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Abstract: Accurately predicting the surface finish of fused deposition modeling (FDM) parts is an
important task for the engineering application of FDM technology. So far, many prediction models
have been proposed by establishing a mapping relationship between printing parameters and surface
roughness. Each model can work well in its specific context; however, existing prediction models
cannot meet the requirements of multi-factor and multi-category prediction of surface finish and cope
with imbalanced data. Aiming at these issues, a prediction method based on a combination of the
adaptive particle swarm optimization and K-nearest neighbor (APSO-KNN) algorithms is proposed
in this paper. Seven input variables, including nozzle diameter, layer thickness, number of perimeters,
flow rate, print speed, nozzle temperature, and build orientation, are considered. The printing values
of each specimen are determined using an L27 Taguchi experimental design. A total of 27 specimens
are printed and experimental data for the 27 specimens are used for model training and valida-
tion. The results indicate that the proposed method can achieve a minimum classification error of
0.01 after two iterations, with a maximum accuracy of 99.0%, and high model training efficiency.
It can meet the requirements of predicting surface finish for FDM parts with multiple factors and
categories and can handle imbalanced data. In addition, the high accuracy demonstrates the potential
of this method for predicting surface finish, and its application in actual industrial manufacturing.

Keywords: fused deposition modeling; surface finish; adaptive particle swarm optimization
algorithm; K-nearest neighbor algorithm; multi-category prediction

1. Introduction

Currently, additive manufacturing (AM) technologies are increasingly being used
in various fields [1-4]. Compared with traditional manufacturing technologies [5], they
improve production efficiency, reduce manufacturing costs, and enable personalized pro-
duction, further promoting the progress of Industry 4.0. Fused deposition modeling (FDM)
is a widely used AM technology due to its low manufacturing cost, fast molding speed,
and simple process [6]. However, the poor surface finish of printed parts limits their
application in practical engineering [7]. For example, when using FDM technology to
manufacture molds in casting and injection molding processes, or when printed parts
are in contact with human skin, surface finish is crucial and can affect the product’s per-
formance to meet its assembly and functional requirements [8,9]. Accurately predicting
the surface finish of printed parts is one of the important tasks of FDM technology in
engineering applications [10].

In recent years, the influence of FDM printing parameter settings on surface finish,
including layer thickness, temperature, print speed, flow rate, build orientation, number
of perimeters, etc., has been reported [11-15]. Layer thickness refers to the thickness of
each layer printed by the printer nozzle along the Z-axis, which affects the details and
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printing speed of the finished product. Print speed refers to the moving speed of the printer
nozzle, which affects the printing time and quality of the finished product. Wall thickness
refers to the thickness of the printed model shell after the removal of the infill, which can
also be understood as the number of times the nozzle passes over the outer layer, or the
number of perimeters. Print temperature determines the melting point and fluidity of the
printing material. Flow rate compensation, also known as flow rate, mainly corrects errors
in the actual extrusion amount caused by internal factors. Build orientation is the molding
direction of the part and is closely related to the surface shape of the part. Currently,
mainstream prediction methods aim to establish a mapping relationship between part
printing parameters and part surface roughness, with printing parameters as input and
predicted roughness parameters as output. Researching different mapping relationship
models to improve prediction accuracy is an important direction in the prediction of surface
smoothness of FDM-printed parts.

Some researchers attempted to establish models for fitting the contours of printed parts.
Taufik et al. [16], Buj-Corral et al. [17], Xu et al. [18], Perez et al. [19], and Pandey et al. [20]
constructed geometric models of surface contours to predict surface roughness (Ra) by
studying the relationship between surface contours of different types of FDM-printed
parts and printing parameters. Other researchers, such as Vahabli et al. [21], Wu et al. [22],
Boschetto et al. [23], and Reddy et al. [24], generated models using machine-learning-based
algorithms. The common features of these studies are threefold: First, they use commonly
used printing materials such as ABS or PC. Second, the main factors considered in their
models are only layer thickness and build orientation. Third, the output of their models is
the surface roughness values, obtained by solving a regression problem.

