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Abstract: Energy intensity is an important assessment indicator of energy consumption. Unfortu-
nately, the traditional energy intensity model (TEIM) has obvious limitations when applied to quasi-
continuous production process, especially for small time scales (STS). Therefore, a novel energy
intensity model (NEIM) has been established in this study. The NEIM includes three main stages.
Firstly, the statistical period and time scale have been determined. Secondly, the concept of workpiece
valid weight has been proposed for a given time scale. Then the specific calculation method has
also been established. Thirdly, a NEIM has been suggested according to the definition of energy
intensity. The application results for a reheating furnace show that the NEIM’s effectiveness has
been verified via comparison with the TEIM for large time scale (LTS) and critical time scale (CTS),
whereas the NEIM still has validity at STS. Additionally, calculation results for the NEIM reflect more
trend information at LTS and CTS; whereas, more dynamic information has been reflected at STS.
The aim of this research was to expand the NEIM application for different time scales. Meanwhile,
NEIM can also be applied to various energy-consuming facilities.

Keywords: quasi-continuous production; energy-intensity model; time scale; workpiece valid weight

1. Introduction

With the rapid development of industry, human civilization has made continuous
progress. However, this has been accompanied by a sharp increase in energy consump-
tion [1,2] and serious environmental damage [3,4]. Mankind is facing an unprecedented
energy crisis [5,6] and environmental pressures [7]. Iron and steel production, for instance,
have experienced extensive and rapid development (especially in China) characterized by
the continuous and large-scale growth of steel production. Meanwhile, energy consump-
tion has also increased sharply. Therefore, the demand for energy conservation and carbon
reduction in the iron and steel industry is still urgent, especially under the current “carbon
peak” and “carbon neutrality” pressures [8].

Lean energy operation is a common energy-saving measure adopted by iron and steel
enterprises [9]. Generally, lean energy operation is mainly to maximize energy efficiency
which can be represented by Equation (1).

η =
Q1 + Q2

Q
(1)

In which,
η: Energy efficiency in the statistical period;
Q1: the amount of energy fully used for product processing in the statistical period,

tce (ton coal equivalent);
Q2: the amount of energy recovered, tce;
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Q: the total amount of energy supplied, tce.
In general, if certain amounts of product are processed, Q1 is a constant. Therefore, the

improvement of energy efficiency can be achieved in the following two methods: reducing
Q or increasing Q2.

In summary, these two methods can be achieved via production-equipment optimiza-
tion and process-flow-structure optimization.

Production equipment is the most basic component in iron and steel enterprises, such
as sinter machines, coke ovens, blast furnaces, convertor furnaces, reheating furnaces, etc.
The energy efficiencies of production equipment directly determine the amount of energy
consumption. Generally, production-equipment optimization mainly includes: waste heat
and energy recovery (such as from Sinter vertical coolers [10], top gas pressure recovery
turbine generator sets of the blast furnaces [11], coke dry-quenching systems [12], waste
heat of blast-furnace slag [13], regenerative reheating furnaces [14]) and energy-efficiency
improvements (such as pulverized-coal injection technologies in blast furnaces [15], oxy-
fuel combustion technology [16], regenerative combustion technology [17], waste heat
utilization technology [18,19], etc.).

Iron and steel enterprises are typical process industries. Various types of production
equipment are combined through specific process structures to complete the product-
processing tasks. In other words, whether the process structure and operation modes are
reasonable will also have a significant impact on the quantity of energy consumption. Qi
Zhang et al. [20] have put forward a full length material-energy nexus-flow combined
model, which has proven that the process-flow-structure optimization is beneficial to
reduce energy consumption and CO2 emission. Biao Lu et al. [21] have also proposed an
energy-intensity optimization model for a production system in iron and steel.

Therefore, lean energy operation has been to continuously improve the energy effi-
ciency through production-equipment optimization and process-flow-structure optimiza-
tion. Unfortunately, the Q1 value of Equation (1) is very difficult to derive. Therefore,
energy efficiency (η in Equation (1)) can not be easily calculated. Generally, there is an
inverse correlation between energy efficiency and energy intensity, that is, the higher the
energy efficiency, the lower the energy intensity, and vice versa. Consequently, energy
intensity is a monetary indicator of energy efficiency [22]. By contrast, energy intensity can
be derived easily.

