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Abstract: In this paper, we address a two-stage hybrid flowshop scheduling problem with identical
parallel machines in each stage. The problem assumes that the queue (Q)-time for each job, which
represents the waiting time to be processed in the current stage, must be limited to a predetermined
threshold due to quality concerns for the final product. This problem is motivated by one that occurs
in the real field, especially in the diffusion workstation of a semiconductor fabrication. Our objective
is to minimize the makespan of the jobs while considering product quality. To achieve this goal, we
formulated mathematical programming, developed two dominance properties for this problem, and
proposed three heuristics with the suggested dominance properties to solve the considered problem.
We conducted simulation experiments to evaluate the performance of the proposed approaches
using randomly generated problem instances that are created to closely resemble real production
scenarios, and the results demonstrate their superiority over existing methods. Furthermore, we
applied the proposed methods in a real-world setting within the semiconductor fabrication industry,
where they have exhibited better performance compared to the dispatching rules commonly used in
practical applications. These findings validate the effectiveness and applicability of our proposed
methodologies in real-world scenarios.

Keywords: scheduling; hybrid flowshop; limited waiting time; semiconductor fabrication; diffusion
workstation

1. Introduction

As surveyed by Linn and Zhang [1], Ribas et al. [2], and Tosun et al. [3], scheduling
problems in a hybrid flowshop (also known as a flexible flowshop) environment are com-
monly encountered in various manufacturing settings. Typically, in the hybrid flowshop,
there are multiple stages of machines, and each stage consists of one or more identical
parallel machines. The jobs need to be processed sequentially through the stages; once
a job completes processing in one stage it moves to the next stage without any idle time.
The hybrid flowshop scheduling problem is known for its complexity and has been widely
studied in the context of production planning and scheduling. In the hybrid flowshop,
each job follows a predetermined sequence of stages, but the number of machines available
for processing can vary at each stage. On the other hand, in a flexible flowshop the number
of machines remains constant across the stages.

This research focuses on two-stage hybrid flowshop scheduling problems with queue
(Q)-time-sensitive constraints. These constraints require the operations of each job in the
second stage to start within a predetermined time after completing the previous (first stage)
operation of the same job.

There are numerous instances of such problems in various manufacturing systems,
particularly in semiconductor manufacturing fabrications. One prominent example is the
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diffusion workstation within a 300 mm (12”)-sized wafer fabrication process. In these
workstations, there are typically two or three stages (such as diffusion chamber, cleaning,
and etching) with parallel machines that may be identical or nonidentical, and the wafers
undergo processing on a machine at each stage. With advancements in semiconductor
technology, the distance between circuits on the surface of semiconductor wafers has
significantly reduced. Therefore, the control of particles becomes crucial as they can
have a detrimental impact on wafer quality, given that their sizes are larger than the
distances between the circuits. Despite strict control measures for particles within the air of
semiconductor manufacturing fabrications, there are instances where particles can adhere
to the wafers.

One of the methods employed to prevent particles from adhering to the surfaces of
wafers is to initiate the next process within a specific time limit after the completion of the
current process. The longer the products wait for the subsequent operation, the higher the
likelihood of particle adhesion. Consequently, it is crucial to process the product for the
next operation promptly after it completes the current process. In the case of the diffusion
process, particles tend to adhere more easily compared to other workstations. To address
this issue, many manufacturing managers determine a time duration within which they
prefer the wafers to be processed for the next operation after the completion of the current
process. This time duration, empirically determined by operators or established using
statistical methods, is commonly referred to as the limited waiting time or queue (Q)-time.