Predicting the surface roughness of a part may be meaningful for certain purposes,
such as accurately modeling the surfaces of printed parts. However, in actual engineering
manufacturing, it is only necessary to know whether the surface finish level of the part
meets the required manufacturing requirements (classification problem) [25]. In fact, the
standards used until a few years ago in the industry used classes when defining surface
roughness [26]. For example, N11 is a class that corresponds to a surface roughness between
12.5 and 25 um; N12 is a class that corresponds to a surface roughness between 25 and
50 pm. Studies can be found in the literature that use classification algorithms to deter-
mine the surface finish levels of parts manufactured by other printing technologies [27].
Molero et al. [28], Barrios et al. [29], and Cerro et al. [30] compared different machine learn-
ing algorithms to verify their performance by dividing the range of the surface roughness
dataset of parts into different categories. The input factors, data types, and number of
classifications used by each model are shown in Table 1.

Table 1. Summary of current classification models.

Authors Method Data Balance Factor Classification
Molero et al. [28] ML Vv LT, T, PS,PA, F 2
Barrios et al. [29] DT v LT, T,PS,PA,F 2

Cerro et al. [30] ML Vv LT, PS, NP, T, BO 2

Note: ML stands for machine learning; DT stands for decision tree; Layer thickness (LT), mm; Temperature (T), °C;
Print speed (PS), mm/s; Print acceleration (PA), mm/ s2; Flow rate (F), %; Build orientation, (BO), °; Number of
perimeters (NP); “\/” represents data balance.

Each of the existing classification models can work well in its specific context. However,
they still have the following shortcomings: first, they do not consider imbalance in the data,
resulting in low prediction accuracy for categories with fewer individuals. Second, they
consider limited types of input factors. In the literature, you can find previous work in
which the influence of different printing parameters on the surface roughness of 3D printed
parts has been studied (Table 2). Third, they cannot meet the demand for multi-factor and
multi-category prediction of surface finish. Category expansion will reduce prediction
accuracy and the model will be complex, difficult to tune, and difficult to understand,
making it unsuitable for practical engineering applications.
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Table 2. Previous studies on the surface roughness of FDM PLA parts.

Authors Layer Temperature Print Print Nozzle Filling Wall
Thickness Orientation Speed Diameter Density Thickness
Garcia Plaza et al. [31] V4 - v/ i _ _ _
Tascioglu et al. [32] Vv v - Vv - - _
Ramli et al. [33] 4 - - _ _ v _
Alsoufi et al. [34] V4 - - - i - _
Cerro et al. [30] vV v v i _ v

u_

Note: “y/” represents that the study involves this factor, while “~” represents that the study don't involve this factor.

The K-nearest neighbor algorithm (KNN) is simple, robust, and highly interpretable,
and is suitable for multi-classification, nonlinear, and imbalanced data problems [35]. The
basic principle of the K-nearest neighbor algorithm is to classify the k-closest labels to the
target distance, where distance is the main factor affecting classification accuracy. However,
different weights of the input variables inevitably lead to biases in distance calculation and
classification errors. In [36-38], the particle swarm optimization (PSO) algorithm was used
to optimize the data features and the number of neighbors of the KNN algorithm, which
was applied to specific tasks such as perception, recognition, and diagnosis, and achieved
good performance.

In the population-based optimization algorithms, the PSO algorithm has the advan-
tages of simple principles, few adjustable parameters, low computational complexity, and
strong global optimization capability [39]. The optimization method has been widely used
in various fields and effectively solved corresponding problems in specific fields [40—42].
However, the fast convergence speed of the PSO algorithm can easily cause the parameter
search to fall into a local optimum, leading to premature convergence. To address this
issue, we use clustering to adaptively divide the particle swarm into different populations
and guide the populations by applying different update strategies [43]. This enhances the
diversity of particles and helps particles jump out of a local optimum.

