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Abstract: Stretch blow molding serves as the primary technique employed in the production of
polyethylene terephthalate (PET) bottles. Typically, a stretch blow molding machine consists of
various components, including a preform infeed system, transfer system, heating system, molding
system, bottle discharge system, etc. Of particular significance is the temperature control within the
heating system, which significantly influences the quality of PET bottles, especially when confronted
with environmental temperature changes between morning and evening during certain seasons.
The on-site operators of the stretch blow molding machine often need to adjust the infrared heating
lamps in the heating system several times. The adjustment process heavily relies on the personnel’s
experience, causing a production challenge for bottle manufacturers. Therefore, this paper takes the
heating system of the stretch blow molding machine as the object and uses the deep reinforcement
learning method to develop an intelligent approach for adjusting temperature control parameters.
The proposed approach aims to address issues such as the interference of environmental temperature
changes and the aging variation of infrared heating lamps. Experimental results demonstrate that
the proposed approach achieves automatic adjustment of temperature control parameters during
the heating process, effectively mitigating the influence of environmental temperature changes and
ensuring stable control of preform surface temperature within ±2 °C of the target temperature.

Keywords: stretch blow molding; reinforcement learning; deep learning; intelligent temperature control

1. Introduction

In order to effectively enforce food hygiene and safety protocols, the incorporation
of food packaging becomes imperative as an indispensable and critical element. Food
packaging can be classified into four distinct categories; namely, paper packaging, plas-
tic packaging, metal packaging, and glass packaging. In recent years, there has been a
remarkable surge in the utilization of plastic packaging, particularly, the prevalence of
polyethylene terephthalate (PET) bottles, within the many countries worldwide. This
surge can be primarily attributed to the escalating consumer demand for bottled water,
driven by convenience factors. Currently, PET packaging is widely used for carbonated
and non-carbonated beverages due to its advantages over other packaging materials, such
as aluminum cans or glass bottles, in terms of energy consumption during production.
As a result, PET bottles have a smaller carbon footprint, which is increasingly important
from an environmental perspective [1]. Therefore, the requirements for PET bottle pro-
duction equipment with regards to speed, quality, and energy efficiency have become
increasingly strict.

Stretch blow molding is the main technology used in the production of PET bottles. The
initial step in the production process involves injecting PET resin into a tube-shaped mold,
resulting in the formation of specific structurally preforms. Subsequently, the preforms
undergo heating in an infrared heating box, surpassing the glass transition temperature.
Concurrently, they are subjected to stretching with a stretch rod and inflation using high-
pressure air, thereby achieving the desired bottle shapes. Cooling of the bottles occurs
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within the mold, followed by their ejection. The entire deformation process is completed
within a few seconds. The performance characteristics of PET bottles produced through
this method are influenced by three primary variables: the initial shape of the preform, the
initial temperature of the preform, and the balance between stretching and blowing rates [2].
During the initial stage (injection molding stage) of the production process, two types of
deformations occur, namely, volumetric shrinkage and warpage. Warpage in PET leads to
an uneven material distribution across the surface of the preform wall, causing variations
in wall thickness. When carbonated drinks are filled into the preforms, high pressure is
applied, particularly at areas with minimal wall thickness, leading to the formation of
high-stress concentrations. Consequently, under elevated pressure, preforms experience
rupture at locations with maximum warpage (areas of stress concentration), resulting in
loss of both the beverage and the preform. The findings of Ref. [3] demonstrate that ambient
and melting temperatures are the most critical parameters contributing to warpage.

Taking a general stretch blow molding machine as an example, it includes the preform
infeed system, transfer system, heating system, molding system, bottle discharge system,
etc. Accurate temperature control plays a vital role in PET bottle forming technology.
Failure to maintain the heating temperature of PET preforms within an optimal range can
result in substandard product outcomes, as the heated PET preforms may not possess the
necessary qualities for producing satisfactory end products. In certain seasons, specific
regions encounter substantial variations in ambient temperature, where the disparity
between morning and evening temperatures can exceed 20 °C. In such scenarios, the
on-site operators of the blow molding equipment often need to adjust the infrared heating
lamps in the heating system several times. The effectiveness of these adjustments heavily
relies on the expertise and experience of the operators.