The main objective of this study is to address the two-stage hybrid flowshop schedul-
ing problem with limited waiting time constraints, aiming to minimize the makespan of
jobs. Extensive research has been conducted to tackle the challenges associated with hybrid
flowshop scheduling. Several researchers, including Brah and Hunsucker [4], Rajendran
and Chaudhuri [5], Gupta et al. [6], Moursli and Pochet [7], Azizoglu et al. [8], and Lee
and Kim [9], have proposed a branch-and-bound algorithm to solve the hybrid (flexible)
flowshop scheduling problem. Their goal was to obtain an optimal solution considering
various performance measures such as makespan, total completion time, and tardiness.
These researchers have suggested the use of dominance properties, as well as lower and
upper bounds, to improve the efficiency of the branch-and-bound algorithms.

While optimal solution algorithms offer theoretical guarantees, their practicality is
limited due to computational complexity. Consequently, research efforts have focused on
developing effective heuristics to obtain near-optimal solutions for the hybrid flowshop
scheduling problem in real-world applications. Dugardin et al. [10] and Gomez-Gasquet
et al. [11] proposed metaheuristics such as genetic algorithms, taboo search, and simu-
lated annealing, while considering mathematical programming techniques. Eskandari
and Hosseinzadeh [12] used heuristics based on dispatching rules, while Gupta [13] and
Fernandez-Viagas et al. [14] developed constructive heuristics based on a combination of a
mathematical model and a local search algorithm.

For the specific case of the two-stage hybrid flowshop scheduling problem with
arbitrary waiting times (inserted idle time) and the objective of minimizing the makespan,
researchers have proposed branch-and-bound (B&B) algorithms. Yang and Chern [15] and
Bonquard and Lente [16] suggested B&B algorithms and developed dominance properties,
lower bound schemes, and heuristics to obtain upper bounds. Furthermore, Fondervelle
et al. [17] identified several optimal solution properties, and Bouquard et al. [18] utilized
Max-Plus algebra to present additional properties for the problem when k ≥ 2.

In the context of the two-stage hybrid flowshop scheduling problem with limited
waiting times and a configuration of one batch machine in stage one and one single machine
in stage two, Su [19] devised a heuristic algorithm. Subsequently, other studies further
explored flowshop scheduling, including Ruiz and Vázquez-Rodríguez [20], Behnamian
and Fatemi Ghomi [21], Ying and Lin [22], Öztop et al. [23], and Lin et al. [24].

Extensive research has been conducted on hybrid flowshop scheduling problems,
whereas relatively fewer studies have addressed scheduling problems with waiting time
constraints in the context of flowshop scheduling. A well-known special case arises when
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assuming infinite waiting times for all jobs at each stage, which corresponds to the classical
two-machine flowshop scheduling problem. Johnson’s algorithm [25] can be employed
optimally to minimize the makespan of jobs in this case. Similarly, if all waiting times are
required to be zero, the problem reduces to the no-wait two-machine flowshop scheduling
problem, for which an optimal solution can be obtained in polynomial time [26].

In the previous studies, Yang and Chern [15] showed the NP hardness of the problem
when considering arbitrary waiting times. More recently, An et al. [27] proposed a branch-
and-bound algorithm for the two-machine flowshop problem with limited waiting time and
sequence-dependent setup times. Lee [28] and Jeong et al. [29] developed meta-heuristic
algorithms to address two-machine flowshop scheduling problems with limited waiting
time constraints. It is worth noting that most of the research on limited waiting time
constraints focuses on the two-machine flowshop scheduling problem. Chung et al. [30]
investigates a two-stage hybrid flowshop problem with a single batch processing machine
in the first stage and a single machine in the second stage with the limited waiting time
constraint. However, to the best of our knowledge, the specific problem considered in this
study has not yet been addressed in the existing literature.

In this paper, we propose two dominance properties and three heuristics to address
two-stage hybrid flowshop scheduling problems with limited waiting time constraints,
where each stage consists of identical parallel machines. The primary objective is to
minimize the makespan of the scheduling problem. The structure of this research is as
follows: In the subsequent section, we provide a clear description of the problem under
consideration and formulate it as a mathematical programming model. Additionally,
we explore and establish several properties related to optimal solutions in this study.
To evaluate the performance of the proposed algorithms, we conducted computational
experiments using randomly generated problem instances. The results obtained from these
experiments are presented and analyzed in the results section. Finally, we conclude the
research by summarizing the key findings and contributions. Furthermore, we suggest
potential avenues for future research in this field.

