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Abstract: In this paper, we studied the feedback stabilization of an inductive power transfer sys-
tem based on available output measurement. The proposed controller relies on a full-order state
observer in order to estimate the unmeasured state. The control design problem is challenging due
to the large dimension of the closed-loop system, which requires too many tuning parameters to
be determined when conventional control methods are employed. To solve this issue, we propose
an LQR methodology based on a genetic algorithm such that the weighing coefficients of the cost
function matrices can be automatically computed in an optimized manner. The proposed approach
combines the method of eigenstructure assignment and the LQR technique in order to design both
the controller and the observer gain matrices. The design methodology provides a systematic way to
compute the parameters of the LQR technique for a wireless power transfer system in an optimized
manner, which can be a useful design tool for many other applications. The effectiveness of the
approach was verified by numerical simulation on the dynamic model of the wireless power transfer
system. The results show that the proposed design outperforms conventional design methods in
terms of a better performance and reduced design iterations effort.

Keywords: wireless power transfer; eigenstructure assignment; linear quadratic regulator; genetic
algorithm

1. Introduction

The development of electric vehicles (EVs) has attracted great technological and sci-
entific attentions in the past few decades due to the increasing global need for alternative
transportation solutions to traditional vehicles that are based on internal combustion en-
gines. This global need is motivated by the harmful environmental impacts caused by
combustion engines, such as pollution and its contribution in the global warming and cli-
mate change phenomena. Moreover, energy sources from fossil fuels are another concern of
the community since these energy sources are scarce and not renewable. In this context, EV
technologies are strongly supported nowadays as a green solution for transportation [1,2].
The EV system consists of four main components, which are: electric motor, battery, inverter
and onboard charger. The efficiency of these components greatly affects the EV perfor-
mance and its convenience of use by the drivers. The charging technology of EV batteries
represents a great challenge and is still far from being mature compared to fuel-based
combustion engines [3,4]. The charging methods of EV batteries currently available can be
classified into plug-in (conductive) charging and wireless (inductive) charging. The latter
technology is currently receiving much research interest due to its advantages compared
to conductive charging in terms of safety, cost, convenience and installation. The idea
of inductive charging is to enable the flow of power from the transmitter to receiver in a
contactless manner, i.e., wireless power transfer (WPT). Although the idea is appealing,
the implementation of WPT involves some challenges, such as a slow time of charging and
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complex control methods. In this paper, we focused on the investigation of control design
methodologies for WPT systems [5–9].

Different control techniques have been developed in the literature for the WPT systems,
e.g., [10–23] and the references therein. Most existing approaches focus on the control of
the primary or secondary side of the WPT system only. Few works of the literature have
considered both sides in the control design problem [24–27]. The technique of [24] derived
an insightful state space model to describe the behavior of a bidirectional inductive power
transfer system. Then, the obtained model was mapped onto the frequency domain to
compute the controller gains. The approach of [26] extended the result of [24] to the case of
a multipickup bidirectional inductive power transfer system. The authors of [25] developed
a state space model taking into account Internet of Things (IoT) communications between
sensors and controllers. The proposed control design in [25] was based on a Kalman filter to
estimate the unknown state variables. The authors of [27] presented a state space model for
a bidirectional inductive power transfer system under different operating conditions, such
as harmonics and parameters sensitivities. However, none of the previously mentioned
works considered optimized feedback control for the bidirectional inductive power transfer
system, to the best of our knowledge. Note that the control design is very challenging due
to the large dimension of the closed-loop system. Hence, conventional control techniques
such as pole placement and LQR require the tuning of several parameters, which is not
trivial and may not lead to a satisfactory performance.

We considered the problem of the output feedback control of an inductive WPT system.
A full-order observer was first synthesized to estimate the unmeasured state variables
and then the estimated state was fed to the controller to stabilize the closed-loop system.
In order to determine the control gains, we exploited the genetic algorithm technique
such that those gains can be determined systematically in an optimized fashion. The
idea of computing the LQR weighing elements of the cost function matrices has been
considered in the literature for different applications, such as aircraft pitch control [28],
Inverted pendulum [29], a boost converter [30], an active suspension system [31] and an
engine throttle valve system [32]. However, none of these solutions have been adapted to
dynamical systems with large dimensions such as the WPT system. The effectiveness of the
approach was demonstrated in a simulation and the performance was compared with the
pole placement and manually tuned LQR methods. The results show that the closed-loop
performance and the control design effort under the proposed scheme is greatly improved
compared to the previously mentioned methods. The approach is applicable to any linear
time-invariant system provided that the plant and the controller dynamics are controllable
and observable.