In addition, the heating system is composed of multiple heating boxes. Each heating
box is equipped with several infrared heating lamps on one side, and a reflector made of
aluminum alloy on the other side. The reflector of the heating box can efficiently reflect heat
energy to the PET preform. It not only ensures the heating effect of the PET preform, but
also reduces energy consumption. When the PET preform is heated by the infrared lamp,
the heat energy will be transferred from the outside of the preform to the inside. In order
to avoid excessive temperature difference between the inside and outside of the preform, a
blower is usually installed in the heating box as a cooling element, so that the temperature
in the heating box can be uniform and excess heat energy can be taken away. This will
prevent the temperature on the outside of the preform from rising too quickly, thereby
producing a product with a more uniform thickness and closer to the ideal. However,
the heating box is a semi-open structure, which is easily affected by the interference of
ambient temperature changes. It has become an automatic production challenge for bottle
manufacturers. Furthermore, with the development trend of environmental protection and
green manufacturing, preforms made of recycled materials are gradually used, and their
requirements for temperature control are more precise and stricter.

In this paper, a novel approach utilizing deep Q-network (DQN) has been introduced
as an intelligent technique for adjusting temperature control parameters. The aim is to
address issues such as the interference caused by fluctuations in environmental tempera-
ture and the gradual degradation of infrared heating lamps over time. From a practical
standpoint, the proposed approach offers the advantage of not necessitating any modifica-
tions to the existing hardware architecture of the heating system. As a result, it presents a
cost-effective and easy-to-implement solution.

2. Literature Review

Proportional-integral-derivative (PID) controllers have gained widespread adoption
in various industrial control applications [4,5]. Nonetheless, the most dynamical model
of a control system has less parameter uncertainty, which can potentially degrade system
performance and even render the closed-loop control system unstable. Adaptive control
is a methodology that can address such problems. Fundamentally, an adaptive control
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system possesses the capability to mitigate the impact of parameter uncertainty within the
system through automated adjustments of control parameters.

The parameter adjuster within an adaptive control system ensures the asymptotic sta-
bility of the system during steady-state conditions. Nevertheless, during the transient stage,
the system may exhibit shaking behavior as the control parameters have not yet converged
to their optimal values. Consequently, certain researchers have endeavored to integrate
adaptive control theory with variable-structure design to enhance the transient response
of the adaptive control system. A previous study had shown that [6,7] adaptive control
theory coupled with variable-structure design can yield robustness and superior transient
tracking performance, even in situations where the condition of persistent excitation is not
satisfied. This approach represents a viable method for addressing the limitations inherent
in adaptive control. In addition to parameter uncertainties, control systems are susceptible
to the influence of external disturbances or non-parameter uncertainties, encompassing
unmodeled dynamics and measurement noise. The above-mentioned issues cause the
systematic control parameter to drift and the instability of the closed-loop control system.

With the increasing prevalence of cross-domain integration research, numerous studies
have emerged to explore the combination of diverse control theories or machine learning
methods with the aim of enhancing the overall performance of control systems. As an
illustration, a significant breakthrough was achieved in 2014 through the fusion of deep
neural networks and reinforcement learning [8]. This network, called the deep Q-network
(DQN), can learn to play 49 Atari games with different rules, objectives, and structures
through the same control network architecture. Afterwards, deep reinforcement learning
techniques have gained widespread application across diverse domains [9], such as robotic
pick-and-place control for random objects [10,11], multi-robot flocking control [12], medical
data diagnostics [13], self-driving car control [14], building HVAC (heating, ventilation,
and air conditioning) control [15] and building energy management [16], and so on. For
example, as mentioned in the literature [16], classical model predictive control (MPC)
has demonstrated effectiveness in building energy management. However, it involves the
drawbacks of labor-intensive modeling and complex online control optimization. Therefore,
the combination of classical MPC with reinforcement learning (RL)-based prediction ap-
proaches in model-based RL presents a favorable balance between reliability and practicality
of implementation.

