
Citation: Ma, X.; Bi, L.; Jiao, X.; Wang,

J. An Efficient and Improved

Coronavirus Herd Immunity

Algorithm Using Knowledge-Driven

Variable Neighborhood Search for

Flexible Job-Shop Scheduling

Problems. Processes 2023, 11, 1826.

https://doi.org/10.3390/pr11061826

Academic Editors: Danyu Bai,

Luis Puigjaner, Xin Chen, Dehua Xu

and Jedrzej Musial

Received: 16 April 2023

Revised: 29 May 2023

Accepted: 14 June 2023

Published: 15 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

An Efficient and Improved Coronavirus Herd Immunity
Algorithm Using Knowledge-Driven Variable Neighborhood
Search for Flexible Job-Shop Scheduling Problems
Xunde Ma † , Li Bi *, Xiaogang Jiao * and Junjie Wang †

College of Information Engineering, Ningxia University, Yinchuan 750021, China;
maxunde@stu.nxu.edu.cn (X.M.); jack1999@stu.nxu.edu.cn (J.W.)
* Correspondence: billy68@nxu.edu.cn (L.B.); jiaoxg@nxu.edu.cn (X.J.)
† These authors contributed equally to this work.

Abstract: By addressing the flexible job shop scheduling problem (FJSP), this paper proposes a new
type of algorithm for the FJSP. We named it the hybrid coronavirus population immunity optimization
algorithm. Based on the characteristics of the problem, firstly, this paper redefined the discretized
two-stage individual encoding and decoding scheme. Secondly, in order to realize the multi-scale
search of the solution space, a multi-population update mechanism is designed, and a collaborative
learning method is proposed to ensure the diversity of the population. Then, an adaptive mutation
operation is introduced to enrich the diversity of the population, relying on the adaptive adjustment
of the mutation operator to balance global search and local search capabilities. In order to realize a
directional and efficient neighborhood search, this algorithm proposed a knowledge-driven variable
neighborhood search strategy. Finally, the algorithm’s performance comparison experiment is carried
out. The minimum makespans on the MK06 medium-scale case and MK10 large-scale case are 58 and
201, respectively. The experimental results verify the effectiveness of the hybrid algorithm.

Keywords: flexible job-shop scheduling; coronavirus herd immunity algorithm; multi-population;
adaptive mutation; variable neighborhood search

1. Introduction

The flexible job-shop scheduling problem (FJSP) is an extension of the classic job-shop
scheduling problem, which is more suitable for the complex production environment faced
by advanced modern manufacturing industries. The classic job-shop scheduling problem
has been proven to be an NP-hard problem [1]. Based on the classic job-shop scheduling
problem, the flexible job-shop scheduling problem relaxes the processing machine con-
straints of operations. At least one operation is allowed to be processed on two or more
machines, and the time required for processing using different machines is different. The
production environment represented by the flexible job-shop scheduling problem is more
complex. It is necessary to consider the processing sequence of jobs and arrange the pro-
cessing machines so that the operations can achieve the scheduling goal. Therefore, solving
the problem is more difficult, but it can better simulate the current rapid development
of the semiconductor manufacturing industry, automobile assembly industry, and other
environments [2]. In recent years, this issue has received extensive attention from many
researchers. The earliest research on this problem can be traced back to the middle of the
last century [3]. Early research methods mainly used scheduling rules, branch and bound
methods, etc. However, they were only applicable to small-scale problems. Thanks to the
development of computer computing power, the swarm intelligence algorithm has become
the current mainstream research method, such as genetic algorithm, gray wolf algorithm,
particle swarm algorithm, etc.

Processes 2023, 11, 1826. https://doi.org/10.3390/pr11061826 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11061826
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0009-0003-8936-2672
https://doi.org/10.3390/pr11061826
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11061826?type=check_update&version=1

Processes 2023, 11, 1826 2 of 24

The swarm intelligence algorithm can obtain an effective approximate solution to
the FJSP within an acceptable time, so it has been extensively studied by many scholars.
Zhang et al. [4] proposed a crossover operator that can avoid illegal solutions to optimize
different performance indicators of the FJSP. Liu et al. [5] proposed an improved genetic
algorithm with an active-schedule decoding mechanism to solve flexible job-shop schedul-
ing problems. Sun et al. [6] proposed a variable neighborhood search strategy to improve
the effective search efficiency of the genetic algorithm in order to optimize the makespan’s
objective. Jiang [7] proposed a hybrid gray wolf algorithm combined with a variable
neighborhood search and genetic operators to optimize the makespan objective of the FJSP.
Ding et al. [8] proposed a hybrid algorithm combining the human learning optimization
algorithm and particle swarm algorithm to solve the flexible job-shop scheduling problem.
Zhang et al. [9] proposed an improved wolf pack algorithm to solve the multi-objective
flexible job-shop scheduling problem. In view of the above literature for classical FJSPs,
we summarize the contribution and related studies in this study. The results are shown in
Table 1.

Table 1. Summary of related studies on classical FJSPs.

Author Year Method Test Case Potential Advantage

Zhang [4] 2009 Improved genetic
algorithm

Muth and Thompson’s
benchmarks

POX crossover operation can avoid
illegal solutions.

Liu [5] 2009 Improved genetic
algorithm

Kacem and
Brandimarte’s
benchmarks

Active scheduling schemes can use machine time
effectively and rationally

Sun [6] 2023 Hybrid genetic
algorithms

Brandimarte’s
benchmarks

Machines with minimum processing time can be
used as neighborhood knowledge.

Jiang [7] 2018 Hybrid gray wolf
algorithm

Kacem and
Brandimarte’s
benchmarks

The gray wolf algorithm is applied to the FJSP.

Ding [8] 2020 Hybrid particle swarm
algorithm

Brandimarte’s
benchmarks

The hybrid particle swarm algorithm is applied
to the FJSP.

Zhang [9] 2022 Improved wolf pack
algorithm Practical cases The wolf pack algorithm is applied to the FJSP.

In addition, the actual production environment is complex and changeable, and many
scholars have added conditional constraints on the basis of the FJSP to fit a variety of actual
processing environments. Chen et al. [10] proposed an elitist genetic algorithm to solve the
flexible job-shop scheduling problem with fuzzy processing time. Chen et al. [11] applied
the improved particle swarm optimization algorithm to FJSP research by considering the
transportation time. Zhang et al. [12] combined the particle swarm optimization algorithm
with the simulated annealing algorithm to solve the flexible job-shop batch scheduling
problem. Komakia et al. [13] used the improved gray wolf algorithm to solve the two-stage
flow-shop scheduling problem with release time constraints.

Hybrid algorithms can reduce the limitations of a single algorithm and can effectively
improve the performance of an algorithm. In many research fields, these hybrid algorithms
have been extensively studied by many scholars. Coma et al. [14] combined genetic
algorithms with gradient-based algorithms to optimize the active flow control problem
over airfoils. Devarapalli et al. [15] combined the gray wolf algorithm and the sine cosine
algorithm in order to effectively and quickly adjust the parameters of power system
stabilizers. Knypinski [16] introduced the Hooke–Jeeves method in the cuckoo search
algorithm to search for new cuckoo positions, greatly improving the optimization accuracy
of a line-start permanent magnet synchronous motor. The nonlinear convergence factor
is an effective method for improving the performance of algorithms. Knypinski [17]
proposed a linear convergence factor for the gray wolf algorithm, which greatly improved
the performance of the gray wolf algorithm in the line-start permanent magnet motor.
Hegazy et al. [18] introduced the inertial weight strategy in the sarp group algorithm, which

Processes 2023, 11, 1826 3 of 24

not only balanced global and local search capabilities but also improved the convergence
of the algorithm.

The research on FJSP is still a focus of research in recent years. Aiming at this problem,
the mainly used swarm intelligence algorithms can be divided into four types: genetic
algorithm, gray wolf algorithm, particle swarm algorithm, and wolf pack algorithm. On
the basis of the original algorithm, scholars have carried out detailed research on the gene
update method and the neighborhood search’s structure. However, their populations often
use a unified search scale to carry out searches within the solution space, and this cannot
achieve refined searches. Additionally, they use a fixed mutation rate, which cannot balance
the relationship between global and local searches, and there is a risk of falling into a local
optimum. The existing neighborhood structure only comprises a random search, or the
machine with the shortest processing time for the process is chosen, which lacks the use of
existing knowledge. The solution space of the FJSP is large and complex, and the swarm
intelligence algorithm is essentially an approximate solution algorithm. Effective methods
for searching for a better solution within an effective time range still comprise a challenging
task. Affected by randomness, there is currently no algorithm that can guarantee the
optimal solution to this problem every time. To this end, this paper conducts research on
the multi-scale solution space search. By summarizing the existing empirical knowledge,
the knowledge-driven neighborhood structure search is realized.

The coronavirus swarm immunity optimization (CHIO) algorithm is an emerging
swarm intelligence optimization algorithm proposed by Al-Betar et al. [19] in 2020. Inspired
by the novel coronavirus that is widespread around the world, the algorithm proposes an
algorithm update theory that simulates the emergence of herd immunity. Although the
algorithm appeared late, it has been verified on multiple functions and engineering opti-
mization problems [19–21]. The CHIO algorithm proposed the concept of multi-population
evolution for the first time. Although this point also exists in the gray wolf algorithm,
the gray wolf algorithm mainly comprises the following concept: All individuals of other
populations approach the head wolf population. The difference is that the CHIO algorithm
performs an iterative update of genes both within the sub-population and between sub-
populations, and the update mechanisms within different sub-populations are different, so
it has a broader search capability. In addition, the CHIO algorithm adopts the “survival of
the fittest” mechanism. If the individual has not been improved in the iteration process,
the individual will be replaced by a randomly generated new individual when the maxi-
mum age is reached. This update mechanism is beneficial as individuals can escape the
local optimal trap. The original CHIO algorithm uses floating-point numbers to encode
individuals, so it needs to use a certain mapping method when it is applied to the FJSP. In
addition, CHIO is a new algorithm, so there are few studies on the algorithm used in the
field of job-shop scheduling. Only one research study [22] applies it to the solution of the
replacement flow-shop scheduling problem. Compared with the replacement flow-shop
scheduling problem, the FJSP needs to consider two sub-problems—operations arrange-
ment and machine selection—at the same time, so the complexity of the problem is greater.
For this reason, this paper attempts to extend the CHIO algorithm to solve the FJSP. In order
to improve the global search and local search capabilities of the algorithm, on the basis
of the traditional CHIO algorithm, a series of designs and improvements in line with the
FJSP were constructed. In order to facilitate the description below, we named the improved
algorithm for the FJSP the hybrid coronavirus swarm immunity optimization (HCHIO)
algorithm. Combined with the characteristics of the FJSP, the discretized individual encod-
ing and decoding schemes are redefined. FJSP is essentially a combinatorial optimization
problem. During the solution process, all possible machine scheduling schemes need to
be searched to find the optimal solution. However, in the worst case, the time complexity
of this search process is exponential. Thus, the FJSP is an NP-hard problem. The solution
space of this problem is large and complex. The difficulty related to producing a fast and
efficient search scheme in such a large solution space is a meaningful problem that should
be solved. Inspired by the way novel coronavirus spreads, a multi-population mechanism

Processes 2023, 11, 1826 4 of 24

is established within the algorithm, and the discretized update actions of different scales are
designed to achieve the efficient search of a solution space. An adaptive mutation operation
is introduced to expand the diversity of the population while balancing the global search
and local search capabilities of the algorithm.