The main contributions of this paper are summarized below:

• A novel design methodology for a bidirectional inductive power transfer system is
proposed based on eiegnstructure assignment and LQR methods;

• The parameters of the controller are optimized by using the genetic algorithm;
• The effectiveness of the approach is supported by a simulation comparison with

manually tuned LQR.

Note that our design approach belongs to model-based control techniques based on
a state-space model of the inductive power transfer system. If the model is not available,
data-driven approaches can be employed; see, e.g., [33–37].

The remainder of this paper is organized as follows. The state space model and the
problem are formulated in Section 2. The control design approach is explained in Section 3.
The simulation results and comparisons with conventional control approaches are also
presented in Section 4. Conclusions are given in Section 5.

2. Problem Formulation

The bi-directional inductive WPT consists of two separate circuits: a primary side and
secondary side. The primary circuit is usually connected to the grid whereas the secondary
circuit is connected to the load (EV batter in this case). The energy is transferred from the
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primary side to the secondary side over the air gap via inductive couplings; see [24] for
more detail.

The dynamic model of the WPT system is given by [24,25]

d
dt

ipi(t) = −
Rpi

Lpi
ipi(t)−

1
Lpi

υcpi(t) +
1

Lpi
υpt +

1
Lpi

υpi(t)

d
dt

υcpi(t) =
1

Cpi
ipi(t)

d
dt

υpt(t) =
1

CT
ipi(t)−

1
CT

iT(t)

d
dt

iT(t) = − γ

LT
υpt(t)−

γRT
LT

iT(t)− γβυst(t)− γβRsiisi(t)−
1

Lso
υso(t)

d
dt

iso(t) =
Rso

Lso
iso(t)−

1
Lso

υcso(t) +
1

Lso
υst(t)

d
dt

υcso(t) =
1

Cso
iso(t)

d
dt

υst(t) = − 1
Cs

iso(t) +
1

Cs
isi(t)

d
dt

isi(t) = γβυpt(t)− γβRTiT(t)−
γ

Lsi
υst(t)−

γRsi

Lsi
isi(t),

(1)

where
ipi(t) is the current through the inductor Lpi;
υcpi(t) is the voltage across the capacitor Cpi;
υpt(t) is the voltage across the capacitor CT ;
iT(t) is the current through the inductor LT ;
iso(t) is the current through the inductor Lso;
υcso(t) is the voltage across the capacitor Cso;
υst(t) is the voltage across the capacitor Cs;
isi(t) is the current through the inductor Lsi;
υpi(t) is the input voltage applied at the primary side;
υso(t) is the voltage at the secondary side.

We assume that only the current iT(t) through track inductor Lt and the current iso(t)
through the pick-up side inductor Lso are available for measurement. Also, we assume that
the WPT system is controlled by two control signals, namely the input voltage applied at
the primary side, denoted by υpi, and the voltage at the pick-up side, denoted by υso. Then,
the state space model of the WPT system is given by

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t),
(2)

where x(t) := (ipi, υcpi, υpt, iT , iso, υcso, υst, isi) is the state vector, u(t) := (υpi, υso) is the
control signal and y(t) := (iT , iso) is the measured output. The matrices A, B, C are given by
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A =



−Rpi

Lpi
− 1

Lpi

1
Lpi

0 0 0 0 0

1
Cpi

0 0 0 0 0 0 0

1
CT

0 0 − 1
CT

0 0 0 0

0 0
γ

LT

−γRT
LT

0 0 −γβ −γβRsi

0 0 0 0
Rso

Lso
− 1

Lso

1
Lso

0

0 0 0 0
1

Cso
0 0 0

0 0 0 0 − 1
Cs

0 0
1

Cs

0 0 γβ −γβRT 0 0 − γ

Lsi
−γRsi

Lsi


B =


1

Lpi
0 0 0 0 0 0 0

0 0 0 0 − 1
Lso

0 0 0


T

, C =

[
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

]
.

(3)

Our objective is to design a stabilizing output feedback law u such that the closed-loop
stability is guaranteed in an optimal sense using only the output feedback measurement y.

3. Control Design

Since only part of the state can be measured, we stabilized the system by means of a
Luenberger full-order observer, which takes the following form:

˙̂x(t) = Ax̂(t) + Bu(t) + L(y(t)− Cx̂(t))

u(t) = −Kx̂(t),
(4)

where x̂ is the estimated state, L is the observer gain matrix and K is the controller gain
matrix. Define the estimation error

e(t) = x(t)− x̂(t). (5)

Consequently, in view of (2) and (4), we have that

ė(t) = Ax(t) + Bu(t)− Ax̂(t)− Bu(t)− L(y(t)− Cx̂(t))

= (A− LC)x(t)− (A− LC)x̂(t)

= (A− LC)e(t).

