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Abstract: In today’s rapidly evolving manufacturing landscape with the advent of intelligent tech-
nologies, ensuring smooth equipment operation and fostering stable business growth rely heavily on
accurate early fault detection and timely maintenance. Machine learning techniques have proven to
be effective in detecting faults in modern production processes. Among various machine learning
algorithms, the Backpropagation (BP) neural network is a commonly used model for fault detec-
tion. However, due to the intricacies of the BP neural network training process and the challenges
posed by local minima, it has certain limitations in practical applications, which hinder its ability
to meet efficiency and accuracy requirements in real-world scenarios. This paper aims to optimize
BP networks and develop more effective fault warning methods. The primary contribution of this
research is the proposal of a novel hybrid algorithm that combines a random wandering strategy
within the main loop of an equilibrium optimizer (EO), a local search operator inspired by simulated
annealing, and an adaptive learning strategy within the BP neural network. Through analysis and
comparison of multiple sets of experimental data, the algorithm demonstrates exceptional accuracy
and stability in fault warning tasks, effectively predicting the future operation of equipment and
systems. This innovative approach not only overcomes the limitations of traditional BP neural
networks, but also provides an efficient and reliable solution for fault detection and early warning in
practical applications.

Keywords: fault warning; BP neural network; deep learning; enhanced equilibrium optimizer

1. Introduction

With the ongoing advancement of modern industry, an increasing variety of me-
chanical equipment, industrial production lines, and electrical control systems are being
utilized [1,2]. However, during long-term operation, these devices and systems inevitably
encounter various failures, resulting in significant challenges and losses for both production
and maintenance [3]. Consequently, developing effective methods for early warning and
diagnosis of equipment and system faults has emerged as a pressing issue to address [4].

In this context, adopting machine learning-based fault warning methods has become
a vital approach to modern industrial fault prevention [5]. Fault warning is a management
strategy that enables early detection of faults and implementation of appropriate measures
to prevent or mitigate their impact on enterprises or consumers. Not only can fault warning
enhance operational efficiency and customer satisfaction for businesses, but it also reduces
maintenance expenses and minimizes production line downtime caused by failures [6].

BP neural networks are widely used in the field of fault early warning, primarily due
to their strong learning capability, rapid information processing speed, and error adaptivity
benefits. However, despite the remarkable results achieved by BP neural networks, they
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possess a series of non-negligible drawbacks that negatively impact the accuracy and
stability of fault early warning systems.

Firstly, BP neural networks are prone to falling into the local minima problem. When
the weight update during training becomes stuck at a local optimal solution, the neural
network may not be able to find the global optimum solution, ultimately affecting the
warning accuracy. Secondly, selecting an appropriate BP neural network configuration is
both complex and challenging. Failing to suitably determine the parameters can result
in suboptimal network performance. Furthermore, BP neural networks suffer from slow
convergence, and the training process often takes a substantial amount of time. This
increases the response delay of the early warning system, which may allow a fault to occur
before a warning is issued.

The primary objective of this paper is to effectively optimize BP neural networks
for developing more efficient fault warning methods. According to the No Free Lunch
theorem of optimization problems, current algorithms may not be proficient in addressing
this issue. This paper’s key contribution is the introduction of an enhanced metaheuristic
algorithm, based on EO, which incorporates a random wandering strategy and the concept
of simulated annealing. To the best of our knowledge, based on the existing literature, this
metaheuristic algorithm has not been employed to solve any variant of BP neural networks.
In this study, we implement it practically. Furthermore, we integrate an adaptive learning
strategy into the BP neural network and compare its performance with other cutting-edge
fault warning algorithms.

The remainder of this paper is organized as follows: Section 2 provides a comprehen-
sive literature review of the latest advancements in fault warning algorithms. In Section 3,
we present our proposed hybrid approach in detail, highlighting the integration of an EO
with a Backpropagation (BP) neural network. Section 4 presents a case study involving
widely used industrial equipment, showcasing the application of our approach for failure
warning. To evaluate the effectiveness of our hybrid method, Section 5 compares it with
other state-of-the-art techniques. Finally, Section 6 concludes the paper with a discussion of
key findings, limitations, and potential directions for future research.

2. Literature Review

At present, the growing interest in early fault detection has led researchers to develop
various techniques. Zhao et al. presented a deep learning approach—deep autoencoder
network—that examines sensor data for issuing early warnings about component failures in
wind turbine systems [7]. Wang et al. devised an enhanced deep learning, multistage, fusion
LSTM model for predicting future reciprocating compressor valve parameters by studying
operational data’s spatiotemporal features, thus achieving fault early warning goals [8]. Gao
et al. employed adaptive deep belief networks and charging data analysis to create an early
warning method for electric vehicle charging processes, training the network with historical
charging data and offering early warnings using real-time and predicted data [9]. Luo et al.
introduced a conditional mutual information technique for selecting valuable variables from
multiple options for network training, subsequently developing a BP neural network-based
wind turbine gearbox fault diagnosis model utilizing real-time data computations [10].
Wang et al. established a power distribution transformer pre-warning model that accounts
for extreme weather conditions and various nonlinear situations, integrating weather
data into BP neural network training [11]. Chen et al. optimized the BP neural network
with genetic algorithms to issue warnings regarding wind turbine pitch system faults,
filtering pitch system parameters with strong power correlation based on SCADA system-
monitored parameters for network training [12]. Jiang et al. also created a GA-BP model
and investigated a state-based baking machine maintenance method using operational
data. They determined weight selection input data through the entropy weighting method,
effectively avoiding the influence of subjective factors by selecting reasonable data input
samples [13]. Zhang et al. optimized the BP neural network with an improved grey wolf
algorithm, examining an electric vehicle charging safety pre-warning model based on
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charging statistics, and providing early warnings by comparing post-network fitting data
with original data [14]. Chen et al. proposed a BP neural network optimization technique
employing parallel factor decomposition and GA, efficiently extracting intricate information
from equipment operation using the parallel factor decomposition method, achieving
data mining, and considerably enhancing centrifugal pump fault detection efficiency [15].
Lin et al. optimized the BP neural network with an improved sparrow search algorithm,
applying the model to active phase-change control device fault detection using specific
equipment information [16]. Wu et al. suggested a hybrid method that combined a deep
local adaptive network, two-stage qualitative trend analysis, and a five-state Bayesian
network for extracting trend states from local moving window data, converting continuous
data of abnormal variables into trend state information for fault detection, identification,
and diagnosis [17]. Zhou et al. introduced an entropy-based sparsity technique, utilizing
LSTM network and envelope analysis data to predict bearing defects and identify issues in
complex hydraulic machinery (such as axial piston pumps) [18].