In order to reduce the algorithm’s invalid neighborhood search, it is necessary to
make full use of empirical knowledge. From a mathematical point of view, we can refer to
empirical knowledge as the mathematical characteristics of the problem. Math-heuristic
algorithms is a well-known method in the study of solving Np-hard problems and com-
prises using mathematical features. Burke and Brucker et al. [23] proposed a branch and
bound algorithm for the cyclic job-shop problem by combining mathematical features and
heuristic algorithms. However, there is a certain gap between the knowledge used in this
article and the mathematical features in math-heuristic algorithms. The mathematical fea-
tures in math-heuristic algorithms mostly comprise deep-level, complex linear or nonlinear
properties, etc. The difference is that the knowledge used in this paper includes the follow-
ing: the critical path of the directed acyclic graph and simple mathematical characteristics.
The simpleness of the mathematical features used in this article is that the features only
involve size comparisons and division operations. In our evolutionary algorithms, the
purpose is to direct the neighborhood search, which originally may not involve a change in
the scheduling target with respect to the neighborhood search, in such a manner that will
inevitably lead to a change in the scheduling target. Thus, this neighborhood structure does
not exhibit enough properties to be called a math heuristic. Thus, a variable neighborhood
search strategy that is knowledge-driven is proposed to enhance the local search ability of
the algorithm and improve the convergence efficiency of the algorithm.

The rest of this paper is organized as follows: Section 2 introduces the description of
the FJSP. Section 3 shows the original CHIO algorithm. In Section 4, the proposed HCHIO
algorithm is described in detail. The experimental results and analysis of the HCHIO
algorithm are shown in Section 5. Section 6 states the conclusions and suggestions for
future works.

2. Flexible Job-Shop Scheduling Problem Description and Formulation

The FJSP has been extensively studied by many scholars. In order to clearly describe
our processing system of the FJSP and scheduling objective in this paper, this section will
introduce the FJSP description and formulation.

2.1. Problem Description

The FJSP of this paper is almost identical to the framework of the flexible job shop in
the book by Pinedo [24], but there are also minor differences. The detailed differences are
introduced as follows: the flexible job-shop (FJc) framework in Pinedo [24] first divides
all machines into c work centers. When a certain job passes through a certain work center
more than once, it becomes a recirculation problem. The FJSP in this paper does not divide
the work centers but provides optional processing machines for each operation, so there is
no need to consider the recirculation problem. However, the FJSP is essentially derived
from the flexible job-shop framework in the Scheduling.

The FJSP studied in this paper can simply be described as follows: In a factory
processing workshop, we use m machines M = {M1, M2, · · · , Mm} to process n jobs
J = {J1, J2, · · · , Jn}. Each job Ji to be processed contains a certain number of operations
Oi =

{
Oi1, Oi2, · · · , Oini

}
, and the number of operations contained in different jobs can

vary. Each operation of each job has a corresponding set of optional processing machines
Mij where Mij ⊆ M, and the processing time of the operation on different machines can
be different. Only when there is at least one or more operations with an optional machine
set, Mij, for which its cardinality is greater than or equal to 2 can it be called a flexibility
problem; that is, there is process flexibility in the operations [25]. The FJSP requires a
reasonable solution to the operation’s sequence and the machine selection of different

Processes 2023, 11, 1826 5 of 24

operations in order to achieve the optimization goal. The FJSP studied in this paper has the
following constraints:

(1) The first operations of all jobs can be processed at the initial moment.
(2) All machines are available at the initial moment.
(3) The machine can only process one operation at a time.
(4) The job can only be processed by one machine at the same time.
(5) The process of each operation cannot be interrupted by others; that is, the machine

cannot be preempted.
(6) The processing of any job must be carried out in strict accordance with the preset

sequence.

2.2. Problem Formulation

In order to clearly describe the flexible job-shop scheduling problem, the notations
used for problem formulation are listed below.

(1) Parameters

m: total number of machines.
n: total number of jobs.
i: index of jobs, i ∈ {1, 2, . . . , n}.
g: index of jobs, g ∈ {1, 2, . . . , n}.
ni: the total number of operations included in job i.
ng: the total number of operations included in job g.
j: index of operations included in job i, j ∈ {1, 2, · · · , ni}.
h: index of operations included in job g, h ∈

{
1, 2, · · · , ng

}
.

k: index of machines, k ∈ {1, 2, . . . , m}.
k
′
: index of machines, k

′ ∈ {1, 2, . . . , m}.
Oij: the jth operation of job i.
Ogh: the hth operation of job g.
Mij: the optional machine set of Oij, Mij ⊆ {1, 2, . . . , m}.
Mijk: machine k in the optional machine set of Oij, Mijk ∈ Mij.
Tijk: the processing time of Oij on machine k.
Tghk: the processing time of Ogh on machine k.
JRti: the release time of the first operation of job i.
STijk: the start time of Oij on machine k.
FTijk: the finish time of Oij on machine k.
FTghk: the finish time of Ogh on machine k.

(2) Decision variables

The decision variables set in this paper are as follows:

xijk =

{
1, Oij is processed on machine k
0, elsewise

yijghk =

{
1, Oij is processed before Ogh on machine k
−1, elsewise

xijk determines which machine the operation Oij is assigned on, while yijghk means the
order of two different operations processed on the same machine.

(3) FJSP formulation

In order to measure a scheduling scheme, makespan has been adopted by many
scholars. Makespan is the maximum completion time of all the operations in a processing
system, that is, the time required for the system to be completed. The FJSP studied in this
paper uses the minimization of makespan as the scheduling objective—it can be expressed

Processes 2023, 11, 1826 6 of 24

as Formula (1). Based on the above symbol definition, the FJSP formulation of this paper is
as follows:

Objective:
Minimize max

{
FTijk·xijk

}
(1)

Subject to:
JRti = 0 (2)

∑m
k=1 xijk = 1 (3)

(
FTijk − STijk − Tijk

)
·xijk = 0 (4)

FTijk ≤ FTi(j+1)k′ − Ti(j+1)k′ (5)

(FT ghk − Tghk − FTijk

)
·yijghk ≥ 0 (6)

Equation (2) indicates that all jobs are ready at the initial moment. Equation (3)
indicates that the operations can only be processed by one machine. Equation (4) indicates
that the operations cannot be interrupted. Equation (5) indicates that the operations of
one job can only be processed according to the preset sequential processing operation.
Equation (6) indicates that the machine can only process one operation at a time.

3. Coronavirus Swarm Immunity Optimization Algorithm

The CHIO algorithm is a swarm intelligence optimization algorithm that is proposed
based on the principle of herd immunity. Inspired by the transmission mode of the new
coronavirus, the algorithm divides the population into three types—susceptible, infected
and immune—based on the social distance and carries out gene exchanges within and
between subpopulations. The “survival of the survivors” natural law is used to simulate
the emergence of the new coronavirus herd immunity state.

The CHIO algorithm has three subpopulations and controls gene exchanges within
or between subpopulations via the basic reproduction rate (BRr). A random number, r, is
generated within the interval of [0 , 1), and an r in the different sub-intervals of BRr means
that the current individual carried out gene exchange with the corresponding population
within this interval. After gene exchange is carried out, the current individual’s type is
updated according to the type of the current individual, the exchange population type,
and the fitness value of all populations. The concept of maximum age (Max Age, MA) is
established to control evolution’s upper limit and the replacement timing of individuals.
The basic update formula of the algorithm is shown in Formula (7).

xj
i(t + 1)←

xj

i , r ≥ BRr
xj

i(t) + r · (xj
i(t)− x f

i (t)), r < 1
3 BRr

xj
i(t) + r · (xj

i(t)− xs
i (t)), r < 2

3 BRr
xj

i(t) + r · (xj
i(t)− xm

i (t)), r < BRr

(7)

In Formula (7), xj
i(t) represents the gene at position i of individual j in the population

at the tth iteration; x f
i (t) represents the gene at position i of the individual selected from

the infected subpopulation. Similarly, xs
i (t) and xm

i (t) represent individuals in susceptible
and immune subpopulations, respectively. After the gene exchange, operations, such as
updating the individual type and reaching the age of death, are required. The specific
details are not stated here. For details, we refer the reader to Figure 1 and the related
literature [14].

Processes 2023, 11, 1826 7 of 24

Processes 2023, 11, x FOR PEER REVIEW 7 of 24

from the infected subpopulation. Similarly, 𝑥𝑖
𝑠(𝑡) and 𝑥𝑖

𝑚(𝑡) represent individuals in

susceptible and immune subpopulations, respectively. After the gene exchange, opera-

tions, such as updating the individual type and reaching the age of death, are required.

The specific details are not stated here. For details, we refer the reader to Figure 1 and the

related literature [14].

Figure 1. Flowchart of the CHIO algorithm.

4. Hybrid Coronavirus Swarm Immunity Optimization Algorithm

The previous section introduced the traditional CHIO algorithm. Based on the tradi-

tional CHIO algorithm and combined with the specific characteristics of FJSP, this paper

makes some improvements to the CHIO algorithm, which we call the hybrid CHIO algo-

rithm. In this section, we will introduce our improvement strategies and the specific im-

plementation details of the hybrid CHIO algorithm.

4.1. Encoding Mechanism

The traditional CHIO algorithm searches the solution space in the continuous do-

main, while the FJSP is essentially a discrete combinatorial optimization problem, so the

encoding and decoding mechanism of the CHIO algorithm needs to be redefined. In ac-

cordance with the characteristic that the FJSP can be divided into two sub-problems of

operations with respect to ordering and machine selection, this paper adopts a two-stage

coding mechanism [26]. This encoding mechanism solves the subproblems of FJSP simply

and efficiently. More importantly, in the iterative process of the algorithm, only a certain

strategy can be used to ensure that this encoding must be a feasible scheduling scheme.

Let l (𝑙 = ∑ 𝑛𝑖
𝑛
𝑖=1) be the total number of operations; then, the individual code can be ex-

pressed as follows: 𝑋 = {𝑥(1), 𝑥(2), ⋯ , 𝑥(𝑙), 𝑥(𝑙 + 1), ⋯ , 𝑥(2𝑙)}. The details are shown in

Figure 2.

