduct fully unsupervised training on the RBM one-by-one,
and the back propagation algorithm is used to perform supervised fine-tuned training.
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2.3. Sparrow Search Algorithm

The SSA establishes mathematical models based on the behavior and actions of or-
ganisms in the ecological environment. This method solves the global optimum issue by
simulating the foraging and anti-hunting behavior of sparrows. Its advantages are that
it has fewer control parameters and that the principle is simple and easy to understand.
After experimental verification, the sparrow search algorithm is stable and efficient, and
can effectively solve global optimization problems. It also provides a new approach and
method for most local optimization problems. In order to make the implementation of the
algorithm simple, efficient, and easy to explain, researchers formulated the following rules
and idealized sparrow behavior when constructing the mathematical model of SSA:

1. Explorers in sparrows generally have better fitness, are responsible for searching for
food during the foraging process, and transmit the information of foraging direction
and location to the followers.

2. In the process of foraging, when individual sparrows encounter danger, they will
sound an early warning signal. If it exceeds the pre-set safety threshold, explorers
will take followers out of the area and find another safe area to continue foraging.

3. The identity of explorers and followers in the sparrow population is not fixed. When
a follower finds a better foraging place and food source, the individual will shift from
follower to explorer, and will also have an equal amount of explorer-into-follower
identity, because the calculation presupposes that the proportion of explorers and
followers in the whole sparrow population is fixed.

4. Since the explorer would arrive at the foraging site first to replenish his energy, the
later followers would receive relatively little food. Therefore, the last follower has the
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worst fitness value, which prompts them to forage elsewhere, optimize their fitness,
and increase the exploration of other unsearched areas.

5. Followers, after receiving the information from the explorers, will choose to find the
explorer with the most food and follow in their footsteps to forage or search around,
because they believe that being beside the best explorer is more likely to result in them
finding food. Some sparrows will monitor these explorers, and when the explorers
find an area with food, they will participate in the competition for food resources.

6. When attacked by outsiders, individuals on the edge of the foraging will constantly
reposition themselves to the internal safety area. Individual sparrows in the internal
safety zones will attempt to approach their peers in order to enhance their safety.

The exact implementation procedure of the SSA is as follows. The randomly generated
location matrix X of n sparrows in a d dimensional space is presented below:

X =



x1
1

x1
2

...

x1
n

x2
1

x2
2

...

x2
n

. . .

. . .

...

. . .

xd
1

xd
2

...

xd
n


(15)

where n is the number of sparrows, d represents the dimension of the variable of the
problem to be optimized, and xj

i(i = 1, 2, . . . , n; j = 1, 2, . . . , d) represents the position of
the j-th sparrow in the i dimensional space.

The current positions of the sparrows and the optimal fitness value were obtained by
sorting the population through Formula (16). For the first-generation sparrows, the result
obtained was the initial optimal individual. The optimal individual can prioritize access
to food:

F =


f
([

x1
1 x2

1 . . . xd
1
])

...

f
([

x1
n x2

n . . . xd
n
])
 (16)

where f is the fitness value of an individual sparrow.
During the foraging process, the explorer’s position is iteratively updated according

to Formula (17):

Xt+1
ij =


Xt

ij·exp
(
−i
α·T

)
, i f R2 < ST

Xt
ij + QL , i f R2 ≥ ST

(17)

where Q indicates a random number with a normal distribution; L is the unit row vector;
and α is a random number in the range of [0, 1].

The update method for the followers’ is as follows:

Xt+1
ij =


Q·exp

(
Xt

worst−Xt
ij

i2

)
, i f i > n/2

Xt+1
p +

∣∣∣Xt
ij − Xt+1

p

∣∣∣·A+·L, i f i ≤ n/2

(18)

A+ = AT
(

AAT
)−1

(19)

where Xworst indicates the t-th iteration’s global worst position; Xt+1
p is the t + 1 generation

explorer’s best position; and A is a dimensional matrix with dimensional values ranging
from 1 to −1 generated at random.
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During the iterative optimization process, if 10% to 20% of the total number of spar-
rows are aware of danger, the impact on the position of all sparrows is as follows:

Xt+1
ij =


Xt

best + β·
∣∣∣Xt

ij − Xt
best

∣∣∣ , i f fi > fg

Xt
ij + K·

( ∣∣∣Xt
ij−Xt

worst

∣∣∣
( fi− fw)+ε

)
, i f f i = fg

(20)

where Xt
best is the optimal position in generation t; β is the normal distribution step size

control parameter, with a mean value of 0 and a variation of 1; K is a random number with
the value range of [1, 1]; fi is the fitness value of the current position of the sparrow; fg and
fw are the global optimal and worst fitness, respectively; and ε is the minimum value that
is not zero.

