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Abstract: Personalized precision medicine is a new direction for medical development, and advanced
manufacturing technology can provide effective support for the development of personalized preci-
sion medicine. Based on the layered accumulation manufacturing principle, 3D printing technology
has unique advantages in personalized rapid manufacturing, and can form complex geometric shape
parts at low cost and high efficiency. This article introduces the application progress of 3D printing
technology in medical models, surgical navigation templates, invisible aligners, and human implants,
analyzes their advantages and limitations, and provides an outlook for the development trend of 3D
printing technology in precision medicine.

Keywords: personalization; precision medicine; 3D printing technology; precision manufacturing;
rapid manufacturing; full chain

1. Introduction

Precision medicine is a new model that differs from traditional medicine, and it is a
data-driven approach that considers various factors such as genetic differences, lifestyle,
and environment of the population. It matches the molecular and pathological characteris-
tics of the patient, providing personalized diagnosis and treatment strategies to achieve the
ultimate goal of improving patient health [1]. The necessary condition for achieving preci-
sion medicine is the need for medical aids adapted to human physiological characteristics,
whereas traditional medical devices cannot meet individualized needs and are expensive.
Therefore, advanced manufacturing technologies are urgently needed in the future of
personalized precision medicine to achieve cost reduction and efficiency improvement [2].

Three-dimensional printing technology, also known as additive manufacturing tech-
nology, is based on a digital 3D model. By slicing the digital model through software, the
material is gradually stacked under computer control to obtain the part configuration [3].
Compared to traditional subtractive manufacturing processes (such as turning, milling,
planing, grinding) and equal material manufacturing processes (such as forging, casting,
welding), 3D printing technology can manufacture parts of any configuration at low cost
and high efficiency. Three-dimensional printing technology itself has a digital gene and its
entire process can be applied in precision medicine, including image acquisition, segmen-
tation, modeling, printing, post-processing, and quality control, which can be referred to
as full chain application. So, it has a wide range of market demand in the medical field,
and its industrial scale continues to expand. According to the report of Acumen Research
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and Consulting, the global market size of medical 3D printing applications was USD
2.8 billion in 2022. It is estimated that the market size will reach USD 11 billion by 2032,
with a compound annual growth rate of 16.6% from 2023 to 2032. Currently, the sub-fields
in which 3D printing technology is mainly applied in the medical field include medical
devices, dentistry, human implants, drugs, and other derivative fields, and their application
maturity is shown in Table 1. It can be seen that orthopedic implants, prostheses, and
dental applications are the largest market application areas, and countries all over the
world attach great importance to medical 3D printing technology and its applications.
This article mainly focuses on the application research and analysis of medical models,
surgical guides, invisible aligners, and human implants, and provides an outlook for the
development trends.

Table 1. Three-dimensional printing technology in medical subdivision fields and development stages.

Stage Medical Subdivision Fields

Relatively mature and commercialized development Medical model, surgical guide plate, dental application
Clinical data accumulation research High-performance orthopedic implants

Laboratory research stage Functional tissue organ

2. Silicon Models
2.1. Three-Dimensional Printing Technology of Silicon

Silicone printing technology has been developed in response to the issue that tradi-
tional medical models made of single-material hard plastics lack the soft characteristics of
human organs, which consist of 60–70% soft tissues. With the hardness of silicone as low as
Shore 0A, its elasticity approximates that of soft tissues, allowing for better simulation of
the structure of human organs. Three-dimensionally printed silicone models can be divided
into indirect 3D printing and direct 3D printing. Indirect printing involves manufacturing
molds using 3D printing technology, pouring liquid silicone into the molds, curing the
silicone, and then removing the mold to complete the process. Simple geometric models can
be produced using a single mold, while more complex models require multiple component
molds [4–6]. Three-dimensional printing technologies that can be used for mold-making
include stereolithography (SLA) [7], selective laser sintering (SLS) [8], material jetting
(MJ) [9,10], and fused deposition modeling (FDM) [11]. Regarding the characteristics of the
indirect printing process, it is suitable for the mass production of high-resolution models.
However, personalized manufacturing is required for medical models that simulate human
organs due to the unique physiological features of each patient, which is not suitable
for mass production. As silicone casting of medical models requires different molds for
different patients, this approach extends production time and reduces efficiency.

Compared with indirect printing, direct 3D printing of silicone technology provides
the possibility of the personalized printing of silicone medical models. However, the
low viscosity, long curing time, and low elastic modulus characteristics of silicone mate-
rials present significant challenges for the 3D printing of silicone. Currently, 3D printing
technologies that can be directly used to manufacture silicone models include material
jetting [12–14], binder jetting [15], hybrid methods [16,17], vat polymerization [18,19], and
material extrusion [20], among others. Their main technical characteristics are shown in
Table 2, and this article introduces several commonly used 3D printing technologies.

Table 2. The characteristics of direct 3D printing of silicone technology.

3D Printing Method Curing System Advantages Shortcomings

Vat Photopolymerization UV High resolution Limit to the low-viscosity silicon

Material Jetting UV or HTV High speed
Multi-color printing Complex device structure
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Table 2. Cont.