In the application of intelligent temperature control, RL has been gradually applied to
HVAC control systems. In Ref. [17], an RL algorithm with dual safety policies is proposed
for energy savings. This RL model incorporates safety measures into the optimization
process by imposing penalties on actions that violate safety constraints. The integration of
safety into the RL framework enhances the safety of the controlled HVAC systems while
concurrently achieving energy savings. Experimental results show that this RL model
reduces energy consumption of an HVAC system by more than 15.02% compared with PID
control. Fang et al. [18] utilized the DQN method in a variable air volume (VAV) system
to achieve energy savings while ensuring indoor thermal comfort. The effectiveness of
the DQN method was evaluated in comparison to rule-based control (RBC) by controlling
the setpoints of the air supply temperature and chiller water supply temperature. Their
findings demonstrated that, in most cases, the DQN method outperformed RBC in terms of
control efficiency. In Ref. [19], the authors propose a model-free actor-critic RL controller,
which incorporates a variant of artificial recurrent neural networks known as long-short-
term memory (LSTM) networks. The RL controller aims to optimize thermal comfort while
minimizing energy consumption. The training and validation results demonstrate that
this RL controller improves thermal comfort by an average of 15% and energy efficiency
by an average of 2.5% when compared to other alternative strategies. As mentioned
earlier, the manufacturing technique of PET bottles has gained widespread popularity.
Nevertheless, there has been little research on intelligent temperature control methods
within the manufacturing process.
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3. Research Method

For stretch blow molding, the heating temperature of the preform stands out as one
of the most important parameters in ensuring the quality standards of PET bottle produc-
tion. Nevertheless, in conventional manual temperature control approaches, operators
encounter challenges in promptly and effectively adjusting preform heating parameters in
response to fluctuations in ambient temperature and aging variations of heating lamps. The
machine operator only intervenes to adjust the heating parameters when a deterioration
in the production quality of PET bottles is detected. Hence, the application of artificial
intelligence techniques to substitute manual temperature control holds the potential to
overcome issues such as the interference of environmental temperature changes and the
aging variation of heating lamps, thereby offering avenues for improvement. Ultimately,
it possesses the potential for further advancement into an intelligent temperature control
technology with industrial 4.0 principles such as self-adjust for variation and self-optimize
for disturbance [20].

In this paper, an intelligent temperature control technique based on DQN has been
introduced for heating system of stretch blow molding machine. The concept of the
proposed approach is as shown in Figure 1. To be more specific, this research focuses on
utilizing real-time temperature sensing data obtained from various sources, including the
heated preform surface, inside of heating box, and the machine’s surrounding environment.
By employing the DQN method, the proposed approach enables self-learning of the control
strategy (i.e., to build a decision-making agent) for intelligently adjusting the power of
the infrared heating lamp and the operating frequency of the blower, thereby ensuring
optimal control of the temperature in the stretch blow molding process. In other words,
the objective of the learned control strategy is to achieve the temperature variation in the
heating box or on the preform surface within a predefined range.
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Figure 1. The concept of the proposed approach based on DQN.

Deep Q-Network is based on Q-Learning of an ordinal reinforcement learning (RL)
and is an off-policy method. The architecture of DQN was described on Figure 2, where
st denotes the state at time t and at indicates the action of choosing the next state st+1.
Reward rt depend on the state st and action taken at the previous time step (t− 1). The main
components of DQN include: the environment, main Q-network, target Q-network, replay
memory, and loss function, in which the two neural networks share the same structure [5].
During the training process, the parameter θ in main Q-network update in each time step,
while the parameter θ− in target Q-network update periodically. This updating strategy can
improve the training stability. Moreover, in order to update parameter θ, the loss function
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can be defined as the difference between the target value (parameter θ−) and evaluated
value (parameter θ) which is expressed as

L(θ) = E
[
(zt − Q(st, at; θ))2

]
(1)

where zt is obtained as
zt = rt + γ max

a+1
Q
(
st+1, at+1; θ−

)
(2)

where γ denotes the discount factor (a value between 0 and 1) which is the effect of future
rewards to the current decision-making. Finally, the loss function can be optimized by
using the stochastic gradient descent (SGD) algorithm.