Initialize CHIO
algorithm parameters

Step 1

Initialize the herd
immunity population

End？

population
size

End

total number
of genes

Death case

Gene evolves with
infected subpopulations

Gene evolves with
immune subpopulations

Gene evolves with
susceptible subpopulations

No evolution

Calculate the fitness change, update
the immune type of individual

Step 2

Step 3 Coronavirus Herd Immunity Evolution

Step 4
Step 5

Yes

No Yes

No Yes
No

Yes

No

No

Yes

Figure 1. Flowchart of the CHIO algorithm.

4. Hybrid Coronavirus Swarm Immunity Optimization Algorithm

The previous section introduced the traditional CHIO algorithm. Based on the tradi-
tional CHIO algorithm and combined with the specific characteristics of FJSP, this paper
makes some improvements to the CHIO algorithm, which we call the hybrid CHIO al-
gorithm. In this section, we will introduce our improvement strategies and the specific
implementation details of the hybrid CHIO algorithm.

4.1. Encoding Mechanism

The traditional CHIO algorithm searches the solution space in the continuous domain,
while the FJSP is essentially a discrete combinatorial optimization problem, so the encoding
and decoding mechanism of the CHIO algorithm needs to be redefined. In accordance
with the characteristic that the FJSP can be divided into two sub-problems of operations
with respect to ordering and machine selection, this paper adopts a two-stage coding
mechanism [26]. This encoding mechanism solves the subproblems of FJSP simply and
efficiently. More importantly, in the iterative process of the algorithm, only a certain
strategy can be used to ensure that this encoding must be a feasible scheduling scheme.
Let l (l = ∑n

i=1 ni) be the total number of operations; then, the individual code can be
expressed as follows: X = {x(1), x(2), · · · , x(l), x(l + 1), · · · , x(2l)}. The details are shown
in Figure 2.

The number in the first segment of the code in Figure 2 corresponds to the serial
number of the job to be processed, and the number of times a certain number repeats,
which is counted from the left to the right side, represents the operation number of the job
with the number. The number in the second code represents the machine selection result
of the corresponding operation. For example, the number “1” that appears for the second
time in the first code segment represents the second operation of job 1, and the number
“1” in the corresponding position of the second segment code denotes that the operation is
processed on machine 1.

Processes 2023, 11, 1826 8 of 24
Processes 2023, 11, x FOR PEER REVIEW 8 of 24

Figure 2. HCHIO algorithm encoding mechanism.

The number in the first segment of the code in Figure 2 corresponds to the serial

number of the job to be processed, and the number of times a certain number repeats,

which is counted from the left to the right side, represents the operation number of the job

with the number. The number in the second code represents the machine selection result

of the corresponding operation. For example, the number “1” that appears for the second

time in the first code segment represents the second operation of job 1, and the number

“1” in the corresponding position of the second segment code denotes that the operation

is processed on machine 1.

4.2. Decoding Mechanism

Decoding refers to transforming encoded chromosomes into specific and feasible

scheduling schemes. In view of the fact that FJSP is an NP-hard problem, the solution

space is too large and complex, and the optimization goal studied in this paper is to min-

imize the makespan; thus, the greedy strategy-based plug-in active scheduling decoding

method is used in the first segment of decoding [27]. The second code is the machine se-

lection code, the gene at the corresponding position is the processing machine number of

the operation, and the corresponding processing time can be obtained by accessing the

optional machine table.

4.3. Genetic Evolution

The traditional CHIO algorithm update method is only suitable for floating-point

gene updates, but this paper combines the characteristics of the FJSP and adopts discrete

coding; thus, the gene update method of the CHIO algorithm needs to be redesigned. In

this regard, this paper introduces the precedence operation crossover (POX) [28] and

multi-point random crossover (MPX) operations, which are applied to the gene update of

sequence coding and machine selection coding operations, respectively.

(1) POX operation

The POX crossover operation is only applied to genes at which sequence codes are

updated. The specific steps of the POX operation are as follows:

Step 1: According to the serial number of the job, the total job, n, is divided into two

subsets, 𝑠1 and 𝑠2, and there are no elements that are the same in 𝑠1 and 𝑠2.

Step 2: The job number in collection 𝑠1 in parent generation 𝑝1 is copied to the same

position in 𝑐1, and the job number in collection 𝑠1 in parent generation 𝑝2 is copied to

the same position in 𝑐2.

Step 3: The job number in collection 𝑠2 in parent generation 𝑝2 is copied to the re-

maining positions of 𝑐1 in the sequence, and the job number in collection 𝑠2 in parent

generation 𝑝1 is copied to the remaining positions of 𝑐2 in the sequence.

In this way, two individuals with different degrees of parental gene retention can be

obtained. In order to clearly explain the POX operation process, the following figure is an

example of the POX cross-operation process of two operational sequence codes containing

four jobs, and the corresponding steps have been marked in Figure 3.

1 2 1 3 23 2 3 21 2 1

First segment:

process sequence code

Second segment:

machine selection code

Figure 2. HCHIO algorithm encoding mechanism.

4.2. Decoding Mechanism

Decoding refers to transforming encoded chromosomes into specific and feasible
scheduling schemes. In view of the fact that FJSP is an NP-hard problem, the solution space
is too large and complex, and the optimization goal studied in this paper is to minimize
the makespan; thus, the greedy strategy-based plug-in active scheduling decoding method
is used in the first segment of decoding [27]. The second code is the machine selection
code, the gene at the corresponding position is the processing machine number of the
operation, and the corresponding processing time can be obtained by accessing the optional
machine table.

4.3. Genetic Evolution

The traditional CHIO algorithm update method is only suitable for floating-point
gene updates, but this paper combines the characteristics of the FJSP and adopts discrete
coding; thus, the gene update method of the CHIO algorithm needs to be redesigned.
In this regard, this paper introduces the precedence operation crossover (POX) [28] and
multi-point random crossover (MPX) operations, which are applied to the gene update of
sequence coding and machine selection coding operations, respectively.

(1) POX operation

The POX crossover operation is only applied to genes at which sequence codes are
updated. The specific steps of the POX operation are as follows:

Step 1: According to the serial number of the job, the total job, n, is divided into two
subsets, s1 and s2, and there are no elements that are the same in s1 and s2.

Step 2: The job number in collection s1 in parent generation p1 is copied to the same
position in c1, and the job number in collection s1 in parent generation p2 is copied to the
same position in c2.

Step 3: The job number in collection s2 in parent generation p2 is copied to the
remaining positions of c1 in the sequence, and the job number in collection s2 in parent
generation p1 is copied to the remaining positions of c2 in the sequence.

In this way, two individuals with different degrees of parental gene retention can be
obtained. In order to clearly explain the POX operation process, the following figure is an
example of the POX cross-operation process of two operational sequence codes containing
four jobs, and the corresponding steps have been marked in Figure 3.

Processes 2023, 11, 1826 9 of 24

Processes 2023, 11, x FOR PEER REVIEW 9 of 24

Figure 3. POX cross operation.

(2) MPX Operation

The MPX crossover operation should only be applied to updated genes, which the

code of the machine selects. The basic process of the MPX operation is as follows: First, a

crossover vector consisting of only 0 or 1 is randomly generated; then, the machine selec-

tion results at the corresponding positions of two parent individuals 𝑝1 and 𝑝2 are ex-

changed according to the value in the crossover vector in order to obtain 𝑐1 and 𝑐2. Com-

bined with the coding method in this paper, the machine selection code is first converted

into the corresponding single-job machine selection code, and then, the MPX cross opera-

tion is performed. In order to clearly explain the MPX operation process, Figure 4 below

shows the MPX cross process of two single-job machine selection codes.

Figure 4. MPX cross operation.

4.4. Multi-Population Update Mechanism Based on Collaborative Learning

The traditional CHIO algorithm divides the population into three types: susceptible,

infected, and immune. According to the relationship between random number r and BRr,

the evolution direction of the individual participating in the update is determined, and

then the population of the individual is judged according to the evolution’s direction and

the change in the fitness value. Although this method is conducive to ensuring the close-

ness of communication between populations, due to the large difference in the fitness val-

ues of different solutions for FJSP, the method will cause the population type to rapidly

evolve into an immune type, fall into the local optimal solution, and lose its global search

ability. In the iterative process of the algorithm, generating an illegal solution is an ex-

treme waste of computing power. First, producing an illegal solution represents an invalid

search. Second, illegal solutions need to be checked. Finally, the illegal solution needs to

be corrected or replaced. Therefore, this paper combines the POX and MPX crossover op-

eration based on a single-job machine selection code to redesign the multi-population up-

date method of the CHIO algorithm in order to avoid illegal solutions.

This paper still divides the population into three types: susceptible, infected, and im-

mune. When the random number is 𝑟 ≤ 𝐵𝑅𝑟, the individuals participating in the update

communicate within the population; when the random number is 𝑟 > 𝐵𝑅𝑟, the individu-

als participating in the update communicate between the populations. Individual partici-

pation updates do not change the types. Inspired by the spreading power of novel

Step ①：

1 3 2 3 4 2 4 3 1 2 2 3

1 3 4 3 2 2 2 3 1 4 2 3

Step ② Step ③

Cross vector：

2 3 2 6 1 5

1 3 4 2 2 3

2 3 4 6 2 3

1 3 2 2 1 5

0 0 1 0 1 1

Step ②

Step ③

Step ①

Figure 3. POX cross operation.

(2) MPX Operation

The MPX crossover operation should only be applied to updated genes, which the
code of the machine selects. The basic process of the MPX operation is as follows: First, a
crossover vector consisting of only 0 or 1 is randomly generated; then, the machine selection
results at the corresponding positions of two parent individuals p1 and p2 are exchanged
according to the value in the crossover vector in order to obtain c1 and c2. Combined with
the coding method in this paper, the machine selection code is first converted into the
corresponding single-job machine selection code, and then, the MPX cross operation is
performed. In order to clearly explain the MPX operation process, Figure 4 below shows
the MPX cross process of two single-job machine selection codes.

Processes 2023, 11, x FOR PEER REVIEW 9 of 24

Figure 3. POX cross operation.

(2) MPX Operation

The MPX crossover operation should only be applied to updated genes, which the

code of the machine selects. The basic process of the MPX operation is as follows: First, a

crossover vector consisting of only 0 or 1 is randomly generated; then, the machine selec-

tion results at the corresponding positions of two parent individuals 𝑝1 and 𝑝2 are ex-

changed according to the value in the crossover vector in order to obtain 𝑐1 and 𝑐2. Com-

bined with the coding method in this paper, the machine selection code is first converted

into the corresponding single-job machine selection code, and then, the MPX cross opera-

tion is performed. In order to clearly explain the MPX operation process, Figure 4 below

shows the MPX cross process of two single-job machine selection codes.

Figure 4. MPX cross operation.