In order to describe the SSA more succinctly, the flow chart in Figure 4 is used to
represent the basic steps of the algorithm.
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3. Proposed Methodologies

The relevant weight parameters generated by the DBN network model during the
training process were greatly influenced by random factors, and the weight parameters
obtained during each training were different. Although the weight parameters will grad-
ually approach the optimal structural parameters during the iterative process, it is also
feasible to enter a local optimum state. To alleviate this problem and increase the accuracy
of bearing failure diagnostics, the bearing vibration data were processed using a wavelet
packet energy spectrum to enhance the characteristic signal. Then, an optimized DBN
model was designed. The SSA was utilized to globally optimize the hidden layer nodes
and the connection weights between neurons in the DBN using the least error rate of
the DBN model as a fitness function, causing the network structure model parameters to
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swiftly approach the ideal solution. The optimization result was then used as the initial
value of the DBN network parameters, which minimized the impact of random factors
on the DBN model and enabled the DBN to conduct parameter-iterative training around
the optimal solution, making the mapping of neurons more accurate in obtaining feature
information and improving the feature extraction performance. We named this method
WPES-SSA-DBN, and the algorithm has 6 steps.

Step 1: Create feature vectors. Use a WPES to transform the original vibration signal
and extract the sub-band energy. Then, divide the vectors into training and test data.

Step 2: Initialize the SSA population, encode the number of hidden layers and the
connection weight between the neurons of the DBN, and set the proportion of explorers
and followers in the population.

Step 3: Convert the positional parameter values of sparrow individuals in the SSA into
a parameter matrix, replace the relevant parameters of the DBN, and then train and test
the DBN. Use the minimum error rate of the DBN, shown in Equation (21), as the fitness
function value to return to the SSA:

f itness = 1−
sum

(
ypred == ytrue

)
N

(21)

where ypred represents the prediction label, ytrue represents the true label, sum is the same
number as both, and N represents the sample number.

Step 4: Update the location of the explorers, followers, and scouters in the SSA values
according to Equations (17)–(20). Then, assign the updated sparrow individuals to the DBN
and iteratively update to obtain the fitness value.

Step 5: Compare and sort the fitness values to obtain a minimum set of sparrow
individual location parameters, which are the corresponding optimal sparrows and also
the optimal parameters of the DBN model.

Step 6: Allow the optimized DBN parameters to be self-adjusted according to the
original network structure, and then fine-tuned to construct a new improved DBN model
for fault diagnoses of the test dataset.

The WPES-SSA-DBN flow chart is given in Figure 5.
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4. Experimentation
4.1. Experimental Environment

Table 1 is the experimental environment for the fault diagnosis experiment using the
WPES-SSA-DBN model.

Table 1. Experimental environment.

Item Specification

Operating System Windows 10
CPU Intel Core i7-10700K @ 3.80GHz
RAM DDR4 2133MHz 64G

Matlab R2020a

4.2. Experimental Dataset

The experimental dataset used Case Western Reserve University (CWRU)’s motor
rolling bearing failure data [42]. Figure 6 depicts the structure of the simulated testing bench,
which comprised a motor, a torque sensor, a power test meter, and an electronic controller.
The testing bench used a 2 hp reliance electric motor to drive a loading mechanism with
bearings through a coupling. Highly sensitive piezoelectric acceleration sensors were
used to capture small vibration signals of the bearings at a frequency of 12,000 Hz. The
bearing to be examined supported the motor’s rotational shaft. Bearings with a single point
of damage using electro-discharge machining were separated into four stages of failure
damage: 0.1778 mm, 0.3556 mm, and 0.5334 mm, were located in the inner ring, outer ring,
and rolling body of the bearing, respectively. In this paper, the input data consisted of 10
categories in the 1 hp load state, whose states and label descriptions are shown in Table 2.
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Table 2. Explanation of experimental data in 10 categories.