After conducting a comprehensive review of the above literature, we have drawn the
following conclusions:

(a) In modern engineering fields, fault warning for equipment and systems is a crucial
task. Numerous fault warning technologies are continuously emerging. However, com-
pared to other methods, BP neural networks exhibit several advantages, making them the
preferred solution for fault warnings.

(b) BP neural networks face some practical shortcomings, such as local minima and
difficulty in manual parameter selection. Slow training speed and the propensity to fall into
local minima can negatively impact fault warning systems, leading to prolonged diagnosis
times, increased operational costs, and diminished warning accuracy. Addressing this issue
is vital, as it can enhance the efficiency and precision of fault warnings, reduce operational
expenses, and optimize maintenance strategies. By refining training methods, we can
achieve faster and more reliable fault detection in practical applications, ultimately ensuring
efficient equipment maintenance and promoting the stability of production processes.
Optimizing them using metaheuristic algorithms serves as an essential solution.

(c) The No Free Lunch Theorem suggests that algorithms performing well on some
problems may perform poorly on others [19]. Consequently, in accordance with the No
Free Lunch Theorem, it is necessary to persistently explore the application of algorithms in
new areas to identify the optimal algorithm suitable for specific tasks or scenarios.

EO, proposed in 2020, is a novel optimization algorithm inspired by the physical
phenomenon of control volume mass balance. It is characterized by robust optimization
capabilities and rapid convergence. Results from various case studies indicate that EO
outperforms numerous classical and contemporary algorithms, such as the particle swarm
algorithm, grey wolf optimizer, genetic algorithm, gravitational search algorithm, and
sparrow search algorithm. According to the NFL theory, we used this excellent algorithm.

With the above background, compared to previous research, this paper offers the
following contributions:

(a) We designed an improved equilibrium optimizer (IEO) by incorporating a sim-
ulated annealing algorithm into the main loop process of the conventional equilibrium
optimizer and augmenting it with an enhanced local search operator that utilizes a random
wandering strategy. Experimental analysis effectively demonstrates that our introduced
strategy significantly enhances the search capability of the IEO.

(b) Fixed parameters may result in slow convergence and performance degradation
for BP neural networks. In this study, we integrated an adaptive update strategy for the
parameterization into the BP neural network, effectively improving its performance.

(c) This paper proposes a novel fault warning model and strategy using BP neural
networks and IEO, determines its parameters through Taguchi’s experimental method, and
validates the effectiveness of the method via real-world analysis. Comparisons with other
state-of-the-art methods further showcase the exceptional performance of our proposed
method, providing a new approach to fault warning.
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In summary, this study presents a significant contribution to the field by effectively
improving the EO through the combination of SA and the incorporation of a random
wandering strategy. For the first time, we have integrated this enhanced algorithm with a
BP neural network, which substantially expands its application domain. Furthermore, our
research introduces a parameter calibration analysis and fault warning strategy based on
this model. To validate our proposed hybrid method, we collected data from real-world
industrial equipment commonly used in practice, conducted a thorough investigation of
its failure modes and fault anomalies, and tested our method using this case study. The
results underscored the high accuracy of our technique in identifying faults, demonstrating
that our research can effectively elevate the level of failure warning and contribute to
sustainable industrial development.

3. Proposed Hybrid Method

In this section, we first describe the improved BP neural network (Section 3.1), followed
by a description of IEO (Section 3.2), and finally the framework of IEO-BP is constructed
(Section 3.3).

3.1. Improved BP Model

The general flow of the BP neural network is as follows [20]:
Step 1: Initialization: Randomly initialize the connection weights and thresholds.
Step 2: Forward propagation to calculate the output value: the input samples are

passed through the input layer to the output layer through the implicit layer, and the output
value is calculated, as depicted in Equations (1) and (2).

Input layer to the implied layer:

zj = f

(
d

∑
i=1

wjixi + bj

)
(1)

Implicit layer to output layer:

yk = f

(
q

∑
j=1

wkjzj + bk

)
(2)

wji is the connection weight from the input layer to the hidden layer, wkj is the connection
weight from the hidden layer to the output layer, bj is the threshold of the hidden layer, bk
is the threshold of the output layer, xi is the ith feature of the input sample, zj is the output
of the neuron in the hidden layer.