4.4. Multi-Population Update Mechanism Based on Collaborative Learning

The traditional CHIO algorithm divides the population into three types: susceptible,

infected, and immune. According to the relationship between random number r and BRr,

the evolution direction of the individual participating in the update is determined, and

then the population of the individual is judged according to the evolution’s direction and

the change in the fitness value. Although this method is conducive to ensuring the close-

ness of communication between populations, due to the large difference in the fitness val-

ues of different solutions for FJSP, the method will cause the population type to rapidly

evolve into an immune type, fall into the local optimal solution, and lose its global search

ability. In the iterative process of the algorithm, generating an illegal solution is an ex-

treme waste of computing power. First, producing an illegal solution represents an invalid

search. Second, illegal solutions need to be checked. Finally, the illegal solution needs to

be corrected or replaced. Therefore, this paper combines the POX and MPX crossover op-

eration based on a single-job machine selection code to redesign the multi-population up-

date method of the CHIO algorithm in order to avoid illegal solutions.

This paper still divides the population into three types: susceptible, infected, and im-

mune. When the random number is 𝑟 ≤ 𝐵𝑅𝑟, the individuals participating in the update

communicate within the population; when the random number is 𝑟 > 𝐵𝑅𝑟, the individu-

als participating in the update communicate between the populations. Individual partici-

pation updates do not change the types. Inspired by the spreading power of novel

Step ①：

1 3 2 3 4 2 4 3 1 2 2 3

1 3 4 3 2 2 2 3 1 4 2 3

Step ② Step ③

Cross vector：

2 3 2 6 1 5

1 3 4 2 2 3

2 3 4 6 2 3

1 3 2 2 1 5

0 0 1 0 1 1

Step ②

Step ③

Step ①

Figure 4. MPX cross operation.

4.4. Multi-Population Update Mechanism Based on Collaborative Learning

The traditional CHIO algorithm divides the population into three types: susceptible,
infected, and immune. According to the relationship between random number r and BRr,
the evolution direction of the individual participating in the update is determined, and then
the population of the individual is judged according to the evolution’s direction and the
change in the fitness value. Although this method is conducive to ensuring the closeness of
communication between populations, due to the large difference in the fitness values of
different solutions for FJSP, the method will cause the population type to rapidly evolve
into an immune type, fall into the local optimal solution, and lose its global search ability. In
the iterative process of the algorithm, generating an illegal solution is an extreme waste of
computing power. First, producing an illegal solution represents an invalid search. Second,
illegal solutions need to be checked. Finally, the illegal solution needs to be corrected or
replaced. Therefore, this paper combines the POX and MPX crossover operation based on a
single-job machine selection code to redesign the multi-population update method of the
CHIO algorithm in order to avoid illegal solutions.

Processes 2023, 11, 1826 10 of 24

This paper still divides the population into three types: susceptible, infected, and
immune. When the random number is r ≤ BRr, the individuals participating in the update
communicate within the population; when the random number is r > BRr, the individuals
participating in the update communicate between the populations. Individual participation
updates do not change the types. Inspired by the spreading power of novel coronavirus and
considering the characteristics of POX and MPX operations, the HCHIO algorithm performs
gene evolution at different magnitudes among different populations. The base size of set
s1 divided in the first step of the operation determines the extent of gene evolution. The
new coronavirus spreads faster among susceptible populations, followed by infected and
immune populations. To this end, this paper sets the bases of s1 in susceptible, infected,
and immune populations as int(n/ 2) , int(n/ 3) , and int(n/4), respectively, to simulate
the difference in the transmission speed of the new coronavirus in order to achieve the
multi-scale solution space search. The updated formula of the multi-population mechanism
is shown in Formula (8).

xj(t + 1)←

PMsp(xj(t), p(1)2), r ≤ BRr type(xj(t)) = 1

PMsm(xj(t), p(0)2), r ≤ BRr type(xj(t)) = 0
PMsg(xj(t), p(2)2), r ≤ BRr type(xj(t)) = 2
PMsr (xj(t), p2), r > BRr

(8)

In Formula (8), type(x) is the function that obtains the population to which the current
individual belongs, and the corresponding variables of susceptible, infected, and immune
populations are 1, 0 and 2, respectively. p(1)2 indicates that the selection type is “1”; that

is, the susceptible-type individual is used as the second parent; PMsp(xj(t), p(1)2) indicates

that the cross operation is performed on xj(t) and p(1)2 according to sp. Among them, n is
the total number of jobs;

∣∣sp
∣∣ = n

2 , |sm| = n
3 ,
∣∣sg
∣∣ = n

4 , |sr| is a random integer, which is in
[2, n− 2]; p2 stands for any type of individual.

In the traditional CHIO algorithm, individual j participating in the update performs
genetic evolution on the individuals of other populations. However, there is a flaw here.
This is a one-way type of genetic evolution; that is, this process of evolution only occurs on
individual j. In this gene exchange, the population will not learn the dominant genes of
individual j. This is contrary to the theory of evolution in nature, and learning should be
mutual. Additionally, in the mainstream crossover operation [28,29], the greedy strategy is
often used to replace the current individual from the two offspring individuals. Although
this operation is beneficial to the convergence of the population, it reduces the diversity
of the population and easily falls into a local optimum. To this end, this paper proposes
a collaborative learning mechanism to enrich population diversity while ensuring con-
vergence. In the second paragraph of Section 4.4, it has been demonstrated that the p1
individual participating in the update retains some of the original genes and only learns
part of the genes of the p2 individual. Therefore, in the collaborative learning mechanism,
the p1 individual is only compared to c1. This explains whether the p1 individual learns
genes better from the p2 individual or not. In the same manner, p2 is only compared to
c2, which explains whether the p2 individual learns genes better from the p1 individual or
not. The specific details of the multi-population update mechanism based on collaborative
learning are referred to in Algorithm 1.

Processes 2023, 11, 1826 11 of 24

Algorithm 1. Multi-population update mechanism based on collaborative learning

Input: population to be updated: P(t), basic reproductive rate: BRr, population size: pop_size
Output: updated population P(t + 1)
1: for j = 1: pop_size do
2: p1 ← xj
3: if r ≤ BRr then
4: if xj is susceptible individuals then
5: select xk from the susceptible population, randomly select s1 of size int(n/ 2)
6: elif xj is infected individuals then
7: select xk from the infected population, randomly select s1 of size int(n/ 2)
8: else
9: select xk from the immune population, randomly select s1 of size int(n/ 4)
10: end if
11: else
12: select xk randomly, select s1 randomly
13: end if
14: p2 ← xk , according to s1, perform POX and MPX operations on p1 and p2 to obtain c1 and c2
15: if c1 is superior to p1 then
16: xj ← c1
17: end if
18: if c2 is superior to p2 then
19: xk ← c2
20: end if
21: j← j + 1
22: end for

4.5. Adaptive Mutation

Since its discovery, the new coronavirus has multiple branches around the world,
which shows that the new coronavirus has a strong ability to mutate. In the later stage of
the new crown pandemic, the virus’s ability to cause diseases becomes weaker, and this can
be roughly summarized as a “weakening mutation ability”. The traditional CHIO algorithm
only includes gene exchange between viruses, and it does not include the search method
for mutations to generate new genes. This paper proposes an adaptive mutation operation
to simulate the mutation evolution of the new coronavirus. The mutation operation is
introduced to enrich population diversity and expand the search space. Operation coding
and machine coding perform forward insertion mutations and machine random selection
mutations, respectively. The specific steps of adaptive mutation operations are shown in
Figure 5.

Processes 2023, 11, x FOR PEER REVIEW 12 of 24

Figure 5. Adaptive mutation.

Forward insertion mutation: combined with the coding method in this article, in or-

der to improve the effectiveness of the mutation, the forward insertion operation moves

the current job number to the front of the first job number, which is different from the

current job’s number.

Machine random mutation: Any machine from the optional machines of the current

operation is randomly selected to replace the current machine.

On the basis of the mutation operation, nonlinear mutation factor 𝑑 is embedded to

realize the adaptive adjustment of the mutation ability, and it balances the global search

and local search capabilities of the algorithm. The updated formula of the nonlinear vari-

ation factor is shown in Formula (9):

𝑑 = 𝑑𝑚𝑖𝑛 + (𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛) ∙ [1 − (
𝑒

𝑡
𝑇−1

𝑒−1
)𝛽] (9)

In Formula (9), 𝑑, 𝑑𝑚𝑎𝑥, and 𝑑𝑚𝑖𝑛 represent the mutation rate, the maximum value

and the minimum value of the mutation rate, respectively. 𝑡 represents the current itera-

tion number. 𝑇 is the maximum iteration number of the population, 𝛽 is a hyperparam-

eter, and the recommended value is selected within the range of [0.75, 2].

4.6. Knowledge-Driven Variable Neighborhood Search

The neighborhood search strategy is based on the current solution, and it conducts a

local fine search on the solution space near the current solution to find a better solution

and fully exploit the potential of the current solution. The neighborhood search can effec-

tively improve the quality of the solution, but there are many constraints in FJSP: The

solution space is large and complex, and it is difficult to determine an effective and better

neighborhood structure. Many scholars have designed neighborhood structures such as

insertion, replacement, pseudo-random, and critical path [5,10,30,31] for this problem.

However, these effects are not satisfactory. This paper proposes a knowledge-driven var-

iable neighborhood search strategy for the directional and efficient search of process

neighborhoods.

Knowledge 1: Knowledge 1 comprises the critical path. A feasible FJSP scheduling

scheme can be represented by a disjunction graph [32]. The disjunctive graph is a directed

acyclic graph, and the path corresponding to the maximum makespan is the key path of

the disjunctive graph. Neighborhood search is used to optimize the neighborhood

End

Start

Individual to be mutated, =1,
nonlinear variation factor

number of
total operations

Forward insertion mutation

Machine random mutation

No

Yes

Yes

Yes

No

No

Figure 5. Adaptive mutation.

Processes 2023, 11, 1826 12 of 24

Forward insertion mutation: combined with the coding method in this article, in order
to improve the effectiveness of the mutation, the forward insertion operation moves the
current job number to the front of the first job number, which is different from the current
job’s number.

Machine random mutation: Any machine from the optional machines of the current
operation is randomly selected to replace the current machine.

On the basis of the mutation operation, nonlinear mutation factor d is embedded to
realize the adaptive adjustment of the mutation ability, and it balances the global search and
local search capabilities of the algorithm. The updated formula of the nonlinear variation
factor is shown in Formula (9):

d = dmin + (dmax − dmin)·[1− (
e

t
T − 1
e− 1

)

β

] (9)

In Formula (9), d, dmax, and dmin represent the mutation rate, the maximum value and
the minimum value of the mutation rate, respectively. t represents the current iteration
number. T is the maximum iteration number of the population, β is a hyperparameter, and
the recommended value is selected within the range of [0.75, 2].

4.6. Knowledge-Driven Variable Neighborhood Search

The neighborhood search strategy is based on the current solution, and it conducts a
local fine search on the solution space near the current solution to find a better solution
and fully exploit the potential of the current solution. The neighborhood search can
effectively improve the quality of the solution, but there are many constraints in FJSP:
The solution space is large and complex, and it is difficult to determine an effective and
better neighborhood structure. Many scholars have designed neighborhood structures such
as insertion, replacement, pseudo-random, and critical path [5,10,30,31] for this problem.
However, these effects are not satisfactory. This paper proposes a knowledge-driven
variable neighborhood search strategy for the directional and efficient search of process
neighborhoods.