2. Problem Description

Typically, in K-stage hybrid flowshop scheduling problems, there exist n independent
jobs comprising k operations, and they need to be processed on a machine at each stage. In
the k-th stage (where k = 1, . . . , K) there are mk (≥1) parallel machines that can be identical,
uniform, or unrelated. The problem at hand involves n independent jobs that need to go
through two stages. These stages are equipped with M1 and M2 identical parallel machines,
respectively. Several assumptions are made for this problem: (i) All jobs are available
at time zero; (ii) Each job has given processing times; (iii) No setup time is required;
(iv) Each machine can process only one job at a time and no machine can handle multiple
jobs simultaneously; (v) Preemption is not allowed.

One key constraint in this problem is the limited waiting time, also referred to as
the queue (Q)-time. After completing the first operation of a job, the second operation
must commence within a predetermined time. The waiting time, denoted as wi, may vary
for different jobs, indicating the time period a job must wait before the second operation
begins.

To describe the problem more clearly, we use the following notation.
pik processing time of job i in stage k (i = 1, . . . , n and k = 1, 2)
wi (predetermined) limited waiting time (Q-time) of job i that can be allowed between

stage one and two
Cjtk completion time of t-th positioned job on a j-th machine in stage k (t = 1, . . . , n)
Cmax maximum completion time of all jobs; i.e., makespan
Sjt2 start time of the job at stage two (which is completed in the t-th position on j-th

machine at stage one)
Zijtk = 1 if job i is in the t-th position on j-th machine at k-th stage, otherwise 0.
Mk number of identical parallel machines at k-th stage
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M big M
Using the notation, a mathematical formulation is given as follows.
Objective function:

Min Z = Cmax (1)

Constraints:

∑n
t=1 ∑Mk

j=1 Zijtk = 1 ∀i = 1, . . . , n; ∀k = 1, 2 (2)

∑n
t=1 ∑n

i=1 Zijtk ≤ n ∀j = 1, . . . , Mk; ∀k = 1, 2 (3)

∑n
i=1 Zijtk ≤ 1 ∀j = 1, . . . , Mk; ∀k = 1, 2; ∀t = 1, . . . , n (4)

Cjt−1k + ∑n
i=1 pikZijtk ≤ Cjtk ∀i, ∀t = 1, . . . , n; ∀j = 1, . . . , Mk; ∀k = 1, 2 (5)

Si2 ≥ Cjt1Zijt1 ∀i = 1, . . . , n, ∀j = 1, . . . , M1; ∀t = 1, . . . , n (6)

Si2 ≤
(
Cjt1Zijt1 + wi

)
+

(
1− Zijt1

)
M ∀i = 1, . . . , n, ∀j = 1, . . . , M1; ∀t = 1, . . . , n (7)

Cjt2 ≥ (Si2+pi2)Zijt1∀i = 1, . . . , n, ∀j = 1, . . . , M1; ∀t = 1, . . . , n (8)

Cmax ≥ Cjt2 ∀j = 1, . . . , M2; ∀t = 1, . . . , n (9)

Cj0k = 0 ∀j = 1, . . . , Mk; ∀k = 1, 2 (10)

The objective function (1) expresses the goal of the problem, which is to minimize the
makespan, representing the total time required to complete all jobs. Constraint (2) ensures
that each job is scheduled exactly once in the problem. Constraint (3) guarantees that the
number of jobs assigned to a machine does not exceed the total number of jobs. Constraint
(4) states that, at any given time in the schedule horizon, only one job can be processed
on a machine. The completion time of a job is defined in constraint (5), indicating that it
is the sum of the processing times on all machines. Constraint (6) ensures that the start
time of a job in stage two is greater than or equal to the completion time of the same job in
stage one. Constraint (7) represent the limited waiting time constraint, specifying that the
waiting time of a job between stages should be less than or equal to a predetermined time.
Additionally, the completion time of job i on the second stage is represented as constraint
(8). The makespan is defined in constraint (9), representing the maximum completion time
among all jobs. Finally, constraint (10) sets the initial completion time to zero. This mixed-
integer programming formulation is used to solve a small-sized problem and serves as a
benchmark to compare the performance of the suggested methods proposed in this paper.