Step 3: Root-mean-square error (RMSE) calculation: The error is calculated using the
difference between the output value and the desired output value. It is calculated as in
Equation (3).

RMSE =

√
l
m

m

∑
i=1

(yk − tk)
2 (3)

where yk is the output of the output layer neurons, tk is the desired output value, and m is
the number of output layer neurons.

Step 4: Back propagation to adjust the weights and thresholds: the connection weights
and thresholds are adjusted by error back propagation from the output layer back to the
input layer, as described in Equations (4) and (5).

δk = (tk − yk) f ′(netk) (4)

δj = f ′(netj)
c

∑
k=1

wkjδk (5)

where f (net) is the activation function, and f ′(net) is the derivative of the activation function.
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Step 5: The weights and thresholds are updated, as shown in Equations (6)–(9).

wij(t + 1) = wij(t) + ηδjxi (6)

bj(t + 1) = bj(t)− ηδj (7)

wjk(t + 1) = wjk(t) + ηδkzj (8)

bk(t + 1) = bk(t)− ηδk (9)

where q is the number of neurons in the hidden layer, and η is the learning rate.
Step 6: Repeat 2~4 steps until the error reaches convergence or the training number

reaches the limit.
This is followed by our improvement of the traditional BP neural network:
When training a neural network, selecting an appropriate learning rate is crucial to

achieving a fast convergence rate and maintaining stability [21]. Utilizing a fixed learning
rate may result in issues such as under-learning or overfitting during the training process.
As a solution, we employ an adaptive learning rate (exponential decay) to train the BP
neural network. In exponential decay, the learning rate decreases as the number of training
rounds or iterations increases. This strategy helps reduce the magnitude of weight updates
as the optimal solution is approached, enabling more accurate finetuning. Specifically, we
adaptively adjust the learning rate according to Equation (10).

ηnew = η ∗ I
E
T (10)

where I is a constant between 0 and 1, representing the decrease in the learning rate after
each decay step, usually set to 0.5; E denotes the number of current iterations; and T
represents the time interval for decaying the learning rate.

3.2. Enhanced EO Model

In addition to the traditional EO procedure (Sections 3.2.2–3.2.5), we improved the EO
using a local search operator combined with a random wander strategy with the idea of
simulated annealing (Section 3.2.6).

EO is a novel intelligent algorithm inspired by the mass balance equation in physics [20].
The mass balance equation describes the process of mass entry, exit, and generation within
a controlled volume and can be expressed as a first-order differential equation, as shown in
Equation (11).

V
dC
dt

= QCeq −QC + G (11)

where V is the control volume; C represents the concentration within the control volume;
Q denotes the volumetric flow rate into or out of the control volume; Ceq represents the
concentration in the control volume at equilibrium; and G signifies the mass production
rate within the control volume.

The rate of mass change of the control volume, V dC
dt , when it is 0 means that the control

volume enters a stable equilibrium state.
Let = λ = Q

V , the transformation of Equation (10) gives dC
λCeq −λC+ G

V
= dt.

Let t0 and C0 be the initial time and concentration values, respectively, and integrate
both sides of Equation (11) simultaneously to obtain.∫ c

C0

dC
λCeq − λC + G

V
=
∫

t0

dt (12)
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Solve Equation (12) to obtain Equation (13).

C = Ceq +
(
C0 − Ceq

)
F +

G
λV

(1− F) (13)

where F = exp(−λ(t− t0)).

3.2.1. Initialization

Similar to most heuristic algorithms, the initialization process of the balanced optimizer
can be expressed as Equation (14).

Cinit
i = Cmin + randi(Cmin − Cmin) i = 1 . . . 2 . . . n (14)

where Cinit
i is the initial concentration vector of the ith individual: Cmin and Cmax are the

lower and upper limit vectors of the individual, randi is a random vector between [0, 1].

3.2.2. Establishing the Equilibrium Pool

The equilibrium state represents the ultimate state that the algorithm converges to.
During the optimization process, the equilibrium pool serves as a source of candidate
solutions for the entire optimization procedure. In our proposed method, we introduce
a bootstrap optimization process. Specifically, the EO selects the top four individuals in
terms of fitness from the equilibrium pool and calculates their average, creating a “fifth
individual”. Subsequently, one of these five individuals is randomly selected with equal
probability to guide the rest of the optimization process, as demonstrated in Equation (15).

→
Ceq. pool =

{→
Ceq (1),

→
Ceq (2),

→
Ceq (3),

→
Ceq (4),

→
Ceq (πx)

}
(15)

where
→
Ceq(ave) =

Ceq(1)+Ceq(2)+Ceq(3)+Ceq(4)
4 e.

The probability of each of the five individuals in the equilibrium pool being selected as
the solution for the bootstrap optimization process is identical, with all having a 0.2 chance.

The bootstrap optimization process plays a crucial role in enhancing the exploration
and exploitation capabilities of the algorithm. Introducing randomness and diversity
through the selection of individuals from the equilibrium pool helps to prevent the algo-
rithm from getting stuck in local optima.

3.2.3. Exponential Terms

The exponential term plays a crucial role in the algorithm’s update process and can be
represented as Equation (16).

→
F = e−

→
λ (t−t0) (16)

where −
→
λ is a random vector between [0, 1].