Processes 2023, 11, x FOR PEER REVIEW 5 of 12 
 

 

main components of DQN include: the environment, main Q-network, target Q-network, 
replay memory, and loss function, in which the two neural networks share the same struc-
ture [5]. During the training process, the parameter 𝜃 in main Q-network update in each 
time step, while the parameter 𝜃  in target Q-network update periodically. This updat-
ing strategy can improve the training stability. Moreover, in order to update parameter 𝜃, 
the loss function can be defined as the difference between the target value (parameter 𝜃 ) 
and evaluated value (parameter 𝜃) which is expressed as 𝐿 𝜃 = 𝐸 𝑧 − 𝑄 𝑠 , 𝑎 ; 𝜃 , (1) 

where 𝑧  is obtained as 𝑧 = 𝑟 + 𝛾max𝑄 𝑠 , 𝑎 ; 𝜃 , (2) 

where γ denotes the discount factor (a value between 0 and 1) which is the effect of future 
rewards to the current decision-making. Finally, the loss function can be optimized by 
using the stochastic gradient descent (SGD) algorithm. 

 
Figure 2. An architecture of DQN method. 

As far as technical implementation is concerned, a communication module that can 
accomplish two-way information transmission with the machine controller is firstly es-
tablished. As depicted in Figure 3, the communication module can acquire real-time tem-
perature-sensing data from the controller and transmits the decision command learned by 
the decision-making agent back to the controller. Figure 4 displays the positions at which 
the temperature sensors were installed in the experiments. A non-contact temperature 
sensor (CT LT22) is positioned at the terminal of heating Section 2 to measure the temper-
ature of the preform surface. The PT100 sensor is installed within the heating box of heat-
ing Section 2 to accurately sense and monitor the internal temperature of the heating box. 
The temperature and humidity sensor (PR-3002-WS-I20) is installed within the buffering 
section of the heating system to measure the ambient temperature of the surrounding en-
vironment. Based on the deep Q-network method, the neural network structure employed 
in this paper is depicted in Figure 5, including the input layer, hidden layer, output layer, 
and action selector. 

State

Replay
memory

Action with 
max Q-value

Store

Environment

Main
Q-network

Target
Q-network

DQN loss function

Update
parameters

Copy per 

k steps

Figure 2. An architecture of DQN method.

As far as technical implementation is concerned, a communication module that can
accomplish two-way information transmission with the machine controller is firstly es-
tablished. As depicted in Figure 3, the communication module can acquire real-time
temperature-sensing data from the controller and transmits the decision command learned
by the decision-making agent back to the controller. Figure 4 displays the positions at which
the temperature sensors were installed in the experiments. A non-contact temperature sen-
sor (CT LT22) is positioned at the terminal of heating Section 2 to measure the temperature
of the preform surface. The PT100 sensor is installed within the heating box of heating
Section 2 to accurately sense and monitor the internal temperature of the heating box. The
temperature and humidity sensor (PR-3002-WS-I20) is installed within the buffering section
of the heating system to measure the ambient temperature of the surrounding environment.
Based on the deep Q-network method, the neural network structure employed in this
paper is depicted in Figure 5, including the input layer, hidden layer, output layer, and
action selector.
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To mitigate the consumption of preforms during the training of the deep Q-network
method, the following experimental design is used for the purpose of DQN training and
validation. This design aims to effectively save material cost and to reduce training time.
Given the significance of the temperature in the heating box on the quality of PET bottle
formation, the preform surface temperature will theoretically achieve stability when the
temperature in the heating box remains stable. Consequently, the experiments are divided
into two distinct stages.

In the first stage, the machine is operated without preforms, with the inside heating
box temperature serving as the control target of DQN. In the second stage, which is the same
as the official production, the machine is operated with preforms and the control target of
DQN is the preform surface temperature. Therefore, in the first stage of experiments, the
input layer has five parameters, including the inside heating box temperature, the inside
heating box temperature gradient, the environmental temperature, the environmental
temperature gradient, and the difference between the actual temperature and the target
temperature. In the second stage of the experiments, two additional parameters, namely,
the preform surface temperature and the preform surface temperature gradient, were
incorporated into the input layer in addition to the original five parameters.