Status Fault Depth/mm Label Single Type Training Set Sample Size Verification Set Sample Size

Normal state -- 1 NOR 70 30

Inner ring failure
0.1778 2 IR007 70 30
0.3556 3 IR014 70 30
0.5334 4 IR021 70 30

Outer ring failure
0.1778 5 OR007 70 30
0.3556 6 OR014 70 30
0.5334 7 OR021 70 30

Rolling body failure
0.1778 8 BA007 70 30
0.3556 9 BA014 70 30
0.5334 10 BA021 70 30
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4.3. Results and Discussion

To verify the effectiveness of the proposed model in bearing defect diagnoses, four
states of signal data, NOR, IR007, OR007, and BA007, with label values of 1,2,5, and 8 were
chosen from Table 2. Figure 7 displays the vibration signals for the four states. The vibration
signal dataset was composed of 100 data points for each signal, with 70% in the training set
and 30% in the test set.
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Figure 7. Time-domain waveforms of rolling bearings for 4 states.

The signals for the four states of rolling bearings were divided into eight layers
using the wavelet basis function of db3 to obtain the decomposition coefficients and
reconstruction coefficients, which were then used to reconstruct the fault signal feature
vectors. Finally, the energy of the 256 sub-bands was obtained, and the energy ratio of each
band was analyzed. Figure 8 shows the first eight wavelet packet components of NOR. The
horizontal coordinate was the sampling number of the vibration signal and the vertical
coordinate was the amplitude after WPD. The energy proportions of the 256 sub-bands are
shown in Figure 9. The test dataset was finally converted into 400 × 256 feature vectors by
a WPES conversion.

The t-distribution stochastic neighbor embedding (t-SNE) feature visualization tech-
nique was used to downscale and map the input, intermediate, and output layers of the
DBN in the WPES-SSA-DBN to a two-dimensional space. With the input and output feature
vectors of each DBN layer as the source domain and the expected result of the test set fault
diagnosis as the target domain, the diagnosis effect is shown in Figure 10. The four colors
represent samples of the different states. From the visualized scatter plot of the WPES
features in Figure 10a, the features of the states started to cluster after WPES decomposition,
but there was still overlap, and the classification effect was more accurate when extracted
layer-by-layer by the optimized DBN module, as shown in Figure 10b,c. Figure 10d shows
that the output layer of the WPES-SSA-DBN model can effectively distinguish the signals
in the four states.
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Figure 11 is the test set validation results, where the horizontal coordinate represents
a sample and the vertical coordinate represents the label category; the real state of the
sample is represented by ‘o’ and the model diagnostic identification result is represented
by *. If the real state label agreed with the model diagnostic identification result, the
two identifications overlapped and the WPES-SSA-DBN model achieved 100% accuracy
in identifying the four types of vibration states of bearings. During the experiments, four
typical fault diagnosis methods were used for comparison, namely an SVM, an ELM, a
GA-BP, and a DBN. In addition, all test models were tested 10 times independently to
reduce the effect of random errors. Table 3 shows the diagnostic statistics of the test sets for
the four states, including the maximum accuracy, minimum accuracy, mean, and standard
deviation. From the comparison results, it can be seen that, with a small sample type, the
average fault diagnosis rate of all five methods exceeded 93%, while the accuracy of the
WPES-SSA-DBN reached 100%. Compared with the other methods, the standard deviation
of the WPES-SSA-DBN was 0, indicating that the model achieved a 100% correct diagnostic
rate in all 10 experiments.
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Figure 10. The t-SNE characteristic downscaling comparison chart of 4 states of the bearing fail-
ure training set. (a) Input data: 280 × 256 feature vectors. (b) First layer of DBN output data:
280 × 100 feature vectors. (c) Second layer of DBN output data: 280 × 50 feature vectors. (d) Output
data: 280 × 10 feature vectors.
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Figure 11. Graph of the test set identification results for the 4 states.

Table 3. Recognition effect of the verification set for the 4 states under different methods.

Norm SVM ELM GA-BP DBN WPES-SSA-DBN

Maximum 95.83 97.5 99.17 99.17 100
Minimum 87.5 91.67 93.33 93.33 100
Average 93 94.5 96.67 96.4 100

Standard Deviation 0.028 0.017 0.015 0.018 0

To continue to validate the classification capability of the WPES-SSA-DBN, the diag-
nostic labels were increased from four to ten states, as shown in Table 2. A total of 100 data
points were taken from each state of labels to form a total of 1000 datasets, of which 70%
were allocated to the training set and 30% to the test set.