The variable t is defined as a function that diminishes with an increasing number of
iterations, as illustrated in Equation (17).

t =
(

1− E
Maxit

)a2
E

Maxit
(17)

where E and Maxit are the current iteration number and the maximum iteration number,
respectively; a2 is a constant, generally taken as 1.

In order to guarantee the algorithm’s convergence while simultaneously enhancing its
search and exploitation capabilities, consider:

→
t 0 =

1
→
λ

ln
(
−a1sign(

→
r − 0.5)

[
1− e−

→
λ t
])

+ t (18)
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where a1 is a constant, generally taken as 2; sign is a mathematical sign function;
→
r is a

random vector between [0, 1].
Bringing Equation (18) into Equation (16), we can obtain Equation (19).

→
F = a1sign(

→
r − 0.5)

[
e−
→
λ t − 1

]
(19)

3.2.4. Generation Rate

The algorithm generation rate is characterized as a first-order exponential decay
process, illustrated in Equation (20).

→
G =

→
G0e−

→
k (t−t0) (20)

In order to achieve a more controllable and systematic search pattern, the algorithm
sets k = λ and incorporates the previously derived exponential term to describe the genera-
tion rate, as represented in Equation (21).

→
G =

→
G0e−

→
λ (t−t0) =

→
G0
→
F (21)

where
→
G0 =

→
GCP

(→
Ceq −

→
λ
→
C
)

(22)

→
GCP =

{
0.5r1 r2 > GP

0 r2 < GP
(23)

where r1 and r2 are random numbers within the range [0, 1]; GP is the generation probability,
which is typically set to 0.5.

In summary, the final update formula for the balanced optimizer is defined in Equation (24).

→
C =

→
Ceq +

(→
C −

→
Ceq

)
·
→
F +

→
G
→
λV

(
1−

→
F
)

(24)

where the V value is generally taken as a constant 1.
In Equation (24), the first term represents the concentration at equilibrium, while the

second and third terms characterize changes in concentration. Specifically, the second term
enhances the algorithm’s search capability by inducing significant changes in the individual
close to the equilibrium state. Meanwhile, the third term improves the utilization capability
by refining the obtained solution through minor adjustments in concentration.

3.2.5. Individual Memory Storage

Drawing inspiration from the concept of individual best in particle swarm optimiza-
tion, the balance optimizer introduces an individual memory storage mechanism [21]. After
E iterations (where E = 2), the fitness value achieved by each individual is compared with
the fitness value obtained after E-1 selections. If the fitness value of the individual improves
after the E-th iteration, both the individual’s position and fitness value are updated ac-
cordingly. Otherwise, no update occurs, and the individual retains the position and fitness
value obtained after the E-1 selection for the next iteration. This mechanism primarily aims
to enhance the algorithm’s utilization capacity.

3.2.6. Enhanced Local Search Strategy Based on SA

In the literature, it is pointed out that EO has advantages, such as rapid convergence,
but it also has the disadvantage of easily falling into local optima [22–25]. To address this
issue, this section combines SA with EO and designs a local search.
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SA is an optimization algorithm that seeks the global optimal solution in a complex
search space. In SA, the temperature (T1) is a crucial parameter that imitates the distribution
of energy states of atoms within solid-state physics at various temperatures. This tempera-
ture parameter represents the likelihood of accepting suboptimal solutions in the search
space. To explore the solution space more extensively, the algorithm begins with a higher
initial temperature. As the number of iterations increases, the temperature is progressively
reduced, consequently decreasing the probability of accepting an inferior solution. This
procedure is known as “cooling” or “annealing”. By suitably adjusting the cooling rate and
cooling function, the solution space can be thoroughly explored, ultimately converging to
the global optimal solution. The following are the basic steps of the algorithm:

Step 1: Random initialization: determine an initial solution x, which is usually gener-
ated randomly, according to the characteristics of the problem.

Initial temperature setting: initialize the parameter T1 (temperature) to a larger value
in order to make the search process easier to jump out of the local minima.

Step 2: Iterative loop: for each temperature T1, a certain number of subit iterations are
performed; each iteration starts from the current solution x to explore a new solution xnew.

Step 3: Random perturbation: according to the characteristics of the problem, some
random perturbations are made to the existing solution x to obtain a new solution xnew.

Step 4: Evaluate the function: calculate the quality of xnew, i.e., estimate the value of
the function to be solved fxnew.

Step 5: Decision function: decide whether to accept the new solution xnew according
to the metropolis criterion:

If fxnew < fx, then the new solution is accepted.
If fxnew ≥ fx, then accept the new solution with probability p.

p = e−δe/t (25)

where δe = f (xnew) − f (x) is the energy difference, t is the temperature, and e is the
natural constant.

Step 6: Temperature update: cooling according to certain cooling rules.

tk+1 = Atk (26)

where A is the cooling rate, gradually reduce the temperature.
Step 7: Stopping condition: when the stopping condition is reached, i.e., the maximum

number of iterations or the minimum temperature.
It should be noted that we set a random wandering strategy in this step to better

improve the search performance, which is calculated as shown in Equation (27).

x′i(l) = xi(l) + ε
(

xj(l)− xk(l)
)

(27)

where x′i(l) is the updated new solution; xj(l) and xk(l) are two random solutions; ε is the
scaling factor, ε∼U (0, 1), U is uniformly distributed.