In general, energy intensity is the energy consumption per unit output value in a
specific statistical period [23], such as the consumption per ton of steel [24] and energy
consumption per ton of product in various production processes [25] in the iron and steel
industry, specific energy consumption and baseline energy consumption of cement [26], etc.
Moreover, the concept of energy intensity has found applications in comparison, analysis,
and assessment of energy efficiency in various industries or countries [27–31].

Obviously, the various application scenarios of energy intensity have a common feature
in previous studies: LTS. In other words, energy intensity is limited to large statistical
periods, such as year, quarter, month, or week. Therefore, traditional energy intensity is an
average value over this large statistical period.

The obvious question becomes: could energy intensity be applied to an STS? Unfortu-
nately, the problem is seldom discussed in any scenarios.

For example, the calculation of energy intensity at STS is very difficult for large-area
research objects, such as some local districts [32–34], countries [35,36], or enterprises [37–40];
whereas, energy-intensity variation can assess its dynamic-fluctuation characteristic for
quasi-continuous-production at STS. Furthermore, whether the energy-supply strategy is
reasonable can also be evaluated.

There are seldom problems with the TEIM application for quasi-continuous production
at LTS. Unfortunately, there would be huge irrationalities with energy intensity calculations
at STS. In general, the yield of quasi-continuous production is greater than zero at LTS (as
shown in Figure 1a, there is a change in the number of workpieces at the ∆ti,1 time interval,
which is an LTS mode). Then, the energy intensity, which has been calculated through TEIM,
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can be acceptable at this time scale. However, the yield of quasi-continuous production is
poor at some STSs, or even zero (as shown in Figure 1b, there is no change in the number of
workpieces at ∆ti,2, which is an STS mode). At this time, the quasi-continuous production
energy intensity is meaningless through TEIM at this STS; whereas, the production process
is still consuming energy. Therefore, there is a huge contradiction between the energy
intensity calculation result via the TEIM and the actual energy consumption.
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Therefore, quasi-continuous-production energy intensity will face the embarrassment
of being unable to be calculated for some STSs. Fortunately, data-driven technologies
have been successfully applied in the energy network [41]. Consequently, NEIM, which
can calculate energy intensity at any time scale (especially for STS) for quasi-continuous
production, has been established based on data analysis in this paper. The dynamic
characteristics of energy intensity have also been deeply analyzed based on this model.
Furthermore, this NEIM has wider applicability at different time scales for quasi-continuous
production, and can also be applied to various energy consuming facilities.

2. Methodology
2.1. The Determination of Statistical Period and Time Scale
2.1.1. The Determination of Statistical Period

It is assumed that the statistical period is [T1, T2].

2.1.2. The Determination of Time Scale

The statistical period can be divided into different time scales, such as several minutes,
hours, days, months, years, etc. These time scales can be denoted as ∆T (∆T belongs to
several minutes, hours, days, months, years, etc., and ∆T ≤ T2 − T1). Therefore, statistical
period ([T1, T2]) can be divided into several time periods at ∆T time intervals.

2.2. NEIM Establishment in Some Time Scale

Hypothetical conditions are shown as follows:

(1) Statistical period ([T1, T2]);
(2) Time scale ([t1, t2]), in which time interval ∆t = t2 − t1;
(3) Time scale ([t1, t2]) ≤ Statistical period ([T1, T2]).

Therefore, the energy-intensity model is shown as Equation (2) at the [t1, t2] time scale.

e[t1,t2]
=

E[t1,t2]

W[t1,t2]
(2)
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In which,
e[t1,t2]

: energy intensity calculated by new model in time scale ([t1, t2]), GJ/t;
E[t1,t2]

: energy consumption in [t1, t2] time scale, GJ;
W[t1,t2]

: the valid weight of workpiece in [t1, t2] time scale, t.
As shown in Equation (2), E[t1,t2]

and W[t1,t2]
are the core in the energy-intensity

calculation process.