Based on the above considerations, this paper introduces the adaptive particle swarm
optimization algorithm into the K-nearest neighbor classification algorithm and proposes a
method for predicting the surface finish of FDM PLA parts based on this. By introducing the
adaptive particle swarm optimization algorithm into the distance formula of the K-nearest
neighbor algorithm, random weight values are generated for each input variable to adjust
the distance calculation deviation. This method reduces the impact of data imbalance on
the prediction results and meets the needs of multi-factor and multi-category prediction of
surface finish in engineering practice, providing a powerful reference for the surface finish
of FDM-printed parts in engineering manufacturing.

The remainder of this paper is organized as follows: Section 2 explains the details
of the proposed method. Section 3 presents the experimental design, dataset, and model
framework. Section 4 shows the results and discussions. Finally, Section 5 provides a
conclusion, including future directions for further work.

2. Materials and Methods

This method introduces the adaptive particle swarm optimization algorithm into the
distance formula of the K-nearest neighbor algorithm, generating optimal weights for each
input variable to adjust the calculation bias of the distance formula. Its framework diagram
is shown in Figure 1. The principles are analyzed in detail below.
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Figure 1. Framework of the method proposed in this paper.

2.1. K-Nearest Neighbors

The K-nearest Neighbor (KNN) algorithm is an instance-based machine learning al-
gorithm and one of the simplest and least parameterized classification algorithms [44].
The KNN algorithm is simple, robust, and highly interpretable, and is suitable for multi-
classification, nonlinear, and imbalanced data problems. The idea behind the KNN algo-
rithm is to find the k closest labels to the label to be classified in the training set, and to
determine the classification of the label to be classified by counting the categories of these k
labels [45]. Distance is the main factor affecting classification accuracy.

The neighbors of a label can be defined based on the Euclidean distance, assuming
all labels are in m-dimensional space, and any set x can be represented as a feature vector
x = (x1,x2, -+, Xm), where xg represents the feature value of the i-th example. The distance
between example x; and set x; is defined as the Euclidean distance d(x;,x;), as shown in the

following formula.
m
xl/ Z x _x (1)
v =1

However, different weights of the input variables inevitably lead to biases in distance
calculation and classification errors. To address this issue, a weight « is assigned to each
feature value used in the distance formula, adjusting the calculation bias. The above

formula can be written as:
2
d(x;, x Z x —xt )) )

2.2. Adaptive Particle Swarm Optimization

Adaptive Particle Swarm Optimization (APSO) is an evolutionary algorithm [46,47].
Based on the Basic Particle Swarm Optimization algorithm, APSO introduces adaptive
mechanisms and polynomial mutation strategies. The updated rules for particle velocity
and position are the same as those in the Basic Particle Swarm Optimization algorithm,
but the algorithm dynamically adjusts the inertia weights by introducing an adaptive
mechanism to improve the search efficiency and convergence performance and avoid
getting trapped in local optima.

The updated rules for particle velocity and position are as follows:

{ xij(t+1) = x;;(t) +o(t+1)  j=1,2,3,--,d -
0 j(t+1) = w-v;;(t) +crrilpij — xij(t)] + cora[pg j — xi j(£)]
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In Equation (3), x; ; and v; ; represent the numerical values of particle displacement and
velocity; w is the inertia weight; c; and ¢, are the learning factors; r; and r; are uniformly
distributed random numbers within [0, 1]; pijis the individual best value of the particle;
Pg,; is the global best value of the particle.

The adaptive mechanism is expressed as follows:

avg — Jmin

w — {CUmm 7 1, f S fm}g (4)
Winax f >favg

In Equation (4), f represents the real-time objective function value of the particle;
favg and f,;,, represent the average value and the minimum target value of all particles at
present; wWuax and wyy,;;, represent the maximum and minimum values of the inertia weight,
and the value range is 0.4-0.8.

2.3. APSO-KNN

In this study, the APSO algorithm is incorporated into the KNN algorithm to search the
weight of each feature value in Formula (2). Additionally, the selection of fitness function in
APSO is crucial. The KNN classification accuracy function is chosen as the fitness function.

acc = —— 5
NT ©)
In Equation (5), acc represents the accuracy, and its value range is 0-1; NC represents
the number of correct classifications; NT represents the total number of classification labels.