3. Solution Approach
3.1. Dominance Properties

Although a mathematical programming formulation is provided, obtaining optimal
solutions becomes increasingly difficult and time-consuming as the number of jobs and
machines increases. Therefore, heuristic algorithms are considered to quickly respond to
dynamic scheduling requirements by utilizing dominance properties.

Permutation schedules are commonly used to solve flowshop scheduling problems,
where the same order of jobs is considered for each stage. However, in hybrid flowshop
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scheduling problems, permutation schedules do not guarantee optimal solutions. Therefore,
this study focuses on nonpermutation schedules.

In this study, intentional idle time, which refers to deliberately inserting idle time, is
not considered since it would increase the makespan. However, there may be unavoidable
idle time in two cases: (1) When an operation in the second stage cannot immediately
start after the completion of an operation in the first stage due to pending operations in
the second stage; (2) When the associated first operation needs to be shifted because it is
impossible for an operation in the second stage to start within the limited waiting time.

This paper proposes several properties, starting with property one, which is based
on the results of Azizoglu and Kirca [31]. Their work demonstrates the property of the
maximum completion time on each machine in parallel machine scheduling problems with
the objective of minimizing total regular costs.

Property 1. If the number of machines in stage one is greater than or equal to that of
machines in stage two and maxi pi1 ≤ mini pi2, then there exists an optimal schedule in
which the waiting times of all jobs in stage two are zero and the completion time of each
machine in stage two cannot exceed maxi pi1 + {∑ pi2 + (M2 − 1) maxi pi2}/M2.

Proof. The second stage is bottleneck since M2 ≤ M1 and maxi pi1 ≤ mini pi2. That is,
whenever the first operation of any job is completed on a machine, this job can be processed
on a machine in stage two without any intentional idle time (the idle time between jobs in
stage one can occur since M2 ≤M1 and maxi pi1 ≤mini pi2). Consequently, there is no idle
time between two successive jobs in stage two in any optimal schedules and there are only
M1 idle times to wait before starting the second operations for which the first operations
are completed. According to the results of Azizoglu and Kirca [31], {∑ pi2 + (M2 − 1) maxi
pi2}/M2 can be the upper bound of total processing times of jobs in stage two. Additionally,
there can be idle time in stage two as much as maxi pi1.This completes the proof. �

Similar to property one, a property is developed specifically for the case when stage
one becomes the bottleneck. These two properties allow us to obtain an initial upper bound
for the makespan under each condition.

Property 2. If the number of machines in stage two is greater than or equal to that of
machines in stage one and maxi pi2 ≤ mini pi1, then there exists an optimal schedule in
which the waiting times of all jobs in stage two are zero and the completion time of each
machine in stage two cannot exceed maxi pi2 + {∑ pi1 + (M1 − 1) maxi pi1}/M1.

Proof. In this case, the second stage is bottleneck since M1 ≤M2 and maxi pi2 ≤mini pi1.
That is, whenever the first operation of any job is completed on a machine, this job can
be processed on a machine in stage two without any intentional idle time (the idle time
between jobs in stage two can occur since M1 ≤M2 and maxi pi2 ≤mini pi1). Consequently,
there is no idle time between two successive jobs in stage one in any optimal schedule.
Similarly, {∑ pi1 + (M1 − 1) maxi pi1}/M1 can be the upper bound of the total processing
times of jobs in stage one. The completion time of the last scheduled job is maxi pi2 in stage
two. �

By using the suggested properties, heuristic algorithms are developed as follows.
Let C[i]k be the completion time of the i-th completed job in stage k (if more than two
jobs are completed at the same time on different machines, then the job on the machine
with the lowest index has the smallest [i]). Then, each C[i]k can be defined using the
following equations:

C[i]1 = max {C[i−1]1+ p[i]1, C[i−1]2 − w[i]} for all i = 1, . . . , n;
C[i]2 = max {C[i]1, C[i−1]2} + p[i]2 for all i = 1, . . . , n;
C[0]1 = C[0]2 = 0.