3.3. IEO-BP Model

To address the issues of weak self-adaptation and local minima in BP neural networks,
we first employ IEO to globally pre-optimize the weights and thresholds of BP neural
networks. Next, we assign these optimal weights and thresholds as initial values for BP
neural networks and use the optimized parameters for training. This approach leads to the
final fault BP neural network structure for early warning. The specific ISEO-BP process
includes the following steps:

Step 1: Input neural network parameters, such as the number of hidden layer neu-
rons, activation function, training times, training rate, and target error to be achieved
during training.
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Step 2: Input IEO algorithm parameters and use the RMSE of neural network prediction
as the IEO fitness function. Execute the IEO algorithm process.

Step 3: Train the constructed BP neural network using the weights and thresholds
obtained from IEO optimization, resulting in the optimized BP neural network structure.

Step 4: Input test data into the trained BP neural network to obtain output data.
Perform data analysis on the output.

IEO-BP encompasses several crucial stages. Firstly, the neural network is set up
by randomly allocating weights and biases to its neurons. Following this, input data
traverses through the network, resulting in output via a combination of weighted and
non-linear activation functions. The generated output is then compared to the actual labels
to determine the error.

At this juncture, the IEO component is introduced, creating an initial solution for the
optimization process. This solution experiences an iterative search procedure that assesses
fitness values and selects novel candidate solutions. The derived solution is subsequently
integrated into the BP neural network, serving as weights and thresholds to begin iterations.

The iteration cycle carries on until a pre-specified number of iterations are executed or
the error is minimized to a satisfactory level. By employing this method, IEO-BP effectively
merges the benefits of both BP neural networks and IEO algorithms, offering a powerful
and efficient solution for equipment fault warning detection.

4. Case Study

In this section, we first describe the case use (Sections 4.1 and 4.2), followed by an
effective selection of the IEO parameters (Section 4.3), and finally, the training and testing
of the IEO-BP network (Section 4.4).

4.1. Case Description

The vapor feed pump is a widely used type of pump in various industries, primarily
for supplying water to boilers and other equipment. It offers:

• High Efficiency: The pump quickly delivers water to the target equipment, ensuring a
consistent and stable flow. This significantly improves water usage efficiency.

• Reliability: Allows for continuous operation, even under considerable loads and
extended periods of use.

• Continuity: Equipped with a dual water supply system (electric or steam), the pump
can continue functioning if one system encounters issues, thus guaranteeing continuity
in the production process.

Due to the widespread application of vapor feed pumps, we have chosen this pump
as a test example to evaluate the effectiveness of IEO-BP.

Following our investigation and analysis, we identified five primary fault types for
steam feed pumps and their corresponding data anomalies.

Furthermore, we gathered 2800 sets of regular operation data from steam feed pumps
and 30 sets of failure data for each fault type. The data collection relied on sensors, and
the standard operation data encompassed a variety of pump performance metrics under
different operating conditions, including pressure, flow rate, and temperature. We utilized
this data to train an IEO-BP network model to recognize normal operating characteristics.
The fault data encompass five primary fault types, among others, which are employed
to assess the IEO-BP’s ability to detect and provide early warning for these faults. By
leveraging this comprehensive data for training and testing purposes, we could effectively
evaluate the practicality and efficiency of the IEO-BP approach in real-world applications.

Our data collection methods are as follows:
1. On-site temperature and vibration sensors complete the data acquisition.
2. Collected data are sent to the control system.
3. The control system sends the data to the SIS system via the OPC data interface.
4. Access to the data from the SIS system for analysis and processing.
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Regarding the sensors we utilized, temperature sensors typically transform temper-
ature variations into electrical signals by altering thermocouple resistance. This process
enables us to acquire temperature data. In this case, we have employed the widely used
voltage divider circuit. Once the supply and voltage divider resistor R1 are established, we
can determine the relationship between output voltage and temperature. We then choose
an appropriate voltage divider resistor and calculate the corresponding voltage divider
value for each temperature based on the Resistance-Temperature (R-T) table.

Vibration sensors primarily consist of three types: acceleration sensors, velocity sen-
sors, and displacement sensors. These sensors measure vibration acceleration, vibration
velocity, and vibration displacement, respectively.

As for pressure sensors, they convert pressure fluctuations into changes in resistance.
However, since directly capturing resistance as a signal is challenging, we need to trans-
form the resistance change into a voltage or current change. This conversion allows the
acquisition card to collect data efficiently.

The Appendix A shows our collection of fault pictures.

4.2. Description of Fault Types and Characteristics

We have gathered and identified five primary types of faults, as depicted in Table 1.
The table presents the fault type in the left column, the anomaly measurement point during
the fault in the middle column, and the abnormality type of the fault measurement point
in the right column. Table 2 showcases a few examples of measurement points exhibiting
anomalous data.

Table 1. Fault types and their measurement points.

Fault Types Abnormal Measurement Point Exception Type

High bearing vibration (H1):
Causes parts to wear out or equipment to
operate erratically

(1) Pump front-shaft vibration 1
abnormal

(2) Pump front-shaft vibration 2
abnormal

(3) Abnormal rear-shaft vibration 1
(4) Abnormal rear-shaft vibration 2

Abnormally large displacement
amplitude

High temperature of thrust bearing (H2):
Causes overheating of bearings and
shortens service life

(1) Small steam engine thrust bearing
temperature 1 abnormal

(2) Small steam engine thrust bearing
temperature 2 abnormal

(3) Small steam engine thrust bearing
temperature 3 abnormal

(4) Small steam engine thrust bearing
temperature 4 abnormal

(5) Small steam engine thrust bearing
temperature 5 abnormal

(6) Small steam engine thrust bearing
temperature 6 abnormal

Abnormally high temperature

Low lubricant oil pressure (H3):
Affects the normal operation of the
lubrication system and
equipment performance

(1) Abnormal pressure in the lube oil
supply bus of steam pump Abnormally low pressure

High lubricant oil temperature (H4):
Causes oil deterioration or
insufficient cooling

(1) Abnormal temperature of lube oil
supply bus bar of steam pump Abnormally high temperature

Abnormal lubricant pressure (H5):
Affects lubrication effect

(1) Abnormal air pump lubricant
pressure Abnormally high pressure
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Table 2. Fault types and their abnormal data.