(6)

Then, in view of (2) and (6), it holds that ẋ(t)

ė(t)

 =

 A− BK −BK

0 A− LC

 x(t)

e(t)

. (7)

Consequently, assuming that the pair (A, B) is controllable and the pair (A, C) is observable,
the stability of the closed-loop system (x(t), e(t)) can be guaranteed if the gain matrices
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K, L are designed such that A− BK and A− LC are Hurwitz. In what follows, we explain
how to design such gain matrices by different methods.

3.1. Eigenstructure Assignment

A simple approach used to design the controller gain K is the pole placement technique.
It is important to note that system (2) is not a single-input–single-output (SISO) system and
hence the Ackerman formula cannot be applied to compute the gain matrix K. Alternatively,
the eigenstructure assignment technique is employed as follows.

Consider system (2) with x ∈ Rn and u ∈ Rm. Let Λ := {λ1, λ2, . . . , λn} denote
the set of desired eigenvalues, which could be real or self-conjugate complex numbers.
Then, we need to design K such that the eigenvalues of A− BK are located at λ1, λ2, . . . , λn.
Consequently, it holds that

(A− BK)νi = λiνi, ∀i = 1, 2, . . . , n, (8)

where νi is the eigenvector corresponding to the eigenvalue λi. By re-arranging the terms,
we obtain

(λi In − A)νi = −BKνi (9)

or [
λi In − A B

] νi

Kνi

 = 0, (10)

where In is an n× n identity matrix. We define

Sλi := [λi In − A | B]

Rλi :=

Nλi

Mλi

 (11)

such that the columns of Rλi form a basis for the null space of Sλi .
The following result provides necessary and sufficient conditions for the existence of

the gain matrix K that satisfies (8) and how to compute this gain matrix K.

Theorem 1 ([38]). Let {λ1, λ2, . . . , λn} be a self-conjugate set of distinct complex numbers. There
exists a real (m× n) matrix K such that

(A− BK)νi = λiνi, ∀i = 1, 2, . . . , n

if and only if, for each i,

1. {ν1, ν2, . . . , νn} is a linearly independent set in CN , the space of complex N-vectors;
2. νi = ν∗j when λi = λ∗j , where the a∗ denotes the conjugate of given a (complex vector or

scalar);
3. νi ∈ span{Nλi}.

Also, if K exists and rank(B) = m, then K is unique and is computed by using the obtained
submatrices Nλi and Mλi .

From Theorem 1, we conclude that the right eigenvectors νi, i = 1, . . . , n are constructed
from the columns of null space matrix Nλi for the closed-loop system [λi In − A | B]. Then,
the gain matrix K can be computed as follows. Define first the following matrices:
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V = [ν1 ν2 . . . νn]

N = [Nλ1 Nλ2 . . . Nλn ]

M = [Mλ1 Mλ2 . . . Mλn ].

(12)

Then, in view of (10), (11), we have that, for all i ∈ 1, 2, . . . , n,

[
λI − A B

] V

KV

 = 0, (13)

and
Sλ := [λI − A | B]

Rλ :=

N

M

,
(14)

where I is a block diagonal matrix of In matrices as the diagonal blocks. Then, by compari-
son, we have

V = N

KV = M.
(15)

Then, we obtain
K = MV−1 = MN−1 (16)

and since the columns of V are linearly intendant, the existence of N−1 is ensured.
Hence, the approach of eigenstructure assignment consists of first finding a basis

(Nλi , Mλi ) of the null space of λi In − A for all i = 1, 2, . . . , n to form the matrix N and M.
Then, the gain matrix K is computed from (16). A similar approach can be followed to
compute the observer gain matrix L in (4) for the dual system

ż(t) = Azz(t) + Bzu(t)

y(t) = Czz(t)
(17)

with Az = AT , Bz = CT and Cz = BT .
Although the eigenstructure assignment approach is straightforward, the selection of

the desired eigenvalues is not trivial in particular if the system has multiple closed-loop
poles. In our case, the system has eight eigenvalues to be specified, which requires a
tremendous effort of iterations until a satisfactory response is obtained.

3.2. Linear Quadratic Regulator

To overcome the previous issue, optimal locations for the closed-loop eigenvalues can
be computed by using the LQR technique.