(11)
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3.2. Heuristic Algorithms

In this paper, three heuristic algorithms, H1, H2, and H3, are suggested. The first
heuristic algorithm, H1, uses Johnson’s rule [25]. It is assumed that this problem is a
two-machine flowshop scheduling problem, and the sequence of jobs is obtained. Then, by
using the list scheduling method and considering the limited waiting time, the schedule
is constructed one by one. The second algorithm, H2, is based on the algorithm devised
by Gilmore and Gomory [26]. Suppose that the second operations should start as soon
as the first operation is completed, and this problem is considered to be a conventional
two-machine flowshop scheduling problem. Then, this problem, F2/no-wait/Cmax, can be
solved optimally. After obtaining a sequence, construct a list schedule using the concept
of the backward scheduling method suggested by Kim [32]. Notice that a schedule is
obtained by scheduling the second operation first in order of the reversed sequence for
a reversed time frame. That is, the start time and completion time of jobs in the original
problem are the completion and start time in the reversed one, respectively. After obtaining
a reversed schedule, this time frame is adjusted to the original one (it is easy to understand
by imagining a mirror). The last method, H3, is similar to H1 except it utilizes a sequence
obtained by using the modified largest processing time rule for list scheduling. The
following are detailed procedures of each heuristic.

H1

Step 1. Obtain a sequence by using Johnson’s rule assuming that there is only one ma-
chine in each stage; that is, consider this problem as a conventional two-machine
flowshop scheduling problem. Let U be the set of the obtained sequence.

Step 2. Select the first (leftmost) job in the set U. Say job x.
Step 3. Construct a schedule in stage one using the list scheduling method, in which a job

is assigned to the machine with the earliest start time (ties are broken by selecting
a machine with the lowest index). Update the start time S[x]1 and completion time
C[x]1 of the job x.

Step 4. Construct a schedule in stage two by selecting a machine with the minimum
completion time, of which the start time is greater than C[x]1. Update the start time
S[x]2 and completion time C[x]2. If the second operation of a job cannot start in
the limited waiting time, i.e., S[x]2 − C[x]1 ≥ wx, the completion time of the first
operation associated with the job is adjusted to start in the limited waiting time,
new C[x]1 = S[x]2 − wx. Update the other variable S[x]1.

Step 5. If all jobs are scheduled then stop; otherwise, eliminate job x in the set U and go to
step 2.

H2

Step 1. Obtain a sequence by using the algorithm suggested by Gilmore and Gomory [26]
assuming that there is only one machine in each stage and waiting time in the
second stage is not allowed; that is, consider this problem as a conventional two-
machine flowshop scheduling problem with no-wait constraints (all wi’s are zero).
Let U be the set of the obtained sequence.

Step 2. In the reversed time frame problem, let S′[i]k and C′[i]k be a start time and a com-
pletion time of a job in stage k, respectively. Notice that if k = 1 in this notation, it
implies that k = 2 in the original problem.

Step 3. Select the last (rightmost) job in the set U′. Say job x.
Step 4. Construct a schedule in stage one (stage two in the original problem) by using the

list scheduling method, in which a job is assigned to the machine with the earliest
time (ties are broken by selecting a machine with the lowest index). Update the
start time S′[x]1 and completion time C′[x]1 of the job x.