Fault Types Normal Data Abnormal Data

High bearing vibration (H1)

(1) 35.84 µm (1) 79.19 µm
(2) 31.72 µm (2) 76.01 µm
(3) 24.77 µm (3) 55.81 µm
(4) 21.31 µm (4) 55.1 µm

High temperature of thrust bearing (H2)

(1) 54.5 ◦C (1) 89.2 ◦C
(2) 54.8 ◦C (2) 89.7 ◦C
(3) 54.2 ◦C (3) 88.5 ◦C
(4) 55.1 ◦C (4) 83.9 ◦C
(5) 55.6 ◦C (5) 85.1 ◦C
(6) 55.1 ◦C (6) 83.2 ◦C

Low lubricant oil pressure (H3) 780 KPa 370 KPa

High lubricant oil temperature (H4) 42.5 ◦C 56.2 ◦C

Abnormal lubricant pressure (H5) 182 KPa 91 KPa

4.3. IEO-BP Parameter Calibration

Appropriate parameters have a significant impact on algorithms [26,27]. In machine
learning, many algorithms require certain parameters to be set in order to tune their
behavior. These parameters can affect the performance of the model training process and
the final performance of the model. If the parameters are not set properly, they may cause
the algorithm’s performance to degrade or even fail, resulting in the model not converging
correctly. Therefore, proper parameter selection and tuning are required to ensure the best
performance of the algorithm.

Before using IEO-BP for the training of the vapor feed pump network, we first adjusted
its parameters, setting the number of BP network training to 1000, the training error to 0.02,
and the learning rate to 0.001. We provided three reference values for each of the remaining
parameters, as shown in Table 3, based on pre-experiments and literature analysis [12–14].
It is important to note that we chose Softsign, Tanh, and ReLU as activation functions.
The Softsign, Tanh, and ReLU activation functions perform well in dealing with nonlinear
problems. They are widely used activation functions in deep learning and neural networks
and help to improve the performance of the models on various tasks. Here is a brief
description of these three models:

Table 3. IEO-BP parameters and their reference values.

Input layer to implicit layer activation function (Fun1) Softsign Tanh ReLU

Implicit layer to output layer activation function (Fun2) Softsign Tanh ReLU

Number of neurons in the hidden layer (NL) 10 11 12

I 0.95 0.92 0.90

T 10 15 20

Maxit 50 150 200

Npop 30 40 50

Subit 20 30 50

T1 (Initial temperature) 1000 1500 1800

T0 (Minimum temperature) 50 100 150

A (Cooling rate) 0.97 0.95 0.92

(1) Softsign:
Softsign functions are simpler and more efficient to compute than other S-shaped

curves, such as Sigmoid and Tanh.
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The output range (−1, 1) is useful to avoid excessively large or small output values in
some scenarios.

(2) Tanh:
The Tanh function is symmetric with respect to the origin of the coordinates compared

to the Sigmoid function, so it may have better performance in some applications.
Output range (−1, 1) alleviates the gradient vanishing problem.
(3) ReLU:
The ReLU function has good stability and low computational complexity when training

deep neural networks.
ReLU has linear and nonlinear properties that help improve the expressiveness of the

model and help it learn more complex mathematical functions.
Mitigates the gradient vanishing problem and helps converge faster.
It should be noted the all the codes were written in MATLAB 2018b software on an

operating system using an (InteI) CI(TM) i7-10850H CPU @ 2.70 GHz, 2712 MHz, 6 Core(s)
and 12 Logical Processor(s).

Based on the results in Table 3, conducting the full test would require a significant
amount of resources. Therefore, we used the Taguchi test method to form an orthogonal
array to conduct a reasonable number of tests. This method is based on the design principle
of “orthogonal table”, where multiple variables are combined and arranged so that each
variable is tested at different levels. This maximizes the amount of useful data obtained
and minimizes possible confounding factors.

We use the relative percentage deviation (RPD) to measure the performance of IEO-BP
for each combination of parameters, which is calculated by Equation (28).

RPD =
AlgSol −MinSol

MinSol
(28)

where AlgSol is the RMSE under the current parameter pair, MinSol is the minimum RMSE
among all experimental times.

To effectively evaluate the performance of models with varying parameters, we employ
K-fold Cross Validation, a widespread method for assessing machine learning model
performance. This technique involves using a subset of the dataset for multiple training
and validation iterations, ensuring the stability of evaluation results. The procedure
includes the following steps:

1. Randomly divide the dataset into K disjoint subsets.
2. For each subset, execute the following steps:

• Set the current subset as the validation set and merge the remaining K-1 subsets
to form the training set.

• Train the model with the training set.
• Evaluate the model performance using the validation set and record the evalua-

tion results.