The proposed approach was implemented by using Python 3.9.7 and PyTorch. The
hidden layer of the neural network used 60 neurons in both experimental stages. The
learning of neural network weights is performed using stochastic gradient descent. The
Q-values of the output layer are finally obtained, after which Softmax is used as the
action selector. There are three action modes that the decision-making agent can execute,
including not adjusting the heating lamp power (indicated by the notation “O”), increasing
the heating lamp power (indicated by the notation “+”), and reducing the heating lamp
power (indicated by the notation “−”). The way to adjust the power every time is 1% of the
maximum power. The hyperparameters used by the proposed approach are summarized
in Table 1, including the total number of training steps is set to 10,800 steps each time,
the batch size is 300, the discount factor (γ) is 0.9, and the learning rate is 0.001. Every
5000 training steps, the weights of the main Q-network are copied to the target Q-network.

Table 1. The hyperparameters setting.

Hyperparameter Value

Training steps 10,800
Batch size 300

Discount factor 0.9
Learning rate 0.001

Before applying the proposed method, it is crucial to recognize the significance of
the reward function’s design in RL. This is because it significantly influences both the
final performance of the RL model and its convergence speed. The reward function is
an incentive mechanism that tells the decision-making agent what is correct and what is
wrong using reward and punishment. The decision-making agent in RL always learns
how to maximize the reward. Sometimes we need to sacrifice immediate rewards in order
to maximize the total rewards. Thus, the reward function should be designed to ensure
that the maximization of rewards is consistent with achieving the objectives. In this study,
the control objective of the decision-making agent is to keep the temperature variation in
the heating box or on the preform surface within ±2 °C of target temperature. The basic
principle of reward function design is that when the measured temperature is closer to the
target temperature, the reward is higher. Therefore, we propose a reward function based on
three factors: (1) accuracy: if the controlled object’s current state (temperature) equals the
target setpoint (target temperature), the highest reward is given for the current state and
action; (2) stability: if the current state is closer to the target setpoint than the previous state,
a high reward is given for the current state and action. Otherwise, the reward decreases;
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and (3) constraint: if the decision-making agent fails to keep the target temperature within
the allowable range, negative rewards are given.

Based on the above description, the pseudo-code of proposed reward function is
shown in Algorithm 1. First, the difference value between the current temperature and the
target temperature is calculated, and the corresponding reward values are given according
to the difference value. If the difference value is within the temperature allowable range,
the reward value is set to 1. If the temperature difference is within the allowable range but
more than the last time, the reward value is equal to the last time reward value multiplied
by the absolute value of (1 − the difference value). If the difference value is outside the
temperature allowable range but lower than the last time, the reward value is set to 0.1. If
the difference value is outside the temperature allowable range, the reward value is equal
to −0.1, multiplied by the difference value.

Algorithm 1 The pseudo-code of proposed reward function

while status update:
difference = abs(current temperature − target temperature)
max_difference = abs(temperature allowable range)
if 0 ≤ difference ≤ max_difference:

reward = 1
if difference ≥ last_difference:

reward = last_reward × abs(1 − difference)
elif difference < last_difference:

reward = 0.1
else:

reward = −0.1× difference

To expedite the algorithm’s training process, the blower in the heating box is employed
as a disturbance source to simulate temperature variations resulting from the alternating
day and night environment. As shown in Figure 6, the operating frequency of the blower
is gradually increased from 10 Hz to 30 Hz, and subsequently gradually decreased from
30 Hz back to 10 Hz. This deliberate manipulation can induce a temperature differential
exceeding 10 °C within the heating box. This approach effectively simulates scenarios with
environmental temperature differentials surpassing 10 °C. Throughout the experiments,
the blower’s operating frequency is adjusted in increments of 4 Hz every 6 min. In essence,
this approach enables the simulation of an entire day’s (eight-hour workday) worth of
environmental temperature changes within a one-hour timeframe, significantly reducing
the required training time for the algorithm.
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4. Results and Discussion