By learning the weight value “a”, the fitness function value can be maximized to the
greatest extent possible. The workflow of the APSO-KNN algorithm is shown in Figure 2.

Standardize dataset

‘

Initialize particle swarm

v

Calculate the fitness of each
particle

b

Evaluate the fitness of each
particle

'

Update individual optimal
value and global optimal value

No

v
Update particle velocity
and position

eet the termination
conditions?

Output the optimized
weight value

Figure 2. Flowchart of the APSO-KNN algorithm.
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Step 1: Standardize the dataset. Standardizing the dataset can reduce the differences
between certain attributes and decrease the errors in the classification accuracy of the dataset.

Step 2: Initialize particle swarm. Using the weight a for each feature value as the
optimization variable, the position and velocity of each particle in the population are
randomly initialized.

Step 3: Calculate the distance between each label and the predicted label vector using
Formula (2) and calculate the fitness value using Formula (5).

Step 4: Evaluate the fitness of each particle, store the particle’s position and fitness
value in its personal best py,s, and save the position and fitness value of the best individual
from ppeg; in the global best gy

Step 5: Update each particle using the updated Formulas (3) and (4) and evaluate the
fitness of each particle.

Step 6: Compare the fitness value of each particle with its personal best position, and
if they are close, update the personal best position with the current value. Compare all pp,
and gpest, and update gpest-

Step 7: Stop the search and output the results if the termination condition is met;
otherwise, return to Step 5 to continue the search.

3. Experiments

An industrial-grade FDM BM345 (Blue Maker, China) printer (Figure 3) was used for
3D printing. It is equipped with nozzles with diameters of 0.4 mm, 0.6 mm, and 0.8 mm,
and the maximum molding size is 350 x 350 x 450 mm. The recommended printing
speed is 60 mm/s, with a maximum of 150 mm/s. A blower fan is installed next to the
extruder for accelerated cooling of the printed object. The recommended slicing software is
BlueMaker3D (version 18.10), which allows the use of STL and G-code standards.

Figure 3. BM345 printer and PLA filament.
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Polylactic Acid (PLA) was used as the base material. Its main properties are density,
temperature, diameter, and color [48]. These properties have an impact on the FDM
printing parameter settings, as well as the quality and strength of printed parts. The
specific parameters are shown in Table 3. The material is provided by Smart Materials 3D
company (Alcald la Real, Spain) with a diameter of 1.75 mm and a diameter variation range
of £0.03 mm. The material has stable performance and is expected not to warp.

Table 3. Material properties.

Chemical Name

Diameter
(mm)

Density

Composition (g/mm’) Printing Temperature (°C) Color

Polylactic Acid

PLA (Polylactide Resin) 99% 1.24 220 + 20 1.75 + 0.03 white

Surface roughness measurement is defined in ISO 21920-2:2021 [49] and has different
parameters. Ra is the most commonly used parameter in determining the surface texture
state, as it provides the most general and adequate information about surface roughness.
The surface shapes of 27 samples were observed and the surface roughness (Ra) was
measured using OLS40-SU laser confocal microscope (Figure 4a). It can magnify at a range
of 108 x-17,280x, with a display resolution of 1 nm. The highest precision of the X/Y axis
is 0.12 um, and the optimal measurement range is 1 pm-1.5 mm. The highest precision of
the Z axis is 0.01 um, and the optimal measurement range is 0.5 pm-3 mm. The roughness
measurement range is above 0.1 um, and it has a built-in Gaussian filter. The objective lens
used is 10 x. The samples shown in Figure 4b were measured using this technique. Each
sample was placed horizontally with the surface to be measured facing upwards, and five
positions were taken on the plane, four on the edge and one in the center (Figure 4c). The
surface roughness value was the average roughness measured at the five points.

———vmm ———

Test point

N\
¢ o

® : ®

Test plane

(b) (c)
Figure 4. (a) Surface roughness measuring instrument; (b) Experimental printing samples; (c) Point method.