3. Calculate the average of the K evaluation results to obtain the final performance
evaluation metric of the model.

We select K = 5 and use Root-Mean-Square Error (RMSE) as the evaluation metric.
We record the average result after five runs with the current combination of parameters.
As per the Taguchi method’s recommendation, we utilize the L27 orthogonal array. The
subsequent outcomes of the 27 experiments are presented in the Table 4.

We then used Equation (28) to calculate the RPD for each group of experiments; we
select the mean RPD value of each parameter across all experiments to determine its optimal
level. After calibration, the final parameter settings are displayed in Table 5.
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Table 4. Cross-validation results.

Number of
Experiments RMSE Number of

Experiments RMSE Number of
Experiments RMSE

L1 73.22 L10 71.60 L19 70.33

L2 72.18 L11 74.15 L20 74.21

L3 70.97 L12 71.44 L21 73.68

L4 72.76 L13 72.50 L22 71.80

L5 71.88 L14 74.57 L23 71.36

L6 72.13 L15 70.04 L24 73.29

L7 73.10 L16 70.47 L25 70.89

L8 74.72 L17 71.19 L26 74.43

L9 73.07 L18 73.81 L27 72.90

Table 5. Calibration results of IEO-BP parameters.

Fun1 softsign

Fun2 ReLU

NL 10

I 0.92

T 20

Maxit 200

Npop 50

Subit 50

T1 1800

T0 100

A 0.97

4.4. Network Training and Early Warning Testing

After crossover experiments and the Taguchi method to determine the optimum
parameter levels, we first performed the network training of the IEO-BP model using the
health sample data collected in Section 3.1. All data were divided into training and test sets
according to an 8:2 ratio. The true values of the measured points and their predicted values
under normal operation of these five main fault types are shown in Figure 1. Based on the
true and predicted values, we can obtain our fault warning method, which is described in
detail below. In addition, the RMSE convergence results for the training set and the RMSE
convergence results for the test set are depicted in Figures 2 and 3, respectively, with the
test sets observed every 20 iterations.

According to the results in Figure 1, our IEO-BP model demonstrates a good prediction
effect; in addition, according to the results in Figures 2 and 3, the convergence of IEO-BP
is also faster and, at the same time, more stable on the test sets, and we can propose a
fault warning strategy based on the difference between the predicted and true values. The
specific steps for implementing a fault warning strategy are as follows:

Step 1: Set the threshold value: Based on historical data analysis, establish a rea-
sonable threshold value for the difference between predicted and actual observed values.
This threshold should account for both normal equipment fluctuations and abnormal
fluctuations that occur during faults.
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Step 2: Real-time warning: Input real-time equipment data into the trained prediction
model to obtain predicted values. Calculate the difference between the predicted and
actual observed values. If the difference exceeds the predetermined threshold, issue a fault
warning signal.

Step 3: Fault diagnosis and processing: Upon receiving the fault warning signal, con-
duct further inspection and diagnosis of the equipment. Depending on the diagnostic re-
sults, take appropriate measures to prevent or mitigate losses caused by equipment failure.

Step 4: Continuous optimization: Consistently collect equipment operation data and
update the prediction model to maintain accuracy. Regularly evaluate the effectiveness of
the warning strategy, adjust threshold settings, and make other necessary improvements.

By employing this fault warning strategy based on the difference between predicted
and actual values, abnormal equipment conditions can be detected and addressed promptly,
thereby enhancing the operational efficiency, safety, and service life of the equipment.

This failure warning strategy can also be applied to other devices. The trained network
can output point data, and if the output data deviates from the value set by the decision
maker, a fault warning judgment can be triggered.

Subsequently, using the trained network and the proposed fault warning test, we
conducted fault warning tests for five fault modes. The final test results are displayed in
Table 6, demonstrating that IEO-BP can effectively achieve the purpose of fault warning.
Its histogram is presented in Figure 4.

Table 6. IEO-BP fault test results.

H1 28/30

H2 27/30

H3 28/30

H4 24/30

H5 28/30
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It should be noted that the warning strategy we adopt involves issuing a warning
immediately when the error between the predicted and true values exceeds the limit set by
the decision maker during operation. Considering the randomness, the decision maker can
either conduct troubleshooting immediately on this occasion or wait until the next warning.



Processes 2023, 11, 1813 16 of 21

Based on the above-mentioned experiments, IEO-BP can effectively achieve the pur-
pose of fault warning, with its warning success rate for H1, H5, H3 reaching 93%, and
for other problems being higher than 85%, which is within a reliable confidence range.
However, we also note that its early warning accuracy for H4 is only 80%; thus, we need
to strengthen the training of IEO-BP in this aspect. This issue arises from the settings of
fault warning thresholds. Some fault data points may not be sensitive enough, causing
deviations that do not reach the threshold. If the threshold is set too low, accuracy would
increase, but it might also lead to false alarms. In actual practice, it is necessary to choose
the threshold based on specific requirements and conditions.

5. Algorithm Performance Analysis

In this section, we first validate the effectiveness of the IEO improvement strategy
(Section 5.1) and then demonstrate its performance in further comparison with other
algorithms (Section 5.2).

5.1. IEO-BP Analysis

To verify the performance of the local search operator we set and the adaptive selection
strategy of the BP neural network, we compared the convergence results of the test set with
the RSME values; after removing the IEO-BP and SA strategies and removing the adaptive
selection strategy, we set the number of iterations to 200, 500 and the initial population size
to 30, 40, 50. Other parameters were the same as in the previous section, and fifteen trials
were performed to take the average. The final results are shown in Table 7.