First, let us assume that the full-state measurement is available, i.e., y = x. Then, we
can design an LQR controller to strike a balance between the state response and the control
effort by using the following quadratic cost function:

J1 =
∫ ∞

0

(
xTQ1x + uT R1u

)
dt, (18)

where Q1, R1 are symmetric positive definite diagonal matrices. Then, by solving the
algebraic Riccati equation

AT P1 + P1 A + Q1 − P1BR−1
1 BT P1 = 0 (19)



Processes 2023, 11, 1859 7 of 15

the optimal state feedback law is given by u = −Kxp with [39]

K = R−1
1 BT P1. (20)

Now, we consider that only an output y is measured but not the full state. Then, we
employ the state observer in (4) to estimate the state. Since the wind turbine is affected by
external disturbance, we apply the Kalman filter to design the observer gain L by solving
the following algebraic Riccati equation:

P2 AT + AP2 + Q2 − P2CT R−1
2 CP2 = 0, (21)

where Q2, R2 are symmetric positive definite diagonal matrices. Consequently, the observer
gain (Kalman gain) L is given by [39]

L = P2CT R−1
2 . (22)

It can be noted from the previous case that the control performance was restricted a
priori by the selected matrices Q1 = CTC and Q2 = BBT . On the other hand, if we tried to
pick those matrices freely, this would require a large amount of iterations for the entries in
the matrices Q1 and Q2. To avoid this issue, we exploited the genetic algorithm technique
in order to optimize the values of all the weighing matrices Q1, Q2, R1, R2. The approach
can be summarized in Figure 1. The genetic algorithm is inspired by biological behaviors
where a group of an initial population of chromosomes is randomly generated such that
each chromosome corresponds to a solution of the optimization problem [40]. The desired
performance of the system is formulated in terms of a fitness function (objective function)
and the behavior of the current population is assessed based on such fitness function. Then,
the corresponding value of the controller gain K is obtained. The genetic algorithm is
terminated when the objective function reaches its minimum or when the population size
exceeds the maximum value.
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Figure 1. Flow chart of genetic-based LQR.

We applied this optimized method to compute the matrices Q1 and R1 for the cost
function of the controller gain K. Then, in order to ensure a fast estimation of the observer,
we applied the pole placement method to compute the observer gain L such that the
eigenvalues of the observer that are to be (A− LC) are greater than those of the controller
matrix (A− BK).
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4. Simulation Results

To better justify the approach, we first present the results under the pole placement
and the manually tuned LQR and then we show the results of the proposed technique. The
simulation results were performed with the parameters values given in Table 1 below [25].

Table 1. Parameters of the WPT system.

Parameter Value Parameter Value

Lpi 46.51 × 10−3 H Cso 2.5329 × 10−3 F

LT 22.48 × 10−3 H M 8 × 10−3 F

Lsi 23.49 × 10−3 H Rpi 0.0152 Ω

Lso 46.28 × 10−3 H RT 0.0158 Ω

CT 2.49 × 10−3 F Rsi 0.0179 Ω

Cs 2.47 × 10−3 F Rso 0.0122 Ω

Cpi 2.5307 × 10−3 F

4.1. Eigenstructure Assignment

For the eigenstructure assignment technique, we chose the desired eigenvalues to be
λc = (−1,−2,−3,−4,−3,−2,−1,−5), and we obtained

K =

 0.4609 −1.0000 −3.0325 −0.4438 −0.0117 −0.0000 0.0008 0.0118

0.0122 0.0000 0.0009 −0.0122 −0.4186 1.0000 −2.9678 0.3955

. (23)

Then, in order to provide fast state estimation by the observer, we can take the desired
eigenvalues locations of the observer, i.e., A− LC, to be λo = 4λd, which leads to

L =

 −42 −370 −778 43 0.1 0 0.3 −0.3

−0.5 0.1 0.1 0.5 39 394 −1178 −75

T

. (24)

The closed-loop response is shown in Figures 2–5 for the state trajectories x1, . . . , x8 and the
estimated states x̂1, . . . , x̂8, respectively. The generated control input is shown in Figure 6.
We note that all states and control inputs exhibit huge overshoot, which is not acceptable
in practice.

0 2 4 6 8 10
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-2

0

2

4
10

6

0 2 4 6 8 10

-2.5

-2

-1.5

-1

-0.5

0

0.5
10

9

Figure 2. State trajectories of x1, x2 and x̂1, x̂2.
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Figure 3. State trajectories of x3, x4 and x̂3, x̂4.
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Figure 4. State trajectories of x5, x6 and x̂5, x̂6.
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Figure 5. State trajectories of x7, x8 and x̂7, x̂8.
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Figure 6. Trajectories of the control input.