Step 5. Construct a schedule in stage two (stage one in the original problem) by selecting
a machine with the smallest completion time, of which the start time is greater
than C′[x]1. Update the start time S′[x]2 and completion time C′[x]2. If the second
operation of a job cannot start immediately, i.e., S′[x]2 − C′[x]1 ≥ 0, the completion
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time of the first operation associated with the job is adjusted to the start time of the
second operation, i.e., C′[x]1 = S′[x]2. Update another variable S′[x]1.

Step 6. If all jobs are scheduled then stop and compute C′max; otherwise, eliminate job x
in the set U and go to step 3.

Step 7. Restore the reversed problem to the original one. That is, without any shift in jobs,
the start time and completion time of each job is recalculated reversely. In this
manner, the last scheduled job in the reversed problem is the one scheduled first
in the original problem, in which the start time and completion time in stage one
are 0 and p[1]2, respectively. In a similar way, reschedule other jobs and update
original variables.

Step 8. In the original problem, sort the completion times of the jobs in stage one. Let set
U be the set of the obtained order of jobs.

Step 9. Select a leftmost job, i.e., a job with the smallest Ci1, in the set U.
Step 10. If the completion time can be improved by shifting this job on the same machine,

reschedule this job as well as succeeding jobs in each stage and update the variables.
Otherwise, eliminate this job in the set U and repeat step 9 and 10 until set U is
none.

H3

Step 1. Sort jobs in nonincreasing order of the processing times of the jobs in stage one.
Let U be the set of the obtained order.

Step 2. Select the first (leftmost) job in the set U. Say job x.
Step 3. Construct a schedule in stage one by using the list scheduling method, in which a

job is assigned to the machine with the earliest start time (ties are broken by select-
ing a machine with the lowest index). Update the start time S[x]1 and completion
time C[x]1 of the job x.

Step 4. Construct a schedule in stage two by selecting a machine with the minimum
completion time, of which the start time is greater than C[x]1. Update the start time
S[x]2 and completion time C[x]2. If the second operation of a job cannot start in
the limited waiting time, i.e., S[x]2 − C[x]1 ≥ wx, the completion time of the first
operation associated with the job is adjusted to start in the limited waiting time,
new C[x]1 = S[x]2 − wx. Update the other variables S[x]1.

Step 5. If all jobs are scheduled then stop; otherwise, eliminate job x in the set U and go to
step 2.

4. Computational Experiments

To compare the performance of the suggested heuristics, computational experiments
were conducted using randomly generated problems. The heuristics were implemented
using the commercial software ezDFS, which is based on the C++ programming language
and widely used in manufacturing execution systems (MES) in real manufacturing envi-
ronments. The software provides a graphical user interface (GUI) tool that allows users to
develop methodologies and generate test data sets easily.

The computational tests were performed on a personal computer equipped with an i7-
6700 processor operating at a clock speed of 3.4 GHz. Since the scheduling problem studied
in this research is motivated by real situations in the diffusion process of semiconductor
fabrication, randomly generated problem instances were created to closely resemble real
production scenarios. The number of jobs were set to 20, 40, 60, 80, and 100, and the number
of machines in each stage were set to 5, 10, and 15, respectively.

In the context of semiconductor fabrication, a lot refers to a unit that encompasses
25 wafers and represents a job within the scope of this study. The problem under con-
sideration arises in a diffusion workstation, which consists of two stages. The first stage
comprises two to four diffusion chamber machines capable of simultaneously processing
two to six jobs in batches. The second stage consists of five to ten clean or etching ma-
chines that operate in a sequential manner. Typically, in real-world scenarios, there are
10 to 30 jobs waiting to be processed at each stage. The diffusion workstation scheduler,
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integrated within the MES, performs scheduling operations to assign jobs to machines at
regular intervals, usually every 5 to 10 min. Consequently, scheduling outcomes, including
job–machine assignments and corresponding start/finish times, are obtained periodically.