The Taguchi L27 experimental design [50] was used in this study to print 27 specimens
with dimensions of 20 x 20 x 20 mm (Figure 4b), using 7 factors with 3 levels (Table 4).
The factors studied were nozzle diameter (ND), layer thickness (LT), number of perimeters
(NP), flow rate (F), print speed (PS), nozzle temperature (T), and build orientation (BO),
with the number of perimeters associated with the layer width. Table 5 shows the settings
for each parameter.
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Table 4. Factors and levels in the design of experiments (DOE).

Level 1 Level 2 Level 3
Nozzle diameter, ND (mm) 0.60 0.80
Layer thickness, LT (mm) 0.25 0.35
Number of perimeters, NP 3 4
Flow rate, F (%) 100 110
Printing speed, PS (mm/s) 60 80
Temperature, T (°C) 210 230
Build orientation, BO (°) 45 75
Table 5. Taguchi L27 experimental design.

No. ND (mm) LT (mm) NP F (%) PS (mm/s) T (°C) BO (°)
1 0.40 0.10 2 90 40 190 30
2 0.40 0.10 2 90 60 210 45
3 0.40 0.10 2 90 80 230 75
4 0.40 0.25 3 100 40 190 30
5 0.40 0.25 3 100 60 210 45
6 0.40 0.25 3 100 80 230 75
7 0.40 0.35 4 110 40 190 30
8 0.40 0.35 4 110 60 210 45
9 0.40 0.35 4 110 80 230 75
10 0.60 0.10 3 110 40 210 75
11 0.60 0.10 3 110 60 230 30
12 0.60 0.10 3 110 80 190 45
13 0.60 0.25 4 90 40 210 75
14 0.60 0.25 4 90 60 230 30
15 0.60 0.25 4 90 80 190 45
16 0.60 0.35 2 100 40 210 75
17 0.60 0.35 2 100 60 230 30
18 0.60 0.35 2 100 80 190 45
19 0.80 0.10 4 100 40 230 45
20 0.80 0.10 4 100 60 190 75
21 0.80 0.10 4 100 80 210 30
22 0.80 0.25 2 110 40 230 45
23 0.80 0.25 2 110 60 190 75
24 0.80 0.25 2 110 80 210 30
25 0.80 0.35 3 90 40 230 45
26 0.80 0.35 3 90 60 190 75
27 0.80 0.35 3 90 80 210 30

4. Results and Discussion
4.1. Results of Surface Roughness Measurements

Following the measurement method shown in Figure 4c, the surface roughness (Ra)
values were measured at five points, and the average value was calculated. However, due to
the large variation in roughness values at different measurement points on the same plane,
the results had high variability. This variability made it difficult to draw conclusions about
surface roughness based on measurement location. Calculating the standard deviations for
all test points can clearly show the measurement performance. The standard deviations
(SD) and average values are listed in Table 6 in units of pm.
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Table 6. Results of surface roughness measurements.

Test Ra; (um) Raj (um) Raz (um) Rag (um) Ras (um) Ra (um) SD (um)
1 15.43 14.24 16.50 18.32 15.22 15.94 1.55
2 16.93 12.60 12.63 15.21 15.50 14.58 1.90
3 10.90 10.67 9.89 10.72 11.73 10.78 0.65
4 44.53 44.61 44.25 45.79 44.11 44.66 0.66
5 34.19 31.29 32.69 34.22 29.11 32.30 2.15
6 24.58 2491 26.7 28.17 21.46 25.17 2.52
7 5291 49.05 54.76 51.82 48.08 51.32 2.75
8 43.75 41.16 43.25 48.18 41.05 43.48 2.89
9 37.76 34.28 35.22 35.29 36.61 35.83 1.35
10 9.03 8.92 7.97 9.88 7.98 8.76 0.80
11 18.74 14.19 15.40 19.86 14.64 16.57 2.56
12 11.23 12.48 13.81 10.90 11.56 11.99 1.17
13 25.71 21.30 21.67 23.15 24.35 23.24 1.84
14 37.56 43.28 42.84 43.96 39.59 41.45 2.74
15 34.02 29.64 32.96 30.23 31.59 31.69 1.83
16 31.66 30.21 31.80 28.21 32.16 30.81 1.62
17 52.47 50.76 53.15 49.82 52.84 51.81 1.44
18 38.20 37.42 39.64 43.37 41.49 40.02 243
19 18.01 17.81 16.59 16.67 16.07 17.03 0.83
20 7.30 8.11 7.43 8.83 7.41 7.81 0.65
21 24.90 22.98 23.81 25.22 24.16 24.21 0.89
22 29.83 28.42 30.70 29.89 28.89 29.55 0.90
23 20.02 16.33 20.91 21.98 22.95 20.44 2.55
24 33.60 33.57 34.31 33.90 34.87 34.05 0.54
25 41.54 40.78 4191 41.96 40.38 41.31 0.70
26 30.42 32.67 29.87 30.30 28.26 30.30 1.57
27 59.04 58.72 55.41 52.35 52.88 55.68 3.14