4.2. Manually Tuned LQR

Since the controller is based only on output feedback, the matrices Q1 and Q2 can be
chosen to be Q1 = CTC and Q2 = BBT whereas the matrices R1 and R2 can be arbitrarily
defined until a satisfactory performance is obtained. We obtain

K =

 1.3618 −0.0000 0.0507 −0.0089 0.0002 −0.0001 0.0001 −0.0002

−0.0002 −0.0001 −0.0001 0.0001 −0.9537 0.0000 −0.0018 0.0001

. (25)
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Then, in order to provide fast state estimation by the observer, we can take the desired
eigenvalues locations of the observer, i.e., A− LC, to be λo = 4λd, which leads to

L =

 0.5705 10.0878 10.2527 29.2793 0.0039 0.0008 −0.0284 0.0059

−0.0019 0.0176 0.0186 0.0039 20.6067 0.0000 −0.7263 −0.0023

T

. (26)

The closed-loop response is shown in Figures 7–10 for the state trajectories x1, . . . , x8 and the
estimated states x̂1, . . . , x̂8, respectively. The generated control input is shown in Figure 11.
We note that the peak overshoot has been greatly reduced compared to the response in
Figures 2–6; however, the state trajectories and the control inputs exhibit oscillations, which
is also not desirable in practice. This motivates our proposed approach in the next section.
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Figure 7. State trajectories of x1, x2 and x̂1, x̂2.
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Figure 8. State trajectories of x3, x4 and x̂3, x̂4.

0 0.2 0.4 0.6 0.8 1

-4

-2

0

2

4

0 0.2 0.4 0.6 0.8 1

-15

-10

-5

0

5

10

15

Figure 9. State trajectories of x5, x6 and x̂5, x̂6.

0 0.2 0.4 0.6 0.8 1

-20

-10

0

10

20

0 0.2 0.4 0.6 0.8 1

-6

-4

-2

0

2

4

6

Figure 10. State trajectories of x7, x8 and x̂7, x̂8.



Processes 2023, 11, 1859 11 of 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-5

0

5

Figure 11. Trajectories of the control input.

4.3. Automatic Tuning of LQR Based on Genetic Algorithm

To avoid the manual tuning of the matrices Q and R for the LQR control method,
we used here the genetic algorithm described in Figure 1 to compute these matrices in an
optimized manner. We set the number of individuals to 100, the number of chromosomes
to 10 and the number of generations to 100, and we considered the following fitness
function FT:

FT = 0.5Tr + 0.5Ts + 0.01Mo, (27)

where Tr ∈ R≥0 is the rise time, Ts ∈ R≥0 is the settling time and Mo ∈ R≥0 is the maxi-
mum overshoot. Hence, the fitness function (27) reflects priorities to significantly reduce
the rise and the settling times. We obtain the following matrices for the LQR controller:

Q1 =



0.8135 0 0 0 0 0 0 0

0 0.1531 0 0 0 0 0 0

0 0 0.1036 0 0 0 0 0

0 0 0 0.9465 0 0 0 0

0 0 0 0 0.4924 0 0 0

0 0 0 0 0 0.7482 0 0

0 0 0 0 0 0 0.3109 0

0 0 0 0 0 0 0 0.0077



. (28)

R1 =

0.0180 0

0 0.0294

, (29)

which corresponds to the eigenvalues of λ(A− BK) = (−216.55± 206.86i, −33.73± 172i,
−54.35± 86.38i,−44.69± 88.68i) with the gain matrix

K =

 25.1523 5.2531 7.8129 12.3159 0.0017 −0.0007 −0.0010 −0.0072

−0.0001 −0.0002 −0.0000 −0.0002 −7.2111 −1.0594 0.3353 −1.8719

. (30)

Then, we took the eigenvalues of the observer to be λ(A− LC) = 4λ(A− BK) and com-
puted the corresponding value of L. The closed-loop response is shown in the figures
below. We note that the dynamic behavior of the closed-loop system has been enormously
improved in terms of the maximum overshoot and the settling time compared to the cases
of pole placement and conventional LQR.

To conclude, the simulation clearly reflects that the manual tuning of control pa-
rameters is tedious and requires too many iterations until a satisfactory response can be
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obtained, particularly when the dimension of systems is as large as the dynamic model of
the bidirectional inductive wireless power transfer system. For instance, for the control
technique of eigenstructure assignment, we need to specify the location of eight closed-loop
eigenvalues. Moreover, for the manually tuned LQR method, we need to identify 10 entry
values of the Q and R matrices, which is further difficult to determine. On the other hand,
for genetic-based LQR control, the parameters of the Q and R matrices are computed offline
in an optimized manner, which results in a superior performance for the state and control
trajectories as shown in Figures 12–16.
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Figure 12. State trajectories of x1, x2 and x̂1, x̂2.
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Figure 13. State trajectories of x3, x4 and x̂3, x̂4.
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Figure 14. State trajectories of x5, x6 and x̂5, x̂6.
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Figure 15. State trajectories of x7, x8 and x̂7, x̂8.
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Figure 16. Trajectories of the control input.