2.3. E[t1,t2]
Calculation at the [t1, t2] Time Scale

Energy consumption cumulative value in time t1 and t2 can be calculated, as shown in
Equation (3):

E[t1,t2]
= Et2 − Et1 (3)

In which,
Et1 , Et2 : energy consumption cumulative value in time t1 and t2, GJ;

2.4. W[t1,t2]
Calculation in [t1, t2] Time Scale

There are four cases of workpiece-quantity change over the [t1, t2] time scale, as shown
in Figure 2.
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Figure 2. Four cases of workpiece-quantity change over the [t1, t2] time scale. (a) N1 = N1,j = N2;
(b) N1 ≤ N1,j ≤ N1; (c) N1 ≥ N1,j ≥ N2; (d) N1, N1,j, N2 is uncertain.
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2.4.1. No Change in the Number of Workpieces

There is no change in the number of workpieces, as shown in Figure 2a. The ith
workpiece weight can be denoted as Wi(i = 1 · · ·N). Meanwhile, the total processing time
of this workpiece is denoted as Ti. It is vital that the ith workpiece-processing time accounts
for a part of the total processing time (Ti). Therefore, the workpiece weight should be
weighted at the [t1, t2] time scale. The weighting process is as Equation (4):

W ′i =
t2 − t1

Ti
·Wi (4)

ωi =
t2−t1

Ti
, consequently:

W ′i = ωi·Wi

Similarly, the weighting process of other workpiece weights should also be handled in
this way. Therefore, the total valid weight should be represented as Equation (5).

W[t1,t2]
=

N

∑
i=1

W ′i (5)

2.4.2. Change in the Number of Workpieces

In general, there are three scenarios in which the number of workpieces change.
Scenario 1 (as shown in Figure 2b): The number of workpieces increases gradually.

Generally, this scenario often occurs at the beginning of production. Initially, energy
intensity is relatively high. With the increasing number of workpieces, energy intensity
will be smaller and smaller. Energy intensity eventually stabilizes. This is the process of
increasing production.

Scenario 2 (as shown in Figure 2c): The number of workpieces decreases gradually. In
general, this scenario often occurs at the end of production. Initially, energy intensity is
relatively low. With the decreasing number of workpieces, energy intensity will be higher
and higher. This is the process of reducing production.

Scenario 3 (as shown in Figure 2d): The number of workpieces increases or decreases
according to the production plan. Usually, this scenario occurs in normal production. This
is the process of production fluctuation.

In any case, time and quantity of workpiece changes should be recorded in quasi-
continuous production (as shown in Figure 3). Then, a series of {time, workpiece quantity}
sequence pairs is formulated in the [t1, t2] time scale. The sequence-pair change process is
shown as follows in Figure 3.{

(t1, N1)→ (t1,1, N1,1)→ · · ·
(
t1,j, N1,j

)
→

(
t1,j+1, N1,j+1

)
· · ·

→
(
t1,J , N1,J

)
→ (t2, N2)

}
In which,(

t1,j, N1,j
)
→

(
t1,j+1, N1,j+1

)
: workpiece quantity is N1,j from time t1,j to time t1,j+1.

Then, workpiece quantity becomes N1,j+1 from time t1,j+1. (t1, N1)→ (t1,1, N1,1) and(
t1,J , N1,J

)
→ (t2, N2) respectively indicates that workpiece quantity is N1 and N1,J(N1,J =

N2) in [t1, t1,1] and
[
t1,J , t2

]
time periods. Therefore, the calculation methods of total valid

weight of all workpieces are slightly different in three time periods [t1, t1,1],
[
t1,j, t1,j+1

]
,[

t1,J , t2
]
.
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Total valid weight of all workpieces in the [t1, t1,1] time period as shown in Equation (6).

W[t1,t1,1]
=

N1

∑
i=1

t1,1 − t1

Tyi
·Wi (6)

In which,
W[t1,t1,1]

: total valid weight of all workpieces in the [t1, t1,1] time period, ton;
N1: the workpiece quantity in the [t1, t1,1] time period;
Tyi: the actual processing time interval of the ith workpiece, min;
Wi: the actual weight of the ith workpiece, ton.
Total valid weight of all workpieces in the

[
t1,j, t1,j+1

]
time period as shown in Equation (7).