The specifications of the PET preform used in the experiments are: 16 g in weight,
2.5 mm in thickness, 8.8 cm in total length, and 600 mL of capacity after molding, as shown
in Figure 7. In the first stage of experiments, the target temperature of the DQN is set at
45 °C when the initial environmental temperature is 32.4 °C. During the training of the
DQN, the temperature variation disturbance simulation shown in Figure 6 is repeatedly
performed three times. The experimental results are shown in Figure 8. When comparing
the training outcomes during the initial hour, it can be observed that the decision-making
agent has progressively learned a better control strategy under the perturbation caused
by the substantial temperature fluctuations in the heating box. The experimental results
further indicate that during the third hour of training, the inside heating box temperature
(depicted by the blue line in the Figure 7) has been able to stably control within ±1.5 °C of
the target temperature (45 °C).
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To further validate the capabilities of the trained decision-making agent model, identi-
cal experiments were conducted on different days. A similar result can be seen in Figure 9,
where the trained decision-making agent could effectively control the temperature in the
heating box within a range of ±1.5 °C from the target temperature (46.5 °C).
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In the second stage of the experiments, the DQN’s target temperature is set at 41.5 °C.
Throughout the DQN training process, the temperature variation disturbance simulation
illustrated in Figure 5 is repeatedly conducted three times. The experimental results are
depicted in Figure 10. In contrast to the first stage of experiments, the input layer of
DQN was increased by two new parameters: the preform surface temperature and the
preform surface temperature gradient. With the increase in the number of input parameters
in the DQN, the training complexity of the DQN model also escalates. Consequently,
the experimental results reveal that the training of the DQN reaches a stable state after
two hours. The temperature of the PET preform surface can be controlled within the
allowable range (within ±2 °C of the target temperature). Furthermore, the variation
trend of the preform surface temperature demonstrates a positive correlation with the
temperature change trend in the heating box.
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Since the PT100 sensor was installed in the heating Section 1 in the previous experi-
ments, the difference between the preform surface temperature and the inside heating box
temperature is obvious (as shown in Figure 10). In order to optimize the control perfor-
mance, the installation position of the PT100 sensor was adjusted to the heating Section 2.
To further validate the capabilities of the trained decision-making agent model, identical
experiments were conducted on different days. A similar result can be seen from Figure 11,
where the trained decision-making agent could effectively control the PET preform surface
temperature within a range of ±2 °C from the target temperature. Furthermore, the dif-
ference between the preform surface temperature and the inside heating box temperature
was significantly reduced as expected. Hence, the proposed approach based on DQN can
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autonomously regulate the temperature control parameters during the heating process,
effectively mitigating the impact of environmental temperature fluctuations.
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5. Conclusions

In this paper, we propose an intelligent temperature control approach for a stretch
blow molding machine. This approach is based on the deep Q-network method and
can solve problems such as the interference of environmental temperature changes and
the aging variation of infrared heating lamps. The experimental results reveal that the
proposed approach can automatically learn a control strategy to overcome the interference
of significant changes in ambient temperature, so that the preform surface temperature
can be stably controlled within the range of the target temperature ±2 °C (which meets
the requirements of the cooperative manufacturer). Hence, compared with conventional
method of manually adjusting the temperature control parameters, the proposed approach
can effectively ensure production quality and reduce labor costs. Moreover, it is worth
mentioning that this study proposes using the blower in the stretch blow molding machine’s
heating system as a disturbance source to simulate environmental temperature variations.
From the experimental results, it can be observed that this approach indeed reduces the
training time of the algorithm. Therefore, this method is believed to serve as a reference
for future research aiming to develop automatic parameter adjustment algorithms for
heating systems, air conditioning systems, and other control systems, in order to shorten
the algorithm’s training time.

Furthermore, this paper currently focuses on the temperature control of a specific
point on the preform surface as the controlled object. In future investigations, the focus
will be extended to include temperature control of multiple points on the preform surface
as the controlled variables. Nevertheless, it should be noted that the heating lamps within
the heating system have interactive effects on the temperature control of multiple points
on the preform surface. Confronted with this situation, the proposed approach holds the
potential for greater flexibility in handling multivariable control compared to traditional
control architectures.
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