In Figure 12, after increasing the data volume and data type, the overlap of the feature
data gradually decreased after the layer-by-layer extraction by the DBN module. After be-
ing processed by the WPES-SSA-DBN model, these features were effectively distinguished
and clustered in the corresponding regions, which indicated that the proposed model can
mine representative high-order features from the signal.

The diagnostic results of the WPES-SSA-DBN for the 10 states of the test set are shown
in Figure 13. Out of 300 data, 298 were diagnosed correctly, with an accuracy rate of 99.33%.
Table 4 lists the diagnostic statistics of the test set for the 10 states, and the WPES-SSA-DBN
had the highest average accuracy and the smallest standard deviation, indicating that the
model had a better recognition accuracy and stability. In addition, combined with the
results shown in Table 4, the average correct rate of the SVM was the lowest, which also
indicates that the deep-learning-based fault diagnosis algorithm was more advantageous
for the same fault types.
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Table 4. Recognition effect of the test set for the 10 states under different methods.

Norm SVM ELM GA-BP DBN WPES-SSA-DBN

Maximum 93.33 94.67 94.67 95.33 99.33
Minimum 86.67 86.67 92 90 96.67
Average 88.87 90.67 93.33 92.6 97.93

Standard Deviation 0.022 0.027 0.008 0.017 0.008

5. Conclusions, Limitations, and Future Research

Rolling bearings are one of the most vulnerable sections of rotating machinery. Accu-
rate fault identification can provide equipment with accurate maintenance and effectively
reduce the negative impact of bearings on mechanical equipment. In this paper, the WPES-
SSA-DBN was proposed to diagnose bearing fault types. The model decomposed the
original vibration signal into distinct frequency bands using a wavelet packet transform,
retained the original signal frequency information completely, and constructed feature
vectors by extracting the energy of sub-bands through the WPES. Then, the SSA was used
to perform a global search for the connection weights between neurons and the number of
nodes in the hidden layer of the DBN using the minimization error rate as the fitness func-
tion, so that the DBN was trained around the optimal solution with iterative parameters to
improve the feature extraction performance. Finally, rolling bearing data from CWRU were
selected for validation, and two sets of experiments were conducted to carry out diagnoses
for four and ten types of fault data. The t-SNE technique was used in the experiments to
visualize the feature extraction of the proposed model in two dimensions, and the results
showed that the proposed model can effectively distinguish different features. An SVM,
ELM, GA-BP, and DBN were selected as the comparison methods, and the diagnostic results
showed that the diagnostic accuracy of the WPES-SSA-DBN reached 100% and 99.34% for
the two experiments, with the smallest standard deviation. The experimental results show
that the WPES-SSA-DBN can choose better training parameters and has obvious advantages
in classification performance recognition accuracy compared with the comparison model,
which can accurately achieve the fault classification identification of rolling bearings.

The research of data-driven intelligent fault diagnosis technology has been given
much attention in the industry and fruitful research results have been achieved. This paper
aimed to investigate the vibration signal from a single-fault rolling bearing. However, in
many cases, collected vibration signals are often multi-fault, and even multi-fault coupling
phenomena of different types in different parts occur. Therefore, more detailed intelligent
diagnostic methods for compound faults will be studied in the future to achieve the accurate
identification of multiple fault types in bearings and further enrich and develop rolling
bearing compound fault diagnostic techniques and methods.

Author Contributions: Methodology, J.Q. and X.C.; formal analysis, P.L.; writing—original draft
preparation, J.Q.; writing—review and editing, L.Z. and X.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Key Scientific and Technological Project of Henan
Province (232102241027, 232102220092), the Industry–University Cooperative Education Program
of the Ministry of Education, (202002029035), the Key Scientific Research Projects of the Higher
Education Institutions of Henan Province (23B460008), and the Doctoral Fund of Henan Institute of
Technology (KY1750).

Data Availability Statement: The data presented in the experiments may be available from the first
author upon request.

Conflicts of Interest: The authors declare no conflict of interest.



Processes 2023, 11, 1875 18 of 19

References
1. Chen, H.; Jiang, B. A review of fault detection and diagnosis for the traction system in high-speed trains. IEEE Trans. Intell. Transp.