W[t1,j ,t1,j+1]
=

N1,j

∑
i=1

t1,j+1 − t1,j

Tyi
·Wi (7)

In which,
W[t1,j ,t1,j+1]

: total valid weight of all workpieces in
[
t1,j, t1,j+1

]
time period, ton;

N1,j: the workpiece quantity in the
[
t1,j, t1,j+1

]
time period;

Total valid weight of all workpieces in the
[
t1,J , t2

]
time period as shown in Equation (8).

W[t1,J ,t2]
=

N1,J

∑
i=1

t2·t1,J

Tyi
·Wi (8)

In which,
W[t1,J ,t2]

: total valid weight of all workpieces in
[
t1,J , t2

]
time period, ton;

N1,J : the workpiece quantity in
[
t1,J , t2

]
time period;

Consequently, total valid weight of all workpieces for the [t1, t2] time scale should be
calculated as shown in Equation (9).

W[t1,t2]
= W[t1,t1,1]

+
J−1

∑
j=1

W[t1,j ,t1,j+1]
+ W[t1,J ,t2]

(9)

In which,
W[t1,t2]

: total valid weight of all workpieces in [t1, t2] time scale, ton.
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3. Case Study

The energy consumption of reheating furnaces accounts for 15–20% of the total energy
consumption and 70% of the energy consumption of the rolling process [42]. Therefore, the
energy intensity of reheating furnaces should be actively concerned. Meanwhile, reheating
furnaces are typical quasi-continuous production process.

In actual production data of a reheating furnace, for instance, the validity of this NEIM
has been further confirmed. Then, the dynamic-change regularity of energy intensity has
also been analyzed for different time scales. The production-data statistical period of this
reheating furnace is [1 March 2020 00:00:00, 20 June 2020 23:59:59] (T1 = 1 March 2020
00:00:00,T2 = 20 June 2020 23:59:59).

3.1. The Division of Different Time Scales

The division of different time scales is shown in Table 1.

Table 1. The division of different time scales.

No. Time Scale (∆T) No. Time Scale (∆T)

1 5 min 7 8 h
2 10 min 8 1 day
3 30 min 9 7 days
4 1 h 10 14 days
5 2 h 11 28 days
6 4 h

3.2. The Energy-Intensity Calculation Results in Different Time Scales

The energy-intensity-calculation results for different time scales are shown in Table 2.
In order to compare with TEIM, the calculation results of this NEIM and TEIM are all listed
in Table 2.

Table 2. Energy -intensity calculation results in different time scales.

No. Time Scale
Average Value (GJ/t) Standard Deviation Variation Coefficient

Novelty Tradition Novelty Tradition Novelty Tradition

1 28 Days 1.52 1.52 0.186 0.093 0.123 0.061
2 14 Days 1.56 1.57 0.288 0.254 0.185 0.162
3 7 Days 1.57 1.57 0.405 0.315 0.257 0.201
4 1 Days 1.49 1.58 0.275 0.774 0.185 0.491
5 8 h 1.58 1.83 0.444 1.579 0.280 0.864
6 4 h 1.60 2.11 0.658 2.245 0.412 1.065
7 2 h 1.72 2.28 0.798 2.532 0.464 1.111
8 1 h 1.76 2.48 0.867 2.777 0.492 1.122
9 30 min 1.82 2.66 0.956 3.016 0.524 1.133
10 10 min 1.96 3.05 1.135 3.489 0.578 1.145

3.3. The Validity of this NEIM

Variation coefficient is a very valid parameter, which can compare the dispersion
degree of two groups of data based on eliminating the influence of scale and dimension.
Firstly, the dispersion degree will be smaller if the variation coefficient is smaller. Secondly,
if the variation coefficients of two groups of data are similar, it indicates that they have
the same dispersion degree. In this paper, the variation coefficient has been selected to
compare the calculation results of TEIM and NEIM at different time scales (as shown in
Figure 4).
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Figure 4. Variation coefficient of two energy-intensity models in different time scales.