Knowledge 1: Knowledge 1 comprises the critical path. A feasible FJSP scheduling
scheme can be represented by a disjunction graph [32]. The disjunctive graph is a directed
acyclic graph, and the path corresponding to the maximum makespan is the key path of the
disjunctive graph. Neighborhood search is used to optimize the neighborhood structure
of the disjunctive graph. Although there are many neighborhood structures in current
disjunction graphs, most are invalid neighborhoods. Only the neighborhood search for the
critical path can change the scheduling objective, which is an effective search.

Knowledge 2: Knowledge 2 comprises the minimum processing time. The problem
studied in this paper is the process flexibility of the operation, and the processing time of
each operation on the optional machine is different. From qualitative analyses, it can be
concluded that when all operations are processed on the machine corresponding to the
shortest processing time, the maximum makespan is relatively smaller. Accordingly, the
processing machine of the operations on the critical path can be replaced with the machine
corresponding to the shortest processing time.

Knowledge 3: Machine utilization. From a global point of view, a high parallel state
represents a more reasonable coordination of the machine system. That is to say that
when the utilization rate of a certain machine is low, resources may be wasted. Accord-
ingly, the operation on the critical path can be allocated to the machine with the lowest
utilization rate; then, this operation can be reasonably arranged in combination with active
scheduling decoding.

Using the knowledge of the current scheduling scheme, the knowledge-driven variable
neighborhood search strategy can realize the directed neighborhood search. The specific
implementation details of the search strategy are referred to in Algorithm 2.

Some variables are involved in Algorithm 2, and they need to be introduced in advance.
N is an integer with a value that is the sum of operations contained in each job. C is a table;

Processes 2023, 11, 1826 13 of 24

by visiting this table, we can obtain the set of optional machines for each operation and the
corresponding processing time.

Algorithm 2. Knowledge-driven Variable Neighborhood Search

Input: current solution xj, total number of operations N, optional machine table C,
Output: new solution xj after knowledge-driven variable neighborhood search
1: Perform active scheduling decoding on xj to obtain a scheme and convert it into a disjunction

graph, then get critical path table P and machine utilization table U
2: temp← xj
3: for i = 1: N do
4: if temp(i) in P then
5: if rand ≤ 0.1 then

Get the optional machines set S of temp(i)
Visit U and select the machine LU with the lowest utilization rate from S
Visit C and select the machine LP with the lowest processing time from S

6: if temp(i) is processed on LP then
7: temp(i + N)← LU
8: elif temp(i) is processed on LU then
9: temp(i + N)← LP
10: else
11: Randomly temp(i + N) ← LU or LP
12: end if
13: end if
14: end if
15: i← i + 1
16: end for
17: if temp is superior to xj then
18: xj ← temp
19: end if
20: return xj

4.7. HCHIO Algorithm Framework

According to the characteristics of the FJSP, this paper redefines the population update
mechanism on the basis of the traditional CHIO algorithm and proposes the concept of “co-
operative learning” to ensure convergence and improve population diversity. The adaptive
mutation operation is introduced to enrich the diversity of the population, expand the local
search space of the current individual, and reasonably balance the global search and local
search capabilities. A knowledge-driven variable neighborhood search strategy is proposed
to fully tap the advantages of the current solution and realize effective neighborhood search.
The basic steps of the algorithm are as follows:

Step 1: The algorithm parameters are set, the population is initialized randomly, and
the population is divided into three sub-populations according to fitness.

Step 2: According to the relationship between random number r and BRr, the multi-
population update operation is performed based on collaborative learning.

Step 3: According to a certain probability, the adaptive mutation operation on the
individuals in the population is carried out one by one, and if the individual after the
mutation is better than the original individual, the original individual is replaced.

Step 4: Empirical knowledge is calculated based on the scheduling scheme correspond-
ing to the current individual, a knowledge-driven variable neighborhood search strategy is
executed, and the best individual is selected and retained.

Step 5: the age of the individual is updated, the death operation is executed on the
individual that reaches the maximum age, and a new individual is generated to replace the
dead individual.

Step 6: Whether the number of population updates reaches the maximum value is
determined. If it is not determined, step 2 follows; otherwise, step 7 follows.

Step 7: The algorithm ends.

Processes 2023, 11, 1826 14 of 24

The overall framework of the HCHIO algorithm is shown in Figure 6.

Processes 2023, 11, x FOR PEER REVIEW 14 of 24

20: return 𝑥𝑗

4.7. HCHIO Algorithm Framework

According to the characteristics of the FJSP, this paper redefines the population up-

date mechanism on the basis of the traditional CHIO algorithm and proposes the concept

of “cooperative learning” to ensure convergence and improve population diversity. The

adaptive mutation operation is introduced to enrich the diversity of the population, ex-

pand the local search space of the current individual, and reasonably balance the global

search and local search capabilities. A knowledge-driven variable neighborhood search

strategy is proposed to fully tap the advantages of the current solution and realize effec-

tive neighborhood search. The basic steps of the algorithm are as follows:

Step 1: The algorithm parameters are set, the population is initialized randomly, and

the population is divided into three sub-populations according to fitness.

Step 2: According to the relationship between random number r and BRr, the multi-

population update operation is performed based on collaborative learning.

Step 3: According to a certain probability, the adaptive mutation operation on the

individuals in the population is carried out one by one, and if the individual after the

mutation is better than the original individual, the original individual is replaced.

Step 4: Empirical knowledge is calculated based on the scheduling scheme corre-

sponding to the current individual, a knowledge-driven variable neighborhood search

strategy is executed, and the best individual is selected and retained.

Step 5: the age of the individual is updated, the death operation is executed on the

individual that reaches the maximum age, and a new individual is generated to replace

the dead individual.

Step 6: Whether the number of population updates reaches the maximum value is

determined. If it is not determined, step 2 follows; otherwise, step 7 follows.

Step 7: The algorithm ends.

The overall framework of the HCHIO algorithm is shown in Figure 6.

Figure 6. Framework of the HCHIO algorithm.

Initialize CHIO algorithm
parameters and herd
immunity population

End？

population
size

End

Death case

Evolves with susceptible
one:

Adaptive mutation

Knowledge-driven variable
neighborhood search

Start

Evolves with infected
one:

Evolves with immune
one:

Evolves with random one:

Multi-Population Update Mechanism

Based on Collaborative Learning

Yes

No

Yes

Yes

No

NoNo

Yes

() 1?jtype x = (1)

2((),)
p

j

sPM x t p

2((),)
r

j

sPM x t p

(0)

2((),)
m

j

sPM x t p

(2)

2((),)
g

j

sPM x t p

() 0?jtype x =

Figure 6. Framework of the HCHIO algorithm.

4.8. Algorithm Complexity Analysis

The HCHIO algorithm mainly includes three stages: the multi-population update
mechanism based on collaborative learning, the adaptive mutation operation, and the
knowledge-driven neighborhood search strategy. For a clear description, the following
definitions are available: the code length of an individual is 2l, the population size is
pop_size, and the number of iterations is epoch. One point that needs to be explained is that,
according to the previous introduction, when the total number of operations is l, the code
length is 2l; thus, the complexity of our algorithm is closely related to the specific case.

POX and MPX crossover operations are used in the multi-population update mecha-
nism. Two parent individuals need to be selected for both operations. Both parents need
to be traversed once, and the coding method comprises two-stage coding. Therefore, the
complexity of the multi-population update mechanism is described in Formula (10):

O(l)·2 + O(l)·2 (10)

The adaptive mutation operation performs mutation operations on genes at multiple
sites. In order to ensure the effectiveness of the pre-insertion mutation in the operational
segment, the forward insertion mutation operation needs to find a gene that is different
from the gene waiting to mutate. The machine mutation comprises a random selection
mutation; thus, the complexity degree of this stage in the worst case is calculated using
Formula (11).

O(l·l) + O(l) (11)

The complexity in the best case is Formula (12).

O(l·1) + O(l) (12)

The variable neighborhood search strategy first needs to calculate the cumulative
knowledge of the current scheduling scheme; then, it executes the neighborhood search

Processes 2023, 11, 1826 15 of 24

operation based on empirical knowledge. The algorithm complexity is described in
Formula (13):

O(2l) + O(l) (13)

The above operations are performed on each individual in the population, and the
complexity of the HCHIO algorithm is described in Formula (14):

(O(l)·2 + O(l)·2 + O(l·l) + O(l) + O(2l) + O(l))·pop_size·epoch = O
(

l2
)
·pop_size·epoch (14)

5. Experimental Analysis

All experimental algorithms in this paper are programmed using Python language
and run in the Windows 10 system and the Python version 3.8 environment. The computer
hardware configuration is as follows: Intel Core i7-10700 CPU @2.9GHz and RAM 16GB.
This paper chooses Brandimarte’s [33] benchmark and Hurink’s benchmark [34] to verify
the performance of the HCHIO algorithm. Brandimarte’s benchmark is used the most in
the papers we read, so we have chosen it as the main data set of this article. Brandimarte’s
benchmark contains 10 cases named MK01-MK10, including various cases ranging from
simple to complex; thus, it has been used by many scholars. The specific details of this
benchmark are given in Table 2. Aiming at the problem of large differences in the makespan
of different data sets, the relative percentage deviation (relative percentage deviation, RPD)
index is introduced to uniformly measure the performance of the algorithm. The calculation
formula of RPD is shown in Formula (15).

RPD =
Get− Best

Best
·100% (15)

Table 2. Specific details of Brandimarte’s benchmark.

Test Cases The Total
Number of Jobs

The Total Number
of Machines

The Total Number
of Operations Freedom

MK01 10 6 55 2
MK02 10 6 58 3.5
MK03 15 8 150 3
MK04 15 8 90 2
MK05 15 4 106 1.5
MK06 10 15 150 3
MK07 20 5 100 3
MK08 20 10 225 1.5
MK09 20 10 240 3
MK10 20 15 240 3

In Formula (15), Get is the solution obtained by the current algorithm, and Best is the
optimal solution obtained by the algorithm in this paper.

5.1. Parameter Settings

The main parameters in the HCHIO algorithm are epoch, pop_size, BRr, and MA. The
variation ratio is set to 0.3 according to the research in the literature [7], and variation
degrees dmax and dmin are set to 0.1 and 0.05, respectively. In order to analyze the influence
of the main parameters on the performance of the algorithm, an orthogonal table was
generated using Mintab software by creating a Taguchi design. According to the L9

(
34)

orthogonal table, a four-factor three-level orthogonal experiment is carried out, and the
parameter level settings are shown in Table 3.

Processes 2023, 11, 1826 16 of 24

Table 3. Parameter level.