5. Conclusions

We studied the problem of output feedback control for a bidirectional inductive
wireless power transfer system. First, a full-order observer was constructed based on a
Luenberger state estimator. Then, an observer-based controller was synthesized to ensure
the stability of the closed-loop system. The proposed approach combines tools from eignen-
structure assignment and LQR methods. Due to the large system dimension, the main
challenge in this study is how to find optimized values for the LQR controller to achieve
a satisfactory output response. The problem was solved by using a genetic algorithm
to automatically tune the parameters of the LQR controller. A simulation comparison
was conducted to highlight the benefit of the proposed method compared to manual tun-
ing. The results show that the proposed method is superior to the previously mentioned
conventional techniques.

Future work will focus on the networked control analysis and design for the wireless
power transfer system.

Author Contributions: Conceptualization, M.A.; methodology, M.A.; formal analysis, D.A.; inves-
tigation, D.A.; Simulation, M.A.; writing—original draft preparation, M.A.; writing—review and
editing, D.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Prince Sultan University, Riyadh, Saudi Arabia.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge the support of Prince Sultan University
for paying the Article Processing Charges (APC) of this publication.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sun, X.; Li, Z.; Wang, X.; Li, C. Technology Development of Electric Vehicles: A Review. Energies 2020, 13, 90. [CrossRef]
2. Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and

Challenges. Smart Cities 2021, 4, 372–404. [CrossRef]
3. Franke, T.; Görges, D.; Arend, M. The Energy Interface Challenge. Towards Designing Effective Energy Efficiency Interfaces for

Electric Vehicles. In Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular
Applications, Utrecht, The Netherlands, 21–25 September 2019; pp. 35–48.

4. Pan, Z.; Shieh, S.Y.; Li, B. Battery State-of-Charge Pulse-and-Glide Strategy Development of Hybrid Electric Vehicles for VTS
Motor Vehicle Challenge. In Proceedings of the 2018 IEEE Vehicle Power and Propulsion Conference (VPPC), Chicago, IL, USA,
27–30 August 2018; pp. 1–7.

5. Rayan, B.A.; Subramaniam, U.; Balamurugan, S. Wireless Power Transfer in Electric Vehicles: A Review on Compensation
Topologies, Coil Structures, and Safety Aspects. Energies 2023, 16, 3084. [CrossRef]

6. El-Shahat, A.; Ayisire, E.; Wu, Y.; Rahman, M.; Nelms, D. Electric Vehicles Wireless Power Transfer State-of-The-Art.
Energy Procedia 2019, 162, 24–37. [CrossRef]

7. Amjad, M.; Farooq-i-Azam, M.F.; Ni, Q.; Dong, M.; Ansari, E.A. Wireless charging systems for electric vehicles. Renew. Sustain.
Energy Rev. 2022, 167, 112730. [CrossRef]

8. Li, S.; Mi, C.C. Wireless Power Transfer for Electric Vehicle Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 4–17.

http://doi.org/10.3390/en13010090
http://dx.doi.org/10.3390/smartcities4010022
http://dx.doi.org/10.3390/en16073084
http://dx.doi.org/10.1016/j.egypro.2019.04.004
http://dx.doi.org/10.1016/j.rser.2022.112730


Processes 2023, 11, 1859 14 of 15

9. Savari, G.F.; Sathik, M.J.; Raman, L.A.; El-Shahat, A.; Hasanien, H.M.; Almakhles, D.; Aleem, S.H.A.; Omar, A.I. Assessment of
charging technologies, infrastructure and charging station recommendation schemes of electric vehicles: A review. Ain Shams
Eng. J. 2023, 14, 101938. [CrossRef]

10. Alkasir, A.; Abdollahi, S.E.; Abdollahi, S.R.; Wheeler, P. Enhancement of dynamic wireless power transfer system by model
predictive control. IET Power Electron. 2022, 15, 67–79. [CrossRef]

11. Hou, C.; Zhao, Q. Optimal Control of Wireless Powered Edge Computing System for Balance Between Computation Rate and
Energy Harvested. IEEE Trans. Autom. Sci. Eng. 2023, 20, 1108–1124. [CrossRef]

12. Solimene, L.; Corti, F.; Musumeci, S.; Ragusa, C.S.; Reatti, A. Magnetic Control of LCC-S Compensated Wireless Power Transfer
System. In Proceedings of the 2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion
(SPEEDAM), Sorrento, Italy, 22–24 June 2022; pp. 160–165. [CrossRef]