Table 7. IEO-BP performance analysis.

Algorithm Parameters IEO-BP IEO-BP Removal SA

Maxit, Npop RMSE Number of First
Convergence RMSE Number of First

Convergence

30,200 73.21 120.35 75.96 123.72

30,500 72.98 303.23 75.09 320.53

40,200 73.56 108.76 76.01 126.89

40,500 72.66 248.52 74.98 267.36

50,200 71.03 108.76 73.26 135.86

50,500 70.36 282.99 72.76 297.55

Algorithm parameters IEO-BP removal adaptive learning strategy

30,200 75.72 130.88

30,500 75.18 332.59

40,200 74.92 135.69

40,500 74.02 282.53

50,200 73.03 140.52

50,500 72.98 308.32

According to the results in Table 7, we can see that the IEO-BP strategy outperforms the
other two methods in different situations, achieving optimal values in terms of convergence
speed and solution error, which fully demonstrates the effectiveness of these two strategies.

5.2. Comparison with Other Algorithms

To verify the algorithm’s effectiveness, we chose three algorithms to solve the above
cases simultaneously, namely, GA-BP [12], SVM-BP [28], and AFSA-BP [29]. Since the
algorithms are randomized, we ran each algorithm fifteen times to ensure fairness. We
also determined the optimal parameters of each algorithm according to the literature
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analysis [12,28,29] and integration of the cross-validated Taguchi experimental method. We
compared the network training results using RMSE, R2, and the algorithm running time as
evaluation indices and compared the performance of the trained network with the warning
correct rate. RMSE is a measure of the difference between a model’s predicted outcome and
its actual value. It is obtained by calculating the average of the sum of the squares of the
differences between the predicted and actual values, and then finding the square root. R2 is
a statistical indicator used to measure the goodness of fit of a regression model. The larger
the R2 value, the better the model fits the data; conversely, a smaller R2 value indicates that
the model fits the data less well. CPU time measures the efficiency of the algorithm.

The average results of RMSE, R2, and the algorithm running time are shown in Table 8.
Their fifteen boxplots of statistical results are displayed in Figure 5, and the results of the
correct prediction rate are shown in Table 9.

Table 8. Algorithm comparison results.

Algorithms RMSE R2 CPU/s

GA-BP 73.28 98.42 23.10

SVM-BP 71.21 99.30 21.66

AFSA-BP 71.70 99.15 21.55

IEO-BP 70.61 99.46 21.73
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Table 9. Fault warning test results.

GA-BP 120/150 (80%)

SVM-BP 123/150 (82%)

AFSA-BP 126/150 (84%)

IEO-BP 133/150 (89%)

Based on the results in Table 8, it can be concluded that our IEO-BP obtains optimal
values for both metrics, RMSE and R2, fully demonstrating its accuracy in terms of pre-
diction. In terms of program running time, AFSA-BP has the lowest running time, while
IEO-BP occupies a moderate position. From the results in Table 9, IEO-BP also achieves the
highest level in terms of fault warning accuracy.

Additionally, the statistical results (Figure 6) show that GA-BP has the best stability in
terms of RMSE among the three algorithms, with the shortest box plot length; however,
its RMSE value is the highest. IEO-BP ranks second in terms of stability in this index.
Although there is no significant difference among the three algorithms in terms of stability
in terms of solution time and R2, IEO-BP has a significantly better value.
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In conclusion, compared to the other three algorithms, IEO-BP has certain advantages
and can effectively achieve the fault warning goal.

6. Conclusions and Future Work

Fault warning is a reliable method for promoting the sustainable development of
industrial equipment. Among various fault warning techniques, the BP neural network
stands out as the most common and efficient approach. However, it has certain shortcom-
ings. To enhance the efficiency of fault warning, this paper introduces a hybrid algorithm
called IEO-BP. In IEO, we incorporate an SA-based random perturbation local search
operator to effectively boost the exploration ability of the algorithm. For the BP neural
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network, we add an adaptive learning rate to improve its prediction performance. Subse-
quently, we combine IEO with the improved BP neural network for fault warning analysis.
Experimental results demonstrate that IEO-BP effectively achieves the fault warning ob-
jective, displaying notable advantages in comparison with other algorithms. In terms of
performance comparison, our method achieved the best values for RMSE and R2, with its
solution efficiency in the middle of the range, thus striking a balance between efficiency
and quality. In the fault warning test, its effectiveness improved by 11% compared to
GA-BP, 8.5% compared to SVM-BP, and 6% compared to AFSA-BP, resulting in an average
effectiveness improvement of 8.5%. Additionally, our proposed algorithm enhancement
strategy demonstrates its effectiveness by exhibiting a faster convergence speed and higher
solution accuracy compared to conventional EO.

Our research not only addresses the limitations of EO, but also expands its application
area by integrating it with the improved BP neural network to propose a novel solution
for fault warning issues, thereby fostering enhanced industrial development to meet
contemporary demands.

Despite the successful investigation of a hybrid approach for fault warning, there
remains ample room for future research. Firstly, fuzzy languages can be employed to
represent uncertainties in the operation of realistic industrial equipment [2,3]. Secondly,
IEO can be combined with other metaheuristics [30,31]. Lastly, our IEO-BP framework
can be applied on various equipment according to practical requirements, or further
improved to propose more sophisticated warning strategies; examples include the use of
more adaptive learning rate expressions and the use of hybrid metaheuristics, in addition
to extensions such as these to more neural network structures [32–36].
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