The processing times of jobs were generated using a discrete uniform distribution
ranging from one to fifty, while the waiting times were generated from one to one hundred.
For the experimental setup, a total of 450 problem instances were generated by performing
10 runs for each combination mentioned above.

We have employed the relative deviation index (RDI) and the number of best solutions
(NBS) as performance measures in this study. The RDI of each heuristic algorithm, denoted
as H, is computed using the formula (X–B)/(W–B), where X represents the makespan
obtained using algorithm H, B is the best makespan achieved among all heuristic algorithms,
and W is the worst makespan among all heuristic algorithms for a given problem. The RDI
ranges between 0 and 1 and provides an indication of how well each heuristic algorithm
performs in comparison to others. A smaller RDI for algorithm H indicates superior
performance compared to other algorithms for the problem at hand. Additionally, the NBS
reflects the number of cases in which each algorithm achieves the minimum makespan,
serving as a measure of algorithm superiority.

Table 1 presents the overall results, including the average and standard deviation of
the RDIs for each heuristic, the number of best solutions, and the average and deviation of
CPU times. Overall, the results demonstrate that H3 exhibits superior performance in terms
of both RDI and NBS when compared to other methods. However, there is no significant
difference observed in CPU times to obtain solutions since most solutions are achieved in
real time. Thus, all heuristic algorithms can be effectively applied to real-world production
scenarios while considering the Q-time constraint.

Table 1. The overall results of the test.

Heuristics RDI 1 NBS 2 CPU Time

H1 0.58 (0.42) 57 0.12 (0.36)
H2 0.53 (0.67) 105 0.08 (0.51)
H3 0.33 (0.59) 363 0.14 (0.75)

1 Average and standard deviation (in parenthesis) of relative deviation index; 2 Number of simulation runs (out of
450) for which each heuristic found the best solutions.

To examine the impact of various factors, such as the number of jobs and machines in
each stage, on the relative performance of the algorithms, an analysis of variance (ANOVA)
was conducted on the solution values, specifically the makespan of jobs, for each heuristic
method. The results of the ANOVA are presented in Table 2. The ANOVA table reveals that
the performance of the heuristics was significantly influenced by the choice of heuristic,
with a significance level of 0.01. This confirms our earlier findings that H3 outperforms the
other algorithms. Interestingly, the analysis indicates that the relative performance of the
algorithms was not affected by other factors, such as the number of jobs and the number
of machines in each stage. This suggests that certain algorithms, such as H3, consistently
demonstrate superior performance regardless of the specific characteristics of the problem.

In addition to the previous tests, a separate set of experiments were conducted to
assess the absolute performance of the superior algorithm, H3, by comparing its solutions
with optimal solutions and lower bounds. As there is no efficient optimal solution al-
gorithm available for the problem, optimal solutions were obtained using mixed integer
programming (MIP) for small-sized problems, as suggested in Section 2. The MIP was
implemented in C++ with a MIP solver function from the commercial MES software ezDFS.
For this test, the number of machines in each stage was set to two and three and the number
of jobs was set to five and six. The remaining data were generated following the same
procedure as described earlier. The results of the test are summarized in Table 3, which
presents the percentage gaps between the solutions obtained using the heuristic algorithm
and the optimal solutions (lower bounds), as well as the computation times required to
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obtain the optimal solution (lower bound). Since the computation time to obtain a solution
was very short (less than 0.05 s), it is not shown in the table. From the table, it can be
observed that the suggested algorithm, H3, consistently produced very good solutions
and, in some cases, even found optimal solutions. The small percentage gaps indicate
the effectiveness of H3 in finding high-quality solutions, considering the complexity of
the problem.

Table 2. Analysis of variance for the performance of each heuristic.

Source of
Variation

Degree of
Freedom

Sum of Squared
Errors

Mean Squared
Errors F

Heuristics 2 209 104.5 13.8 †

Number of jobs 4 65 16.3 2.1
NM1 1 2 58 29.0 3.8
NM2 2 2 63 31.5 4.2

NM1 × NM2 4 93 23.3 3.1
Error 1335 10,096 7.6

Total 1349 10,584
1 Number of machines in stage 1; 2 Number of machines in stage 2; † Statistically different at the significant level
of 0.01.