4.2. Experimental Data Classification

From the experimental data, it can be seen that the range of variation in Ra mean values
is 7-55 um. In order to achieve surface finish classification, the values of the arithmetic
mean deviation Ra of the contours were divided into four levels according to the standard
(ISO 1302:2002 [26]), namely N10, N11, N12, and N13, as shown in Table 7. Then, the 27 sets
of experimental data were classified according to the grading ranges, as shown in Table 8.

Table 7. Classification ranges for surface roughness.

Roughness Value (um) Class Label
Ra <125 N10
125 < Ra <25 N11
25 < Ra <50 N12
50 < Ra N13

4.3. Evaluation of Predictive Model Performance

In this section, the performance of APSO-KNN in predicting surface finish levels
of FDM parts is evaluated and compared with existing mainstream classifiers, including
Support Vector Machine (SVM), Artificial Neural Network (ANN), K-nearest neighbor
(KNN), and Decision Tree. All models were developed using MATLAB R2021a [51].
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Table 8. Measurement values and category comparison table.

Test Ra (um) Class Label Sign
1 15.94 N11 2
2 14.58 N11 2
3 10.78 N10 1
4 44.66 N12 3
5 32.30 N12 3
6 25.17 N12 3
7 51.32 N13 4
8 43.48 N12 3
9 35.83 N12 3
10 8.76 N10 1
11 16.57 N11 2
12 11.99 N10 1
13 23.24 N11 2
14 41.45 N12 3
15 31.69 N12 3
16 30.81 N12 3
17 51.81 N13 4
18 40.02 N12 3
19 17.03 N11 2

20 7.81 N10 1
21 24.21 N11 2
22 29.55 N12 3
23 20.44 N11 2
24 34.05 N12 3
25 41.31 N12 3
26 30.30 N12 3
27 55.68 N13 4

Performance evaluation includes two aspects: comparing the accuracy of classification
prediction and comparing model running time. First, the dataset was divided into a
training set and a test set, with 70% of the dataset used for training the prediction model
and 30% used for verifying the accuracy of the trained model. Then, the performance of
each prediction model was examined through the minimum classification error chart and
confusion matrix. The minimum error chart is a two-dimensional graph of classification
error versus iteration number, showing the convergence speed of each algorithm, while
the confusion matrix can show the predictive ability of each algorithm for each category.
The results were divided into true positive rate (TPR) and false negative rate (FNR), where
TPR represents the proportion of correctly predicted categories, while FNR represents the
proportion of misclassified categories. Finally, the model running times were compared.

Comparative analysis was conducted using different classification indicators. The
minimum prediction error of the APSO-KNN model is shown in Figure 5. Each model
was trained using 19 data points (3-N10, 5-N11, 9-N12, and 2-N13) and tested using 8 data
points (1-N10, 2-N11, 4-N12, and 1-N13) for surface finish prediction. The results showed
that the APSO-KNN model converged after two iterations, with a minimum classification
error of 0.01. The Decision Tree and ANN models achieved minimum classification errors of
0.32 and 0.32 after four and eight iterations, respectively. The number of layers of neurons
in the ANN model is one of the important factors affecting its prediction accuracy. When
the ANN model performs classification prediction, it optimizes the number of layers of
neurons to search for the globally optimal number of layers that minimize the classification
error. The model automatically adjusts the number of layers of neurons during iterations
19-30, but this is not the optimal number, which is why it jumps.