Level
Parameter

epoch pop_size BRr MA

1 500 100 0.50 20
2 1000 200 0.65 30
3 1500 300 0.80 40

The MK06 data set (Best = 58) with a relatively moderate total number of jobs and
machines is selected for orthogonal experiments. Each group runs independently 10 times
in the MK06 environment, and the RPD index of the average makespan is calculated. The
parameter settings of different experimental groups and the RPD index of the algorithm
are shown in Table 4. According to the RPD values of each group of experiments in the
orthogonal table, the response values and response graphs of different parameters relative
to the algorithm’s performance can be obtained. The results are shown in Table 5 and
Figure 7.

Table 4. Orthogonal tables and RPD values.

Number
Parameter

RPD
epoch pop_size BRr MA

1 1 1 1 1 0.068966
2 1 2 2 2 0.056897
3 1 3 3 3 0.072414
4 2 1 2 3 0.058621
5 2 2 3 1 0.048276
6 2 3 1 2 0.032759
7 3 1 3 2 0.058621
8 3 2 1 3 0.051724
9 3 3 2 1 0.029310

Table 5. Parameter response value.

Level
Parameter

epoch pop_size BRr MA

1 0.066092 0.062069 0.051149 0.048851
2 0.046552 0.052299 0.048276 0.049425
3 0.046552 0.044828 0.059770 0.06092

Range 0.019540 0.017201 0.011494 0.012069
Rank 1 2 4 3

Processes 2023, 11, x FOR PEER REVIEW 17 of 24

Table 5. Parameter response value.

Level
Parameter

epoch pop_size BRr MA

1 0.066092 0.062069 0.051149 0.048851

2 0.046552 0.052299 0.048276 0.049425

3 0.046552 0.044828 0.059770 0.06092

Range 0.019540 0.017201 0.011494 0.012069

Rank 1 2 4 3

Figure 7. Parameter response plot.

From the analysis in Table 4, it is observed that epoch and pop_size have a greater im-

pact on the algorithm, while BBr and MA have less impact. In Figure 7, the parameter

levels corresponding to the smaller response value are better. In the Epoch Level diagram,

the response values of levels 2 and 3 are smaller than level 1, indicating that a larger epoch

is more conducive to optimization. However, the epoch response values of levels 2 and 3

are similar, indicating that at level 2, the performance of the algorithm has converged and

stabilized. Similarly, in the size level response value diagram, it can be concluded that the

larger the population size, the more conducive it is to finding the optimal solution. How-

ever, larger populations require more computing power. The optimal parameter level for

BRr is level 2. For the MA parameters, the response values of level 2 and level 1 are not

that different, indicating that the performance of the parameters of these two levels is sim-

ilar to the MK06 data set.

Considering the characteristics of randomness in the swarm intelligence algorithm,

the fact that the MK06 data set is a medium data set, and the running time of the algorithm,

the parameters of the algorithm in this paper are uniformly set as follows: epoch = 1000,

pop_size = 200, BRr = 0.65, and MA = 30. Given the fact that the size of the MK06 data set is

10 × 15 and the size of the MK10 data set is 20 × 15, combined with the analysis of the

convergence curve during the experiment, epoch = 1500 of the MK10 data set is reset, and

the other parameters are kept unchanged.

5.2. Verification of the Effectiveness of Innovations

This paper carries out a series of improvements relative to the traditional CHIO al-

gorithm, and these improvements are in line with the characteristics of FJSP. The main

innovations include the following: a multi-population update mechanism for collabora-

tive learning, adaptive mutation, and a variable neighborhood search strategy that is

knowledge-driven. In order to verify the effectiveness of innovation points, the following

algorithm settings are now implemented. CHIO represents the traditional floating-point

version of the CHIO algorithm. CHIOc abandons the floating-point number update

method and incorporates the CHIO algorithm based on the multi-population update

mechanism using collaborative learning. CHIOcm is a CHIOc algorithm with adaptive

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0 1 2 3

0.04

0.045

0.05

0.055

0.06

0.065

0 1 2 3

0.04

0.045

0.05

0.055

0.06

0.065

0 1 2 3

0.04

0.045

0.05

0.055

0.06

0.065

0 1 2 3

Epoch Level Size Level MA LevelBRr Level

R
es

p
o

n
se

 v
al

u
e

Figure 7. Parameter response plot.

Processes 2023, 11, 1826 17 of 24

From the analysis in Table 4, it is observed that epoch and pop_size have a greater impact
on the algorithm, while BBr and MA have less impact. In Figure 7, the parameter levels
corresponding to the smaller response value are better. In the Epoch Level diagram, the
response values of levels 2 and 3 are smaller than level 1, indicating that a larger epoch
is more conducive to optimization. However, the epoch response values of levels 2 and
3 are similar, indicating that at level 2, the performance of the algorithm has converged
and stabilized. Similarly, in the size level response value diagram, it can be concluded
that the larger the population size, the more conducive it is to finding the optimal solution.
However, larger populations require more computing power. The optimal parameter level
for BRr is level 2. For the MA parameters, the response values of level 2 and level 1 are
not that different, indicating that the performance of the parameters of these two levels is
similar to the MK06 data set.

Considering the characteristics of randomness in the swarm intelligence algorithm,
the fact that the MK06 data set is a medium data set, and the running time of the algorithm,
the parameters of the algorithm in this paper are uniformly set as follows: epoch = 1000,
pop_size = 200, BRr = 0.65, and MA = 30. Given the fact that the size of the MK06 data set
is 10 × 15 and the size of the MK10 data set is 20 × 15, combined with the analysis of the
convergence curve during the experiment, epoch = 1500 of the MK10 data set is reset, and
the other parameters are kept unchanged.

5.2. Verification of the Effectiveness of Innovations

This paper carries out a series of improvements relative to the traditional CHIO
algorithm, and these improvements are in line with the characteristics of FJSP. The main
innovations include the following: a multi-population update mechanism for collaborative
learning, adaptive mutation, and a variable neighborhood search strategy that is knowledge-
driven. In order to verify the effectiveness of innovation points, the following algorithm
settings are now implemented. CHIO represents the traditional floating-point version of
the CHIO algorithm. CHIOc abandons the floating-point number update method and
incorporates the CHIO algorithm based on the multi-population update mechanism using
collaborative learning. CHIOcm is a CHIOc algorithm with adaptive mutation operations.
HCHIO (CHIOcmv) is an added CHIOcm algorithm based on the knowledge-driven
variable neighborhood search strategy. The above algorithms are run 10 times (one by one)
using Brandimarte’s cases, and the performance of the algorithm is evaluated using the
four indicators of Opt, Avg, RPD, and Time. Opt represents the optimal solution obtained
by the algorithm, Avg is the average makespan of running 10 times, RPD is the relative
percentage deviation of Avg, and Time is the running time required for one iteration of the
algorithm (unit: s).

As shown in Table 6, the bold font in the table is the optimal value of Opt and Avg.
The traditional CHIO is updated in the floating-point number domain. This paper uses a
discrete mapping scheme to convert the floating-point number into a shop-floor scheduling
scheme, but the resulting RPD is large, which verifies that the solution space search in the
floating-point number domain is unsuitable for the FJSP when using the CHIO algorithm.
The main reason is that the floating-point number search method is inefficient, and retaining
the characteristics of dominant genes is difficult. Compared with the CHIO algorithm,
the RPD index of the CHIOc algorithm is greatly reduced, which fully demonstrates the
rationality and effectiveness of the update method designed in this paper, and the update
in the discrete domain is less time-consuming and more efficient than the floating-point
number domain. After adding the adaptive mutation operation on the CHIOc algorithm
to obtain the CHIOcm algorithm, although the RPD value did not decrease significantly,
the mutation operation produced better solutions on MK04, 06, 07, and 10, which verified
that the mutation operation can produce excellent genes and expand the search space
of the current solution. The HCHIO (CHIOcmv) algorithm achieves the optimal mean
value in all cases, which fully demonstrates the effectiveness of the neighborhood search
knowledge used. As it is different from relying on the random method to introduce good

Processes 2023, 11, 1826 18 of 24

genes, the neighborhood search method in this paper uses knowledge-driven methods to
realize the directional search of the solution space in order to achieve the optimal value in
all calculation examples. Figure 8 shows the convergence curves of the optimal solutions of
all CHIO-based algorithms in each case of Brandimarte’s benchmark. It can be observed
from the figure that HCHIO has a stronger searchability for the optimal solution and a
faster convergence speed. The convergence details of all the above algorithms are shown in
Figure 8.

Table 6. Verification of the effectiveness of innovation points.

Test
Cases

CHIO CHIOc CHIOcm HCHIO (CHIOcmv)

Opt Avg RPD Time Opt Avg RPD Time Opt Avg RPD Time Opt Avg RPD Time

MK01 45 47.9 19.8 0.42 40 40 0.0 0.26 40 40 0.0 0.34 40 40 0.0 0.47
MK02 42 43.3 66.5 0.43 26 26.8 3.1 0.28 26 26.5 1.9 0.34 26 26.2 0.8 0.52
MK03 282 293.5 43.9 1.07 204 204 0.0 0.85 204 204 0.0 1.17 204 204 0.0 1.61
MK04 82 83 38.3 0.65 62 63.4 5.7 0.44 61 62.7 4.5 0.58 60 62.5 4.2 0.86
MK05 196 201.7 16.6 0.77 173 173 0.0 0.76 173 173 0.0 0.95 173 173 0.0 1.40
MK06 127 134.9 132.6 1.10 62 63 8.6 0.90 60 62.9 8.4 1.11 58 60.3 4.0 1.63
MK07 215 219.1 57.6 0.74 140 141.2 1.6 0.62 139 140.9 1.4 0.77 139 140.1 0.8 1.21
MK08 596 601.3 15.0 1.63 523 523 0.0 1.60 523 523 0.0 2.09 523 523 0.0 2.99
MK09 478 484.5 57.8 1.76 307 307.7 0.2 1.64 307 307 0.0 1.98 307 307 0.0 3.18
MK10 395 405.9 101.9 1.78 217 219.9 9.4 1.59 204 206.7 2.8 1.99 201 205.3 2.1 2.97

Mean 55.0 2.9 1.9 1.2Processes 2023, 11, x FOR PEER REVIEW 19 of 24

Figure 8. Convergence curves of the optimal solutions of all CHIO-based algorithms on

Brandimarte’s benchmark.

5.3. Algorithm Performance Evaluation

In order to verify the effectiveness of the algorithm proposed in this paper, the algo-

rithm proposed in this paper is compared with the hybrid gray wolf optimization algo-

rithm (HGWO) proposed by Jiang [7], the improved particle swarm optimization algo-

rithm (IPSO) proposed by Ding et al. [35], the mushroom picking framework (MPF) pro-

posed by Jędrzejowicz et al. [36], and the hybrid genetic algorithm (HGA) proposed by

Sun et al. [6]. The experimental results of these algorithms are all from the corresponding

literature.