As shown in Figure 4, three regions have been divided (LTS region, CTS region,
STS region).

3.3.1. Computational-Performance Analysis of Two Energy-Intensity Models at Different
Time Scales

(1) LTS region

The variation coefficients of two energy-intensity models are both small and have
little difference in the LTS region (time scales: 28 days and 14 days). This shows that the
dispersion degrees of two energy-intensity-calculation results also have little difference.
In other words, the performance of two energy-intensity models is similar in the LTS
region. Furthermore, the variation coefficient of TEIM is slightly smaller than that of NEIM.
Consequently, the performance of TEIM is slightly better than NEIM.

(2) CTS region

The variation coefficient of two energy-intensity models is characterized as follows in
the CTS region:

The variation coefficient of two energy-intensity models increases gradually with the
decrease of time scale, but it is still similar. On the one hand, the performance of two
energy-intensity models has begun to deteriorate with the decrease of time scale. On the
other hand, their performance is still similar.

The variation coefficient of the traditional intensity model is gradually larger than that
of NEIM with the decrease of time scale. It shows that the deterioration degree of TEIM
gradually becomes greater than that of NEIM.

Generally, although the performance of NEIM is not much different from that of TEIM,
the performance of TEIM has been gradually worse than that of NEIM in CTS region.
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(3) STS region

The variation coefficient of two energy-intensity models is characterized as follows in
the STS region:

The variation coefficient of two energy-intensity models has increased significantly
with the decrease of time scale.

At any STS, the variation coefficient of traditional energy intensity is much greater
than that of NEIM.

Therefore, TEIM has become ineffective in the STS region. That is, the performance of
NEIM is obviously better than that of TEIM in the STS region.

3.3.2. NEIM Validity Analysis at Different Time Scales

TEIM is essentially oriented to production results. In actual production, TEIM is
generally applied to the energy-intensity calculation (total energy consumption/production
output in statistical time period) at daily, weekly, monthly, or annual time scales. The
common opinion is that TEIM is valid at LTS. If NEIM is consistent with TEIM at LTS, it is
considered that NEIM is also effective.

(1) NEIM validity analysis in the LTS and CTS regions

As shown in Table 2, regardless of energy-intensity average value or energy-intensity
variation coefficient, there is little difference between NEIM and TEIM in the LTS and CTS
regions. Because of the validity of TEIM in the LTS region and CTS region, NEIM is as valid
as TEIM in the LTS and CTS regions. It should also be noted that the calculated results of
NEIM and TEIM have begun to shift in the CTS region.

(2) NEIM validity analysis in the STS region

There is a great possibility of production output fluctuation in the STS region. There is
no production output at a certain STS. At this time, the calculation result of TEIM is infinite
at this STS. Furthermore, the possibility of violent energy-intensity fluctuation increases
with the decrease of time scale for TEIM. As shown in Table 2, energy-intensity variation
coefficient increases with the decrease of time scale. Therefore, TEIM has gradually failed
with the reduction of time scale. Fortunately, the increasing range of energy intensity
average value and energy-intensity variation coefficient is very limited in the STS region.
Consequently, NEIM is still valid in the STS region.

3.3.3. Summary

Generally, NEIM has wider applicability than TEIM. The main reason is that TEIM is
oriented to production results, whereas NEIM is oriented to production process. Therefore,
TEIM will lose the effective workpiece-production output information in production process
at a certain time scale. Furthermore, the calculation error of the traditional energy- intensity
model arises, especially in the STS region.

4. Discussion

As shown in Figure 5, the whole statistical time period has been divided into four areas
according to a ‘28 days’ time scale, namely area I, area II, area III, area IV. Accordingly, each
area shows only one energy-intensity average value over the ‘28 days’ time scale. Each area
shows two energy intensity average values at the ‘14 days’ time scale. Each area shows four
energy intensity average values over the ‘7 days’ time scale. Each area shows 28 energy
intensity average values at the ‘1 day’ time scale.
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4.1. Time Scale and Information Expression

Time scale and information expression can be achieved through Figure 5.
Essentially, the calculation result of energy intensity at LTS is the coarsening process

of the calculation result of energy intensity at STS, that is, the smoothing process. It mainly
embodies the following two characteristics of the smoothing process.