Processes 2023, 11, 1820

11 of 17

T T
0.7 APSO-KNN ||
—m— Decision Tree
——SVM
—4¢— KNN
0.6 - —4— ANN b
E
5 051 .
=
3}
[
2
;%‘ 04|
A
<
o
E o3l h
£
&
=
0.2 i
0.1 i
5 10 15 20 25 30

Number of iterations

Figure 5. Minimum classification error: APSO-KNN, Decision tree, SVM, KNN, and ANN.

The optimal hyperparameter settings required for each model to achieve the minimum
classification error are listed in Table 9.

Table 9. Summary of the training of each model.

Model Hyperparameter Minimum Error Training Accuracy Training Time (s)
APSO-KNN cl:2; c2:2; wmax:0.8; wmin:0.6; M:2; D:7; k:1 0.01 99.0% 14.40
Maximum number of divisions: 1.
Decision Tree Split criterion: Gini diversity index. 0.32 67.5% 14.18

SVM

KNN

ANN

Optimizer: Bayesian optimization
Kernel function: linear.
Box constraint level: 1.
Multiple methods: one-to-one. 0.41 59.3% 36.63
Standardized data: true.
Optimizer: Bayesian optimization
k:1.
Distance Metric: Euclidean.
Distance weight: equidistant. 0.39 60.1% 24.88
Standardized data: true.
Optimizer: Bayesian optimization
Number of layers: 3.
Activation function: ReLU.
Iteration limit: 1000. 0.32 67.1% 39.92
Standardized data: true.
Optimizer: Bayesian optimization

Figures 6-10 display the confusion matrices of the test data for each model under the
hyperparameter settings that resulted in the minimum classification error. The areas where
the classifier performs poorly can be found by the percentage and color displayed within
the cell, with orange representing predicted classes that do not match true classes. The
higher the percentage, the darker the color inside the cell. It can be observed that only the
APSO-KNN, SVM, and ANN models are capable of predicting the highest level of surface
finish for class 1 (N10) with a small amount of data. However, the Decision Tree model
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predicts class 1 (N10) as a similar class 2 (N11), and the KNN model predicts it as class
3 (N12) with a larger amount of data. For class 2 (N11), only the APSO-KNN model can
make accurate predictions, while the KNN model deviates completely by predicting the
class with the largest amount of data, class 3 (N12). Other models have a TPR of 50%, and
some will be predicted incorrectly (FNR is 50%). For class 3 (N12) with the largest amount
of data, the SVM and ANN models are still affected by the excessive number of predicted
categories, resulting in a large prediction error, with TPRs of 25% and 50%, respectively.
The APSO-KNN model can accurately predict class 4 (N13), while other models predict
it as class 3 (N12). Figure 11 shows the TPR of each model, with the APSO-KNN model
having the best predictive performance. When the input variable weights are not searched
using the APSO algorithm, the KNN model’s prediction results are biased toward the class
with the largest amount of data (Figure 9). This problem is resolved by introducing the
APSO algorithm, which accurately predicts and classifies imbalanced data with multiple
factors and categories.

Confusion Matrix(APSO-KNN)

True label

1 2 3 4 TPR FNR
Prediction label

Figure 6. APSO-KNN model test of the confusion matrix.

Confusion Matrix(Decision Tree)

1 00.0% 100.0%
2 50.0%
]
el
K]
]
=1
-
&
3
4 00.0
1 2 3 4 TPR FNR
Prediction label

Figure 7. Decision Tree model test of the confusion matrix.
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Confusion Matrix(SVM)

True label

1 2 3 4
Prediction label

Figure 8. SVM model test of the confusion matrix.

Confusion Matrix(KNN)

True label

3 100.0% 100.0%

1 2 3 4
Prediction label

Figure 9. KNN model test of the confusion matrix.