As shown in Table 7, the bold font in the table is the optimal value of Opt and Avg.

Compared with other algorithms, the HCHIO algorithm obtained the optimal solution on

all examples in the Opt index, which verified that the HCHIO algorithm can effectively

learn the dominant genes during the update course and realize the directional and effec-

tive search of the current solution neighborhood. Among them, the optimal solution Gantt

charts of MK06 and MK10 are shown in Figures 9 and 10. In the Gantt chart, the blue

number in the center below each operation is the processing time of the operation. In terms

of the Avg index, the average value of the HCHIO algorithm in the nine cases is the best,

which reflects the rationality of the HCHIO algorithm’s update mechanism designed in

this paper, which can ensure the diversity of the population while maintaining conver-

gence, and it does not easily fall into a local optimum. However, with respect to the MK04

data set, the HGA algorithm obtained a smaller average value. The reason may be that the

adjacent excellent solutions of the MK04 example have a large difference, and this is un-

suitable for the update mechanism in this paper. The RPD index shows that the HCHIO

0 250 500 750 1000

40

45

50

55

M
ak

es
p

an

Epoch

 CHIO

 CHIOc

 CHIOcm

 HCHIO

MK01

0 250 500 750 1000

26

31

36

41

46

51

56

M
ak

es
p

an

Epoch

 CHIO

 CHIOc

 CHIOcm

 HCHIO

MK02

0 250 500 750 1000

204

234

264

294

324

354

M
ak

es
p

an

Epoch

 CHIO

 CHIOc

 CHIOcm

 HCHIO

MK03

0 250 500 750 1000

60

65

70

75

80

85

90

95

100

M
ak

es
p

an

Epoch

 CHIO

 CHIOc

 CHIOcm

 HCHIO

MK04

0 250 500 750 1000

173

183

193

203

213

223

M
ak

es
p

an

Epoch

 CHIO

 CHIOc

 CHIOcm

 HCHIO

MK05

0 250 500 750 1000

58

78

98

118

138

158

M
ak

es
p

an

Epoch

 CHIO

 CHIOc

 CHIOcm

 HCHIO

MK06

0 250 500 750 1000

139

159

179

199

219

239

259

M
ak

es
p

an

Epoch

 CHIO

 CHIOc

 CHIOcm

 HCHIO

MK07

0 250 500 750 1000

523

543

563

583

603

623

643

M
ak

es
p

an

Epoch

 CHIO

 CHIOc

 CHIOcm

 HCHIO

MK08

0 250 500 750 1000

307

327

347

367

387

407

427

447

467

487

507

527

M
ak

es
p

an

Epoch

 CHIO

 CHIOc

 CHIOcm

 HCHIO

MK09

0 500 1000 1500

201

251

301

351

401

451

501

M
ak

es
p

an

Epoch

 CHIO

 CHIOc

 CHIOcm

 HCHIO

MK10

Figure 8. Convergence curves of the optimal solutions of all CHIO-based algorithms on Brandimarte’s
benchmark.

Processes 2023, 11, 1826 19 of 24

5.3. Algorithm Performance Evaluation

In order to verify the effectiveness of the algorithm proposed in this paper, the algo-
rithm proposed in this paper is compared with the hybrid gray wolf optimization algorithm
(HGWO) proposed by Jiang [7], the improved particle swarm optimization algorithm (IPSO)
proposed by Ding et al. [35], the mushroom picking framework (MPF) proposed by Jędrze-
jowicz et al. [36], and the hybrid genetic algorithm (HGA) proposed by Sun et al. [6]. The
experimental results of these algorithms are all from the corresponding literature.

As shown in Table 7, the bold font in the table is the optimal value of Opt and Avg.
Compared with other algorithms, the HCHIO algorithm obtained the optimal solution on
all examples in the Opt index, which verified that the HCHIO algorithm can effectively
learn the dominant genes during the update course and realize the directional and effective
search of the current solution neighborhood. Among them, the optimal solution Gantt
charts of MK06 and MK10 are shown in Figures 9 and 10. In the Gantt chart, the blue
number in the center below each operation is the processing time of the operation. In terms
of the Avg index, the average value of the HCHIO algorithm in the nine cases is the best,
which reflects the rationality of the HCHIO algorithm’s update mechanism designed in this
paper, which can ensure the diversity of the population while maintaining convergence,
and it does not easily fall into a local optimum. However, with respect to the MK04 data set,
the HGA algorithm obtained a smaller average value. The reason may be that the adjacent
excellent solutions of the MK04 example have a large difference, and this is unsuitable for
the update mechanism in this paper. The RPD index shows that the HCHIO algorithm in
this paper has the best comprehensive performance, which verifies the effectiveness of the
algorithm proposed in this paper.

Table 7. Algorithm performance on Brandimarte’s benchmark.

Test
Cases Size

HGWO IPSO MPF HGA HCHIO

Opt Avg RPD Opt Avg RPD Opt Avg RPD Opt Avg RPD Opt Avg RPD

MK01 10 × 6 40 41.6 4.0 40 42 5.0 41 41.9 4.8 40 40 0.0 40 40 0.0
MK02 10 × 6 29 30.3 16.5 29 32 23.1 28 28 7.7 26 26.6 2.3 26 26.2 0.8
MK03 15 × 8 204 204.1 0.0 204 204 0.0 204 204 0.0 204 204 0.0 204 204 0.0
MK04 15 × 8 65 67.4 12.3 66 70 16.7 67 67.4 12.3 60 61.4 2.3 60 62.5 4.2
MK05 15 × 4 175 178.2 3.0 175 181 4.6 176 176 1.7 173 173 0.0 173 173 0.0
MK06 10 × 15 79 79.9 37.8 77 84 44.8 69 69 19.0 61 63.5 9.5 58 60.3 4.0
MK07 20 × 5 149 156.4 12.5 145 151 8.6 143 147.9 6.4 140 140.3 0.9 139 140.1 0.8
MK08 20 × 10 523 523 0.0 523 523 0.0 523 523 0.0 523 523 0.0 523 523 0.0
MK09 20 × 10 325 342.3 11.5 347 347 13.0 333 338 10.1 307 309.1 0.7 307 307 0.0
MK10 20 × 15 253 262.7 30.7 256 256 27.4 237 242 20.4 214 216.9 7.9 201 205.3 2.1

Mean 12.8 14.3 8.2 2.4 1.2

Table 8. Algorithm performance on Hurink’s benchmark.

Test Case RGA 2SGA DRL HCHIO

Vdata_la1 577 572 610 576
Vdata_la2 535 532 555 534
Vdata_la3 485 481 532 481
Vdata_la4 510 506 530 504
Vdata_la5 468 463 507 463
Vdata_la6 804 801 820 805
Vdata_la7 756 751 757 754
Vdata_la8 768 766 782 769
Vdata_la9 858 854 879 858

Vdata_la10 808 806 862 808

Processes 2023, 11, 1826 20 of 24

Processes 2023, 11, x FOR PEER REVIEW 21 of 24

Figure 9. Gantt chart of MK06’s optimal solution(One color represents a job. The blue number below the rectangular block is the processing time.).

 makespan

Time

M
ac

h
in

e

Figure 9. Gantt chart of MK06’s optimal solution (One color represents a job. The blue number below the rectangular block is the processing time).

Processes 2023, 11, 1826 21 of 24Processes 2023, 11, x FOR PEER REVIEW 22 of 24

Figure 10. Gantt chart of MK10’s optimal solution(One color represents a job. The blue number below the rectangular block is the processing time.).

 makespan

Time

M
ac

h
in

e

Figure 10. Gantt chart of MK10’s optimal solution (One color represents a job. The blue number below the rectangular block is the processing time).

Processes 2023, 11, 1826 22 of 24

Although Brandimarte’s benchmark already includes cases of various complexity, in
order to fully verify the effectiveness of the algorithm in this paper, by searching other
benchmarks of FJSP articles, we selected the Hurink benchmark to test the performance of
the algorithm in this paper. The most complex category in this benchmark is Vdata. Thus,
we chose the cases from Vdata_la1 to Vdata_la10 for experimentation. For this benchmark,
the algorithm parameters of this paper are set as follows: epoch = 1500, pop_size = 200,
BRr = 0.65, and MA = 30. The specific experimental results are shown in Table 8. The
result of HCHIO is an average of 10 executions. The average results of the regular genetic
algorithm (RGA), two-stage GA (2SGA), and deep reinforcement learning (DRL) in the table
are all from the literature [32]. It can be observed in the table that the HCHIO algorithm
outperforms the DRL and RGA algorithms in almost all aspects in terms of performance.
Moreover, the HCHIO algorithm produces a state-of-the-art solution with respect to the
current body of research on the la3-la5 cases. However, the performance in other cases is not
as good as 2SGA. However, it is worth mentioning that the maximum number of iterations
of the 2SGA algorithm is 3000, while the HCHIO algorithm only iterates 1500 times, which
is only half of the 2SGA algorithm. The experimental results show that the gap between
the HCHIO algorithm and the 2SGA algorithm is small, which fully demonstrates the
effectiveness of our algorithm.

6. Conclusions

This paper studies the FJSP and proposes an effective HCHIO algorithm based on
the traditional CHIO algorithm. Combining the characteristics of the FJSP, this algorithm
designs a discretized two-stage encoding and decoding scheme to solve the operation
sequencing subproblem and the machine selection subproblem of the FJSP. Then, based
on POX and MPX operations, the multi-population update mechanism is redesigned
based on collaborative learning so that cross-individuals can collaboratively learn each
other’s superior genes. This mechanism can simultaneously ensure the convergence
of the algorithm and the diversity of the population. Inspired by the evolution of the
new coronavirus, an adaptive mutation operation is proposed to realize dynamic gene
mutations and increase the search space of the algorithm. In order to efficiently search for a
better solution, this algorithm proposes a variable neighborhood search technology that is
knowledge-driven, using the knowledge of critical paths, processing times, and machine
utilization to realize the directional and effective search of the neighborhood solution space.
Finally, the benchmark calculation example is tested and compared with other algorithms
to verify the effectiveness of the algorithm proposed in this paper.

The next research plan Is as follows: (1) By combining the characteristics of the FJSP,
we intend to dig deep into diversified mutation operations and search for dominant genes
from different angles; (2) we continue to expand upon the empirical knowledge used in
neighborhood search in order to achieve a more efficient neighborhood space search.

Author Contributions: Methodology, writing, editing, and original draft preparation, X.M.;
conceptualization, project administration, reviewing, and funding acquisition, L.B. and X.J.;
writing—reviewing and editing, J.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was supported by the National Natural Science Foundation of China (No.
62266034) and the Key R&D projects of Ningxia Hui Autonomous Region (No. 2021BEE03020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: After the paper is accepted, we will upload the experimental data and
all related codes. The following information was supplied regarding data availability: The data set is
available on GitHub: https://github.com/YiCai-Guo/HCHIO (accessed on 7 May 2023). The code is
available on GitHub: https://github.com/YiCai-Guo/HCHIO (accessed on 7 May 2023).