Syst. 2019, 21, 450–465. [CrossRef]
2. Sun, Q.; Xiong, J.; Zhang, Q. Research methods of the rotating machinery fault diagnosis. Mach. Tool Hydraul. 2018, 46, 133–139.

[CrossRef]
3. Rehman, N.; Afta, H. Multivariate variational mode decomposition. IEEE Trans. Signal Process. 2019, 67, 6039–6052. [CrossRef]
4. Khalid, S.; Song, J.; Raouf, I.; Kim, H. Advances in Fault Detection and Diagnosis for Thermal Power Plants: A Review of

Intelligent Techniques. Mathematics 2023, 11, 1767. [CrossRef]
5. Han, T.; Liu, R.; Zhao, Z.; Kundu, P. Fault Diagnosis and Health Management of Power Machinery. Machines 2023, 11, 424.

[CrossRef]
6. Ding, X.; He, Q.; Luo, N. A fusion feature and its improvement based on locality preserving projections for rolling element

bearing fault classification. J. Sound Vib. 2015, 335, 367–383. [CrossRef]
7. Rostaghi, M.; Azami, H. Dispersion Entropy: A Measure for Time-Series Analysis. IEEE Signal Process. Lett. 2016, 23, 610–614.

[CrossRef]
8. Lei, Y.; Lin, J.; Zuo, M. Condition monitoring and fault diagnosis of planetary gearboxes: A review. Measurement 2014, 48, 292–305.

[CrossRef]
9. Lee, C.; Le, T.; Chang, C. Application of Hybrid Model between the Technique for Order of Preference by Similarity to Ideal

Solution and Feature Extractions for Bearing Defect Classification. Mathematics 2023, 11, 1442. [CrossRef]
10. Hoang, D.; Kang, H.; Kang, J. A motor current signal-based bearing fault diagnosis using deep learning and information fusion.

IEEE Trans. Instrum. Meas. 2020, 69, 3325–3333. [CrossRef]
11. Lian, Z.; Zhou, Z.; Zhang, X.; Feng, Z.; Han, X.; Hu, C. Fault Diagnosis for Complex Equipment Based on Belief Rule Base with

Adaptive Nonlinear Membership Function. Entropy 2023, 25, 442. [CrossRef] [PubMed]
12. Evgeny, A.; George, V.; Irina, S.; Alexander, P. An Overview of Vibration Analysis Techniques for the Fault Diagnostics of Rolling

Bearings in Machinery. Shock Vib. 2022, 2022, 6136231. [CrossRef]
13. Antonino, J.; Pons, J.; Lee, S. Advanced rotor fault diagnosis for medium-voltage induction motors via continuous transforms.

IEEE Trans. Ind. Appl. 2016, 52, 4503–4509. [CrossRef]
14. Chuan, L.; Oliveira, J.; Cerrada, M.; Cabrera, D.; Sánchez, R.; Zurita, G. A systematic review of fuzzy formalisms for bearing fault

diagnosis. IEEE Trans. Fuzzy Syst. 2019, 27, 1362–1382. [CrossRef]
15. Feng, Z.; Liang, M.; Chu, F. Recent advances in time-frequency analysis methods for machinery fault diagnosis:a review with

application examples. Mech. Syst. Signal Process. 2013, 38, 165–205. [CrossRef]
16. Attoui, I.; Fergani, N.; Boutasseta, N.; Oudjani, B.; Deliou, A. A new time-frequency method for identification and classification of

ball bearing faults. J. Sound Vib. 2017, 397, 241–265. [CrossRef]
17. Paulis, F.; Boudjefdjouf, H.; Bouchekara, H.; Orlandi, A.; Smail, M. Performance improvements of wire fault diagnosis approach

based on time-domain reflectometry. IET Sci. Meas. Technol. 2017, 11, 538–544. [CrossRef]
18. Han, W.; Wang, Z.; Shen, Y.; Xie, W. Robust fault estimation in the finite-frequency domain for multi-agent systems. Trans. Inst.

Meas. Control 2019, 41, 3171–3181. [CrossRef]
19. Karioja, K.; Lahdelma, S.; Litak, G.; Ambrozkiewicz, B. Extracting periodically repeating shocks in a gearbox from simultaneously

occurring random vibration. In Proceedings of the 15th International Conference on Condition Monitoring and Machinery Failure
Prevention Technologies, CM/MFPT, Nottingham, UK, 10–12 September 2018; pp. 456–464.