13. Dai, X.; Hua, X.; Sun, S.; Sun, Y. Dynamic output feedback control for wireless power transfer systems. Asian J. Control 2023.
[CrossRef]

14. Deng, Q.; Li, Z.; Liu, J.; Li, S.; Luo, P.; Cui, K. Data-Driven Modeling and Control Considering Time Delays for WPT System.
IEEE Trans. Power Electron. 2022, 37, 9923–9932. [CrossRef]

15. Liu, Y.; Liu, F.; Feng, H.; Zhang, G.; Wang, L.; Chi, R.; Li, K. Frequency tracking control of the WPT system based on fuzzy RBF
neural network. Int. J. Intell. Syst. 2022, 37, 3881–3899. [CrossRef]

16. Venkatesan, M.; Rajamanickam, N.; Vishnuram, P.; Bajaj, M.; Blazek, V.; Prokop, L.; Misak, S. A Review of Compensation
Topologies and Control Techniques of Bidirectional Wireless Power Transfer Systems for Electric Vehicle Applications. Energies
2022, 15, 7816. [CrossRef]

17. Ahn, D.; Kim, S.; Moon, J.; Cho, I.K. Wireless Power Transfer with Automatic Feedback Control of Load Resistance Transformation.
IEEE Trans. Power Electron. 2016, 31, 7876–7886. [CrossRef]

18. Zhou, Z.; Zhang, L.; Liu, Z.; Chen, Q.; Long, R.; Su, H. Model Predictive Control for the Receiving-Side DC-DC Converter of
Dynamic Wireless Power Transfer. IEEE Trans. Power Electron. 2020, 35, 8985–8997. [CrossRef]

19. Wang, Z.; Wei, X.; Dai, H. Design and Control of a 3 kW Wireless Power Transfer System for Electric Vehicles. Energies 2016, 9, 10.
[CrossRef]

20. Zhong, W.; Hui, S.Y.R. Charging Time Control of Wireless Power Transfer Systems without Using Mutual Coupling Information
and Wireless Communication System. IEEE Trans. Ind. Electron. 2017, 64, 228–235. [CrossRef]

21. Zhu, H.; Zhang, B.; Wu, L. Output Power Stabilization for Wireless Power Transfer System Employing Primary-Side-Only
Control. IEEE Access 2020, 8, 63735–63747. [CrossRef]

22. Wei, Z.; Zhang, B.; Shu, X.; Rong, C. A Wireless Power Transfer System with Hybrid Control for Constant Current and Voltage
Output. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 6317–6331. [CrossRef]

23. Gao, X.; Cao, W.; Yang, Q.; Wang, H.; Wang, X.; Jin, G.; Zhang, J. Parameter optimization of control system design for uncertain
wireless power transfer systems using modified genetic algorithm. CAAI Trans. Intell. Technol. 2022, 7, 582–593. [CrossRef]

24. Swain, A.K.; Neath, M.J.; Madawala, U.K.; Thrimawithana, D.J. A Dynamic Multivariable State-Space Model for Bidirectional
Inductive Power Transfer Systems. IEEE Trans. Power Electron. 2012, 27, 4772–4780. [CrossRef]

25. Rana, M.M.; Xiang, W.; Wang, E.; Li, X.; Choi, B.J. Internet of Things Infrastructure for Wireless Power Transfer Systems.
IEEE Access 2018, 6, 19295–19303. [CrossRef]

26. Swain, A.K.; Devarakonda, S.; Madawala, U.K. Modeling, Sensitivity Analysis, and Controller Synthesis of Multipickup
Bidirectional Inductive Power Transfer Systems. IEEE Trans. Ind. Inform. 2014, 10, 1372–1380. [CrossRef]

27. Thrimawithana, D.J.; Madawala, U.K. A Generalized Steady-State Model for Bidirectional IPT Systems. IEEE Trans. Power
Electron. 2013, 28, 4681–4689. [CrossRef]

28. Vishal; Ohri, J. GA tuned LQR and PID controller for aircraft pitch control. In Proceedings of the 2014 IEEE 6th India International
Conference on Power Electronics (IICPE), Kurukshetra, India, 8–10 December 2014; pp. 1–6.

29. Wongsathan, C.; Sirima, C. Application of GA to design LQR controller for an Inverted Pendulum System. In Proceedings of the
2008 IEEE International Conference on Robotics and Biomimetics, Bangkok, Thailand, 22–25 February 2009; pp. 951–954.