4.1.1. Production Status Information Loss

As shown in Figure 5d (‘1 day’ time scale), the red circular frame in area I is the
energy-intensity characteristic of the reheating furnace when it is shut down. Strictly,
the production output at the time of shutdown is 0, and energy intensity is infinite. For
convenience, it has been replaced by 30, and the same below. Unfortunately, the production
status information has been completely lost at ‘7 days’, ’14 days’, ’28 days’ time scales.

4.1.2. Other Dynamic Information Loss

Because the factors restricting the production process (equipment status, upstream
and downstream production status, gas supply, etc.) have great uncertainty at STS, the
calculation results of energy intensity are more volatile. With the continuous increase of
time scale, the uncertainly of these influencing factors will decrease, and the volatility of
energy intensity will also decrease. Therefore, in the smoothing process from STS to LTS,
the characteristic information of energy-intensity dynamic operation is continuously lost.

Generally, more dynamic information of energy intensity has been reflected at STS,
whereas energy intensity reflects more trend information at LTS.

4.2. Energy Intensity Transient Dynamic Characteristics at STS

We further analyzed area I in Figure 5d, that is, the two fuchsia parts. There is a
transition process from normal production to shutdown (shutdown process) and from
shutdown to normal production (commencement process). However, at an LTS (such as
the ‘1 day’ time scale), the performance of the transition process is not obvious. In order
to be more familiar with this transition process, it should be carried out at a smaller scale.
Therefore, the shutdown process and commencement processes of case-reheating furnaces
are all shown at different STSs (‘8 h’, ‘4 h’, ‘2 h’, ‘1 h’, ’30 min’, and ’10 min’ time scales), as
shown in Figure 6.

4.2.1. Shutdown Process

During the shutdown process, the energy intensity of a reheating furnace is a process
of gradually increasing to infinity (30 GJ/t). With the gradual decrease of time scale, an
increasing trend in shutdown process becomes more and more obvious, especially for
less than ‘1 h’ time scales, as shown in the red block diagram of Figure 5 during the
shutdown process.

4.2.2. Commencement Process

In commencement processes, the energy intensity of a reheating furnace is a process of
gradual reduction. Energy-intensity levels can be gradually stabilized only after the whole
production process is stable, especially for less than ‘4 h’ time scales, as shown in the red
block diagram of Figure 6 during the commencement process.
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5. Conclusions

In this paper, a NEIM, which is oriented to quasi-continuous production, has been
established. The NEIM includes three main stages: the determination of statistical period
and time scale; the definition of work-piece valid weight; and the establishment of NEIM.
The case study indicates that NEIM has a wider range of application scenarios compared to
TEIM. The specific conclusions are as follows:

(1) On the basis of characteristics of quasi-continuous production, NEIM has been estab-
lished. Through the comparative analysis of the validity with TEIM, NEIM has wider
applicability at different time scales. In particular, TEIM has failed at STS, whereas
NEIM is still valid.

(2) The application of NEIM for reheating furnaces at different time scales (10 min, 30 min,
1 h, 2 h, 4 h, 8 h, 1 day, 7 days, 14 days, 28 days) shows that energy-intensity calculation
results reflect more trend information at LTS, whereas production status information
has been completely lost in some LTSs (7 days, 14 days, 28 days). Meanwhile, the
energy-intensity calculation results can express clearer representation of production-
status information in some STSs, especially for 10 min STS or 30 min STS during
shutdown and commencement process.

(3) According to the physical demand, TEIM and NEIM can be selected. Significantly,
these two models have different data requirements. On the one hand, TEIM only
requires production data and energy consumption data during statistical periods. On
the other hand, energy intensity can be calculated by combing specific manufacturing-
technology and production-process data. Therefore, NEIM requires better data re-
quirements than TEIM.

(4) NEIM can be applied not only to quasi-continuous production such as reheating
furnaces, but also to other similar production processes. Furthermore, through energy-
intensity calculation at different time scales, energy-supply-strategy rationality can be
further evaluated and discussed for different energy consuming facilities.
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