20. Duan, Y.; Wang, C.; Chen, Y.; Liu, P. Improving the Accuracy of Fault Frequency by Means of Local Mean Decomposition and
Ratio Correction Method for Rolling Bearing Failure. Appl. Sci. 2019, 9, 1888. [CrossRef]

21. Burriel, J.; Puche, R.; Pineda, M. Short-Frequency Fourier Transform for Fault Diagnosis of Induction Machines Working in
Transient Regime. IEEE Trans. Instrum. Meas. 2017, 66, 432–440. [CrossRef]

22. Qin, Y.; Mao, Y.; Chen, H. M-band flexible wavelet transform and its application to the fault diagnosis of planetary gear
transmission systems. Mech. Syst. Signal Process. 2019, 134, 106298. [CrossRef]

23. Yan, B.; Wang, B.; Zhou, F.; Li, W.; Xu, B. Sparse feature extraction for fault diagnosis of rotating machinery based on sparse
decomposition combined multiresolution generalized S transform. J. Low Freq. Noise Vib. Act. Control 2019, 38, 441–456. [CrossRef]

24. Lv, Q.; Yu, X.; Ma, H.; Ye, J.; Wu, W.; Wang, X. Applications of Machine Learning to Reciprocating Compressor Fault Diagnosis: A
Review. Processes 2021, 9, 909. [CrossRef]

25. Fu, S.; Wu, Y.; Wang, R.; Mao, M. A Bearing Fault Diagnosis Method Based on Wavelet Denoising and Machine Learning. Appl.
Sci. 2023, 13, 5936. [CrossRef]

26. Yu, Y.; Gao, H.; Zhou, S.; Pan, Y.; Zhang, K.; Liu, P.; Yang, H.; Zhao, Z.; Madyira, D.M. Rotor Faults Diagnosis in PMSMs Based on
Branch Current Analysis and Machine Learning. Actuators 2023, 12, 145. [CrossRef]

27. Zhang, X.; Jiang, D.; Long, Q.; Han, T. Rotating machinery fault diagnosis for imbalanced data based on decision tree and fast
clustering algorithm. J. Vibroeng. 2017, 19, 4247–4259. [CrossRef]

28. Tang, G.; Pang, B.; Tian, T.; Zhou, C. Fault Diagnosis of Rolling Bearings Based on Improved Fast Spectral Correlation and
Optimized Random Forest. Appl. Sci. 2018, 8, 1859. [CrossRef]

29. Ren, L.; Yong, B. Wind Turbines Fault Classification Treatment Method. Symmetry 2022, 14, 688. [CrossRef]

https://doi.org/10.1109/TITS.2019.2897583
https://doi.org/10.3969/j.issn.1001-3881.2018.07.030
https://doi.org/10.1109/TSP.2019.2951223
https://doi.org/10.3390/math11081767
https://doi.org/10.3390/machines11040424
https://doi.org/10.1016/j.jsv.2014.09.026
https://doi.org/10.1109/LSP.2016.2542881
https://doi.org/10.1016/j.measurement.2013.11.012
https://doi.org/10.3390/math11061442
https://doi.org/10.1109/TIM.2019.2933119
https://doi.org/10.3390/e25030442
https://www.ncbi.nlm.nih.gov/pubmed/36981331
https://doi.org/10.1155/2022/6136231
https://doi.org/10.1109/TIA.2016.2582720
https://doi.org/10.1109/TFUZZ.2018.2878200
https://doi.org/10.1016/j.ymssp.2013.01.017
https://doi.org/10.1016/j.jsv.2017.02.041
https://doi.org/10.1049/iet-smt.2016.0427
https://doi.org/10.1177/0142331219827346
https://doi.org/10.3390/app9091888
https://doi.org/10.1109/TIM.2016.2647458
https://doi.org/10.1016/j.ymssp.2019.106298
https://doi.org/10.1177/1461348418825406
https://doi.org/10.3390/pr9060909
https://doi.org/10.3390/app13105936
https://doi.org/10.3390/act12040145
https://doi.org/10.21595/jve.2017.18373
https://doi.org/10.3390/app8101859
https://doi.org/10.3390/sym14040688