30. Habib, M.; Khoucha, F.; Harrag, A. GA-based robust LQR controller for interleaved boost DC-DC converter improving fuel cell
voltage regulation. Electr. Power Syst. Res. 2017, 152, 438–456. [CrossRef]

31. Yu, W.; Li, J.; Yuan, J.; Ji, X. LQR controller design of active suspension based on genetic algorithm. In Proceedings of the
2021 IEEE 5th Information Technology,Networking, Electronic and Automation Control Conference (ITNEC), Xi’an, China,
15–17 October 2021; Volume 5, pp. 1056–1060.

32. Abdelrahim, M.; Mabrok, M.A.; Darwish, M.A.H. Networked control design for an engine throttle valve system. Int. J. Control
2022, 1–8. [CrossRef]

33. Mohammadzadeh, A.; Sabzalian, M.H.; Zhang, C.; Castillo, O.; Sakthivel, R.; El-Sousy, F. Modern Adaptive Fuzzy Control Systems;
Springer: Cham, Switzerland, 2023.

34. Mohammadzadeh, A.; Sabzalian, M.H.; Castillo, O.; Sakthivel, R.; El-Sousy, F. Neural Networks and Learning Algorithms in MATLAB;
Springer: Cham, Switzerland, 2022.

35. Li, X.; Sun, K.; Guo, C.; Liu, H. Modeling and Experimental Validation for a Large-Scale and Ultralight Inflatable Robotic Arm.
IEEE/ASME Trans. Mechatronics 2022, 27, 418–429. [CrossRef]

http://dx.doi.org/10.1016/j.asej.2022.101938
http://dx.doi.org/10.1049/pel2.12213
http://dx.doi.org/10.1109/TASE.2022.3183633
http://dx.doi.org/10.1109/SPEEDAM53979.2022.9842241
http://dx.doi.org/10.1002/asjc.3061
http://dx.doi.org/10.1109/TPEL.2022.3151941
http://dx.doi.org/10.1002/int.22706
http://dx.doi.org/10.3390/en15207816
http://dx.doi.org/10.1109/TPEL.2015.2513060
http://dx.doi.org/10.1109/TPEL.2020.2969996
http://dx.doi.org/10.3390/en9010010
http://dx.doi.org/10.1109/TIE.2016.2598725
http://dx.doi.org/10.1109/ACCESS.2020.2983465
http://dx.doi.org/10.1109/JESTPE.2022.3151107
http://dx.doi.org/10.1049/cit2.12121
http://dx.doi.org/10.1109/TPEL.2012.2185712
http://dx.doi.org/10.1109/ACCESS.2018.2795803
http://dx.doi.org/10.1109/TII.2014.2307159
http://dx.doi.org/10.1109/TPEL.2012.2237416
http://dx.doi.org/10.1016/j.epsr.2017.08.004
http://dx.doi.org/10.1080/00207179.2022.2069050
http://dx.doi.org/10.1109/TMECH.2021.3065046


Processes 2023, 11, 1859 15 of 15

36. Li, X.; Yue, H.; Yang, D.; Sun, K.; Liu, H. A Large-Scale Inflatable Robotic Arm toward Inspecting Sensitive Environments: Design
and Performance Evaluation. IEEE Trans. Ind. Electron. 2023, 70, 12486–12499. [CrossRef]

37. Li, X.; Sun, K.; Guo, C.; Liu, H. Hybrid adaptive disturbance rejection control for inflatable robotic arms. ISA Trans. 2022,
126, 617–628. [CrossRef]

38. Andry, A.; Shapiro, E.; Chung, J. Eigenstructure Assignment for Linear Systems. IEEE Trans. Aerosp. Electron. Syst. 1983,
AES-19, 711–729. [CrossRef]

39. Anderson, B.; Moore, J. Optimal Control: Linear Quadratic Methods; Prentice-Hall International, Inc.: Englewood Cliffs, NJ, USA, 1989.
40. Ipaye, A.A.; Chen, Z.; Asim, M.; Chelloug, S.A.; Guo, L.; Ibrahim, A.M.; Abd El-Latif, A.A. Location and Time Aware Multitask

Allocation in Mobile Crowd-Sensing Based on Genetic Algorithm. Sensors 2022, 22, 3013. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIE.2022.3232643
http://dx.doi.org/10.1016/j.isatra.2021.08.016
http://dx.doi.org/10.1109/TAES.1983.309373
http://dx.doi.org/10.3390/s22083013
http://www.ncbi.nlm.nih.gov/pubmed/35458998

	Introduction
	Problem Formulation
	Control Design
	Eigenstructure Assignment
	Linear Quadratic Regulator

	Simulation Results
	Eigenstructure Assignment
	Manually Tuned LQR
	Automatic Tuning of LQR Based on Genetic Algorithm

	Conclusions
	References 