Table 3. Percentage gap between solutions of the algorithm and optimal solutions.

NM1 NM2 Number of Jobs Percentage Gaps 1 CPU Time 2

2 2 5 0.70 2 (1.55) 8 121.2 (549.1)
3 6 2.26 (4.18) 7 369.8 (1032.6)

3 2 5 3.31 (4.81) 6 898.7 (804.5)
3 6 1.33 (2.98) 8 1542.1 (2408.1)

1 Average and standard deviation (in parenthesis) of the percentage gaps of heuristic solutions from the optimal
solutions and the number of problems for which the algorithm found optimal solutions out of 10 test problems;
2 Average and standard deviation (in parenthesis) of the CPU time required to find an optimal solution.

For larger-sized problems, the solutions obtained using the heuristic algorithm were
compared with a lower bound based on the branch-and-bound algorithm suggested by
Brah and Hunsucker [4]. This lower bound assumes that the waiting time of each job is
infinite, i.e., wi = ∞. Thus, it does not require jobs to be processed within their waiting time
after completion in stage one. The branch-and-bound algorithm by Brah and Hunsucker [4]
addresses the k-stage hybrid flowshop scheduling problem with identical parallel machines
in each stage, aiming to minimize the makespan of jobs.

To obtain the lower bounds, the number of machines in each stage were set to four
and five, and the number of jobs were set to eight and ten. The remaining data followed
the same generation process as described earlier. In Table 4, the results indicate that there is
no significant difference between the lower bounds and the solutions obtained using the
heuristic algorithm. This suggests that the solutions from the suggested heuristic algorithm
can be considered to be relatively good, as they closely approach the lower bounds obtained
through the branch-and-bound algorithm by Brah and Hunsucker [4].

Table 4. Percentage gap between solutions of the algorithm and lower bounds.

NM1 NM2 Number of Jobs Percentage Gaps 1 CPU Time 2

4 4 8 7.26 (5.00) 2 10.3 (5.4)
5 10 7.67 (7.08) 3 36.1 (40.7)

5 4 8 9.51 (10.46) 3 49.6 (69.3)
5 10 10.19 (8.05) 2 91.5 (95.4)

1 Average and standard deviation (in parenthesis) of the percentage gaps of heuristic solutions from the lower
bounds and the number of problems for which solutions of the algorithm are equal to the lower bounds of 10 test
problems; 2 Average and standard deviation (in parenthesis) of the CPU time required to find lower bounds.
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5. Conclusions

This paper focused on the two-stage hybrid flowshop scheduling problem with identi-
cal parallel machines in each stage, aiming to minimize the makespan of jobs. The problem
considered waiting times for jobs to be processed in the second stage, with a constraint
that the waiting time cannot exceed a predetermined limit due to job deterioration. Three
heuristic algorithms were tested, based on Johnson’s rule [25], Gilmore and Gomory’s
algorithm [26], and a modified largest processing time rule.

The proposed algorithms demonstrated good performance and, among them, H3
outperformed the others by providing very good solutions that were nearly optimal, all
within a very short computation time. This paper is particularly significant as it considers
both the quality constraint and the makespan of jobs in the scheduling algorithms. The
suggested algorithm holds practical value for real manufacturing systems as it is motivated
by real-world scheduling problems and has been extended in various ways. Therefore,
although our research is not purely theoretical it is argued that it has practical applications
in real-world scenarios.

Furthermore, this paper opens avenues for further research. One possible direction
is the development of more sophisticated algorithms based on the suggested algorithm,
specifically for cases with more than two stages in the hybrid flowshop problem or for
objectives other than makespan. Additionally, it is important to explore optimal solution
properties and devise more efficient algorithms that leverage these properties.
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