Processes 2023, 11, 1875 19 of 19

30. Qu, J.; Ma, B.; Ma, X.; Wang, M. Hybrid Fault Diagnosis Method based on Wavelet Packet Energy Spectrum and SSA-SVM. Int. J.
Adv. Comput. Sci. Appl. (IJACSA) 2022, 13, 52–60. [CrossRef]

31. Equbal, M.; Khan, S.; Islam, T. Transformer incipient fault diagnosis on the basis of energy-weighted DGA using an artificial
neural network. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 77–88. [CrossRef]

32. Duan, L.; Xie, M.; Wang, J.; Bai, T. Deep learning enabled intelligent fault diagnosis: Overview and applications. J. Intell. Fuzzy
Syst. 2018, 35, 5771–5784. [CrossRef]

33. Zhu, J.; Jiang, Q.; Shen, Y. Application of recurrent neural network to mechanical fault diagnosis: A review. J. Mech. Sci. Technol.
2022, 36, 527–542. [CrossRef]

34. Tang, S.; Yuan, S.; Zhu, Y. Deep Learning-Based Intelligent Fault Diagnosis Methods Toward Rotating Machinery. IEEE Access
2020, 8, 9335–9346. [CrossRef]

35. Jia, P.; Wang, C.; Zhou, F.; Hu, X. Trend Feature Consistency Guided Deep Learning Method for Minor Fault Diagnosis. Entropy
2023, 25, 242. [CrossRef] [PubMed]

36. Zhang, X.; Li, J.; Wu, W.; Dong, F.; Wan, S. Multi-Fault Classification and Diagnosis of Rolling Bearing Based on Improved
Convolution Neural Network. Entropy 2023, 25, 737. [CrossRef]

37. Zhang, Q.; He, Q.; Qin, J.; Duan, J. Application of Fault Diagnosis Method Combining Finite Element Method and Transfer
Learning for Insufficient Turbine Rotor Fault Samples. Entropy 2023, 25, 414. [CrossRef]

38. Mansouri, M.; Dhibi, K.; Hajji, M.; Bouzara, K.; Nounou, H.; Nounou, M. Interval-Valued Reduced RNN for Fault Detection and
Diagnosis for Wind Energy Conversion Systems. IEEE Sens. J. 2022, 22, 13581–13588. [CrossRef]

39. Jiang, M.; Liang, Y.; Feng, X. Text classification based on deep belief network and softmax regression. Neural Comput. Applic. 2018,
29, 61–70. [CrossRef]

40. Luo, H.; He, C.; Zhou, J.; Zhang, L. Rolling Bearing Sub-Health Recognition via Extreme Learning Machine Based on Deep Belief
Network Optimized by Improved Fireworks. IEEE Access 2021, 9, 42013–42026. [CrossRef]

41. Yang, E.; Wang, Y.; Wang, P.; Guan, Z.; Deng, W. An Intelligent Identification Approach Using VMD-CMDE and PSO-DBN for
Bearing Faults. Electronics 2022, 11, 2582. [CrossRef]

42. Smith, W.; Randall, R. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study.
Mech. Syst. Signal Process 2015, 64–65, 100–113. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.14569/IJACSA.2022.0130508
https://doi.org/10.3906/elk-1704-229
https://doi.org/10.3233/JIFS-17938
https://doi.org/10.1007/s12206-022-0102-1
https://doi.org/10.1109/ACCESS.2019.2963092
https://doi.org/10.3390/e25020242
https://www.ncbi.nlm.nih.gov/pubmed/36832609
https://doi.org/10.3390/e25050737
https://doi.org/10.3390/e25030414
https://doi.org/10.1109/JSEN.2022.3175866
https://doi.org/10.1007/s00521-016-2401-x
https://doi.org/10.1109/ACCESS.2021.3064962
https://doi.org/10.3390/electronics11162582
https://doi.org/10.1016/j.ymssp.2015.04.021

	Introduction 
	Theoretical Background 
	Wavelet Packet Energy Spectrum 
	Deep Belief Networks 
	Sparrow Search Algorithm 

	Proposed Methodologies 
	Experimentation 
	Experimental Environment 
	Experimental Dataset 
	Results and Discussion 

	Conclusions, Limitations, and Future Research 
	References