Confusion Matrix(ANN)

100.0%

True label

100.0%

1 2 3 4 TPR FNR
Prediction label

Figure 10. ANN model test of the confusion matrix.
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Figure 11. Summary graph of TPR for each model.

From Table 9, it can be observed that the training time of the APSO-KNN model is
optimized compared to the KNN model, with a relative reduction of 10 s, which enhances
the model’s predictive efficiency. The experiment results demonstrate that the proposed
prediction model has good applicability in multi-factor and multi-class prediction and
imbalanced data situations. It can provide instructive predictive data for the surface finish
of FDM-printed parts in engineering practice.

5. Conclusions

In the current work, a method for predicting the surface finish of FDM PLA parts
based on APSO-KNN is developed. The input attributes considered in this method include
nozzle diameter, layer thickness, number of perimeters, flow rate, printing speed, nozzle
temperature, and build orientation. The output variable is the discrete values of Ra mea-
sured on the sample surface: N10 (surface roughness value less than 12.5 um), N11 (surface
roughness value between 12.5 pm and 25 pm), N12 (surface roughness value between
25 um and 50 um), and N13 (surface roughness value greater than 50 pm). These values
are taken from ISO 1302:2002 [26] and are commonly used in actual industrial production.
The printing values of each sample were determined using the L27 Taguchi experimental
design, and 27 samples were printed. The experimental data for the 27 samples were used
to train and validate the method. The performance was compared with the most com-
monly used classifiers in existing research, including Decision Tree, SVM, KNN, and ANN.
The actual classification accuracy and training time were used as comparison criteria for
each model.

The comparative results show that the APSO-KNN prediction model performs the
best, completing almost all predictions for the eight test datasets (1-N10, 2-N11, 4-N12, and
1-N13), with a TPR of 100% for N10, N11, N12, and N13. Moreover, the APSO-KNN model
completed the prediction after only two iterations, and the training time of the model was
only 14 s, indicating a satisfactory running efficiency. This model can solve the problems
caused by data imbalance and multiple factors and multiple categories in predicting the
surface finish of FDM-printed parts.

A limitation of the proposed method lies in the selection of the k value, which is a
controversial issue in academia. Adjustments need to be made based on the actual situation,
as too large or too small k values may affect classification accuracy, leading to a lack of
uniformity in k value selection. In future work, deep learning methods will be explored
to address this issue and increase the uniformity and robustness of the proposed method
across different datasets. This would provide strong data support for the development of a
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surface finish prediction system for FDM-manufactured parts, improve the efficiency of
actual engineering production, and reduce unnecessary material waste.
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Abbreviations
AM Additive Manufacturing

FDM Fused Deposition Modeling
ML Machine Learning

DT Decision Tree

LH Layer Height

T Temperature

ND nozzle diameter

PS Print Speed

PA Print Acceleration

F Flow Rate

WA Wall Angle

NP Number of Perimeters

BO Build Orientation

KNN  K-nearest Neighbor

APSO  Adaptive Particle Swarm Optimization
PSO Particle Swarm Optimization

PLA Polylactic Acid

SVM  Support Vector Machine

ANN  Artificial Neural Network

TPR True Positive Rate

FNR  False Negative Rate

SD Standard Deviations

Ra Surface Roughness

Nomenclature

Xjj The numerical values of particle displacement (no unit)

Ui The numerical values of particle velocity (no unit)

k The number of neighbors (no unit)

w The inertia weight (no unit)

c1 The learning factors (no unit)

c The learning factors (no unit)

rn Uniformly distributed random numbers within [0, 1] (no unit)
o) Uniformly distributed random numbers within [0, 1] (no unit)
pij The individual best value of the particle (no unit)

Pg, The global best value of the particle (no unit)

The real-time objective function value of the particle (no unit)
favg The average value of all particles at present (no unit)
fmin ~ The minimum target value of all particles at present (no unit)
Wmax ~ The maximum values of the inertia weight (no unit)
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Whin  The minimum values of the inertia weight (no unit)
acc The value of accuracy (no unit)

NC The number of correct classifications (no unit)

NT The total number of classification labels (no unit)
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