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/YiCai-Guo/HCHIO
https://github.com/YiCai-Guo/HCHIO

Processes 2023, 11, 1826 23 of 24

References
1. Garey, M.R.; Johnson, D.S.; Sethi, R. The Complexity of Flowshop and Jobshop Scheduling. Math. Oper. Res. 1976, 1, 117–129.

[CrossRef]
2. Gao, K.Z.; Suganthan, P.N.; Chua, T.J.; Chong, C.S.; Cai, T.X.; Pan, Q.K. A two-stage artificial bee colony algorithm scheduling

flexible job-shop scheduling problem with new job insertion. Expert Syst. Appl. 2015, 42, 7652–7663. [CrossRef]
3. Chang, Y.-L.; Matsuo, H.; Sullivan, R.S. A bottleneck-based beam search for job scheduling in a flexible manufacturing system.

Int. J. Prod. Res. 1989, 27, 1949–1961. [CrossRef]
4. Zhang, G.H.; Gao, L.; Li, P.G.; Zhang, C.Y. Improved Genetic Algorithms for Solving Flexible Job Shop Scheduling Problems.

Chin. J. Mech. Eng. 2009, 45, 145–151. [CrossRef]
5. Liu, Q.; Zhang, C.Y.; Rao, Y.Q.; Shao, X.Y. Improved Genetic Algorithm for Flexible Job Shop Scheduling. Ind. Eng. Manag. 2009,

14, 59–66.
6. Sun, K.X.; Zheng, D.B.; Song, H.H.; Cheng, Z.W.; Lang, X.D.; Yuan, W.D.; Wang, J.Q. Hybrid genetic algorithm with variable

neighborhood search for flexible job shop scheduling problem in a machining system. Expert Syst. Appl. 2023, 215, 119359.
[CrossRef]

7. Jiang, T.H. Hybrid Gray Wolf Optimization Algorithm for Solving Flexible Job Shop Scheduling Problems. Control. Decis. Mak.
2018, 33, 503–508.

8. Ding, H.J.; Gu, X.S. Hybrid of human learning optimization algorithm and particle swarm optimization algorithm with scheduling
strategies for the flexible job-shop scheduling problem. Neurocomputing 2020, 414, 313–332. [CrossRef]

9. Zhang, C.Y.; Xu, L.; Li, J.; Zhao, Y.; He, K. Research on Flexible Job Shop Scheduling Based on Improved Wolf Pack Algorithm.
J. Syst. Simul. 2023, 35, 534–543.

10. Chen, N.L.; Xie, N.M.; Wang, Y.Q. An elite genetic algorithm for flexible job shop scheduling problem with extracted grey
processing time. Appl. Soft Comput. 2022, 131, 109783. [CrossRef]

11. Chen, K.; Bi, L. FJSP research of improved particle swarm optimization algorithm considering transportation time. J. Syst. Simul.
2021, 33, 845–853.

12. Zhang, J.; Wang, W.L.; Xu, X.L.; Wang, H.Y. Solving the Batch Scheduling Problem of Flexible Job Shops Based on Improved
Particle Swarm Optimization Algorithm. Control. Decis. Mak. 2012, 27, 513–518.

13. Komaki, G.M.; Kayvanfar, V. Grey Wolf Optimizer algorithm for the two-stage assembly flow shop scheduling problem with
release time. J. Comput. Sci. 2015, 8, 109–120. [CrossRef]

14. Coma, M.; Tousi, N.M.; Pons-Prats, J.; Bugeda, G.; Bergada, J.M. A New Hybrid Optimization Method, Application to a Single
Objective Active Flow Control Test Case. Appl. Sci. 2022, 12, 3894. [CrossRef]

15. Devarapalli, R.; Bhattacharyya, B. A hybrid modified grey wolf optimization-sine cosine algorithm-based power system stabilizer
parameter tuning in a multimachine power system. Optim. Control. Appl. Methods 2020, 41, 1143–1159. [CrossRef]

16. Knypinski, L. A novel hybrid cuckoo search algorithm for optimization of a line-start PM synchronous motor. Bull. Pol. Acad.
Sci.-Tech. 2023, 71, e144586.

17. Knypinski, L. Constrained optimization of line-start PM motor based on the gray wolf optimizer. Eksploat Niezawodn. 2021, 23,
1–10. [CrossRef]

18. Hegazy, A.E.; Makhlouf, M.A.; El-Tawel, G.S. Improved salp swarm algorithm for feature selection. J. King Saud. Univ.-Comput.
Inf. Sci. 2020, 32, 335–344. [CrossRef]

19. Al-Betar, M.A.; Alyasseri, Z.A.A.; Awadallah, M.A.; Abu Doush, I. Coronavirus herd immunity optimizer (CHIO). Neural Comput.
Appl. 2021, 33, 5011–5042. [CrossRef]

20. Rani, N.; Malakar, T. Maximization of Reactive Power Reserve in wind integrated power system using CHIO approach. IFAC-
PapersOnLine 2022, 55, 150–155. [CrossRef]

21. Hosny, K.M.; Khalid, A.M.; Hamza, H.M.; Mirjalili, S. Multilevel segmentation of 2D and volumetric medical images using hybrid
Coronavirus Optimization Algorithm. Comput. Biol. Med. 2022, 150, 106003. [CrossRef]

22. Yang, P.; Qi, X.B.; Yuan, Y.X.; Zhao, Y.S. Hybrid CHIO algorithm optimization for PFSP problems. Comput. Syst. Appl. 2022, 31,
380–387.

23. Brucker, P.; Burke, E.K.; Groenemeyer, S. A branch and bound algorithm for the cyclic job-shop problem with transportation.
Comput. Oper. Res. 2012, 39, 3200–3214. [CrossRef]

24. Pinedo, M.L. Deterministic Models: Preliminaries. In Scheduling Theory, Algorithms, and Systems, 5th ed.; Springer
Science + Business Media: New York, NY, USA, 2016; pp. 15–20.

25. Hu, R.Q.; Cheng, H.; Zhang, Z.N. Solving Sequential Flexible Shop Scheduling Problems Based on Expression Trees. Computer
Integrated Manufacturing Systems, 1–15. Available online: http://kns.cnki.net/kcms/detail/11.5946.tp.20220317.1506.002.html
(accessed on 21 March 2022).

26. Chen, R.H.; Yang, B.; Li, S.; Wang, S.L. A self-learning genetic algorithm based on reinforcement learning for flexible job-shop
scheduling problem. Comput. Ind. Eng. 2020, 149, 106778. [CrossRef]

27. Li, R.; Gong, W.Y.; Wang, L.; Lu, C.; Jiang, S.N. Two-stage knowledge-driven evolutionary algorithm for distributed green flexible
job shop scheduling with type-2 fuzzy processing time. Swarm Evol. Comput. 2022, 74, 101139. [CrossRef]

28. Zhang, C.Y.; Rao, Y.Q.; Liu, X.J.; Li, P.G. Genetic algorithm based on POX crossover to solve job-shop scheduling problem. China
Mech. Eng. 2004, 23, 83–87. [CrossRef]

https://doi.org/10.1287/moor.1.2.117
https://doi.org/10.1016/j.eswa.2015.06.004
https://doi.org/10.1080/00207548908942666
https://doi.org/10.3901/JME.2009.07.145
https://doi.org/10.1016/j.eswa.2022.119359
https://doi.org/10.1016/j.neucom.2020.07.004
https://doi.org/10.1016/j.asoc.2022.109783
https://doi.org/10.1016/j.jocs.2015.03.011
https://doi.org/10.3390/app12083894
https://doi.org/10.1002/oca.2591
https://doi.org/10.17531/ein.2021.1.1
https://doi.org/10.1016/j.jksuci.2018.06.003
https://doi.org/10.1007/s00521-020-05296-6
https://doi.org/10.1016/j.ifacol.2022.04.025
https://doi.org/10.1016/j.compbiomed.2022.106003
https://doi.org/10.1016/j.cor.2012.04.008
http://kns.cnki.net/kcms/detail/11.5946.tp.20220317.1506.002.html
https://doi.org/10.1016/j.cie.2020.106778
https://doi.org/10.1016/j.swevo.2022.101139
https://doi.org/10.3901/JME.2004.02.083

Processes 2023, 11, 1826 24 of 24

29. Gu, J.C.; Jiang, T.H.; Zhu, H.Q. Multi-objective discrete gray wolf optimization algorithm to solve job shop energy-saving
scheduling problems. Comput. Integr. Manuf. Syst. 2021, 27, 2295–2306.

30. Sun, A.H.; Song, Y.C.; Yang, Y.F.; Lei, Q. A dual resource constrained shop scheduling algorithm considering the processing
quality of key parts. China Mech. Eng. 2022, 33, 2590–2600.

31. Chen, K.; Bi, L. Research on Multi-objective Flexible Job Shop Scheduling Considering Transportation Time. Small Microcomput.
Syst. 2021, 42, 946–952.

32. Lei, K.; Guo, P.; Zhao, W.C.; Wang, Y.; Qian, L.M.; Meng, X.Y.; Tang, L.S. A multi-action deep reinforcement learning framework
for flexible Job-shop scheduling problem. Expert Syst. Appl. 2022, 205, 117796. [CrossRef]

33. Brandimarte, P. Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. Res. 1993, 41, 157–183. [CrossRef]
34. Hurink, J.; Jurisch, B.; Thole, M. Tabu search for the job-shop scheduling problem with multi-purpose machines. OR Spektrum

1994, 15, 205–215. [CrossRef]
35. Ding, H.J.; Gu, X.S. Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job

shop scheduling problem. Comput. Oper. Res. 2020, 121, 104951. [CrossRef]
36. Jędrzejowicz, P.; Wierzbowska, I.A. Implementation of the Mushroom Picking Framework for Solving Flexible Job Shop Schedul-

ing Problems in Parallel. In Proceedings of the International Conference on Knowledge-Based Intelligent Information &
Engineering Systems, Verona, Italy, 7–9 September 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.eswa.2022.117796
https://doi.org/10.1007/BF02023073
https://doi.org/10.1007/BF01719451
https://doi.org/10.1016/j.cor.2020.104951

	Introduction
	Flexible Job-Shop Scheduling Problem Description and Formulation
	Problem Description
	Problem Formulation

	Coronavirus Swarm Immunity Optimization Algorithm
	Hybrid Coronavirus Swarm Immunity Optimization Algorithm
	Encoding Mechanism
	Decoding Mechanism
	Genetic Evolution
	Multi-Population Update Mechanism Based on Collaborative Learning
	Adaptive Mutation
	Knowledge-Driven Variable Neighborhood Search
	HCHIO Algorithm Framework
	Algorithm Complexity Analysis

	Experimental Analysis
	Parameter Settings
	Verification of the Effectiveness of Innovations
	Algorithm Performance Evaluation

	Conclusions
	References