3D Printing Method Curing System Advantages Shortcomings

Direct Ink Writing UV or HTV Simple structure Poor equality and difficult
to control

Removable Embedded 3D
printing UV or HTV Low-viscosity ultra-soft

materials printing High interfacial tension

Complete Matrix-Cure Embedded
3D Printing UV or HTV Complex structure printing Tedious steps

2.1.1. Vat Photopolymerization

Photopolymerization utilizes ultraviolet light or a laser as the light source, which is
focused into a beam. With the help of a reflective galvanometer, the beam scans in the XY
plane to guide the liquid material to rapidly undergo a photopolymerization reaction and
transform from a liquid to a solid under light exposure. Photopolymerization 3D printing
technologies include stereolithography (SLA) and continuous liquid interface production
(CLIP), which have the advantages of high resolution. However, when using this process to
print silicone products, it is important to ensure appropriate material viscosity to guarantee
the removal of uncured liquid material from the model after printing. Additionally, suitable
material viscosity helps to form a layer with a uniformly structured surface, enabling the
next layer to be smoothly and efficiently cured on top of the previous layer. Nevertheless,
the technology for high-viscosity silicone photopolymerization is still in its early stages.
Kim et al. [21] presented a modified stereolithography (SLA) technique for producing
silicone components from precursors that exhibit high viscosity. In this study, the 3D
structure is fabricated via laser curing of the photopolymer within the vat, rather than on
its surface. The proposed approach eliminates movement within the resin vat, leading to a
hydrostatic environment that functions as a support structure. This fabrication technique,
which does not rely on support structures, requires a highly advanced optics system and a
low-power UV curing mechanism referred to as low one-photon polymerization (LOPP),
which enables precise control over light intensity. Despite its current developmental stage,
this approach has the potential to significantly enhance the three-dimensional (3D) printing
of soft materials with future refinements.

In order to improve the feasibility of silicone materials produced using photopoly-
merization, Bhattacharjee et al. [22] developed a photosensitive polydimethylsiloxane
(PDMS) material with mechanical properties comparable to commercially available Sylgard
184 (Dow Corning) for microfluidic applications. The team utilized a desktop digital light
processing (DLP) printer featuring exceptional vertical and lateral resolution of 50 µm,
demonstrating its efficacy in the production of microfluidic devices. In another study, Wallin
et al. [23] successfully prepared a silicone double network (SilDN) by mixing photorespon-
sive thiolene with conventional RTV silicone, which is compatible with stereolithography
(SLA) 3D printing. This material exhibited a low elastic modulus ((E100% < 700 kPa),
high ultimate strain (dL/L0 < 400%), high toughness (U ~1.4 MJ·m−3), and high strength
(σ~1 MPa). This technique was applied to surgical training and biomedical engineering,
where a heart model similar in proportion to a baby’s heart was printed to simulate complex
surgical conditions, as shown in Figure 1. Recently, fabricating silicone structure using vat
photopolymerization has been commercially applied. Spectroplast (2022) has developed
a silicone 3D printer known as SAM (Silicone Additive Manufacturing), which is based
on photopolymerization technology and employs a range of photosensitive organosilicon
materials possessing Shore hardness values ranging from 0A to A80. This technology
substantially elevates design versatility for silicone models and enables the printing of
heart valve models.
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Figure 1. This picture is cited from “3D Printable Tough Silicone Double Networks” [23]. This
picture shows that silicon heart models can be made via SLA. (a) The process of SLA; (b) the hollow
synthetic heart.

2.1.2. Material Jetting

Material jetting is a 3D printing technology in which material is ejected from a small
diameter nozzle in droplet form, layer by layer, to build up parts on a printing platform. The
material is then cured using ultraviolet (UV) light, as shown in Figure 2. This technology
can be combined with multi-color printing to produce stable multi-colored medical models.
Additionally, a multi-nozzle structure can be designed [24]. The printing nozzle can
be modified based on the rheological properties of the viscoelastic materials, and the
characteristics of the raw materials used in the equipment can also be adjusted.
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Figure 2. Material jetting.

Drop-on-demand technology is one type of material jetting using an inkjet head to
deposit droplets of silicone onto a work platform, which then fuse together to form a
homogeneous organic silicone layer. After each layer of organic silicone is printed, the
system immediately uses ultraviolet light to cure the entire organic silicone layer. By using
supporting materials to create complex structures such as holes, three-dimensional objects
can be printed layer by layer. Once the printing is completed, the object is removed from
the work platform and the supporting material is washed away with water. Subsequently,
the object is subjected to a secondary vulcanization process to remove volatiles and achieve
final mechanical properties.
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The most prevalent types of actuation for drop-on-demand (DOD) printing heads are
thermal and piezoelectric. In the case of thermal print heads, a resistor generates heat that
rapidly produces a vapor bubble within the material reservoir, expelling a small volume of
material from the nozzle as a droplet. While this process has the potential to elevate the local
temperature of the material reservoir adjacent to the resistor over a brief timeframe and
across a limited contact area, it may lead to degradation in thermo-labile active compounds.
As such, thermal print heads are typically only suitable for high vapor pressures or volatile
solvents. Alternatively, piezoelectric print heads incorporate piezoelectric components that
produce mechanical motion in response to an electrical current. This process of deformation
generates sufficient pressure to expel the liquid as droplets through the nozzle. Notably,
this technique can be performed utilizing less volatile liquids at room temperature. For
example, Yang et al. [25] explored the feasibility of printing different viscosity silicones
utilizing material jetting systems with dual piezoelectric/pneumatic mechanisms. The dual
piezoelectric/pneumatic systems can produce sufficient force to jet pastes with viscosities
up to 1,000,000 mPa·s under shear stress at the orifice. This newly proposed system
enables the printing of silicone with a lateral resolution of 500–600 µm and a velocity of
approximately 100 mm/s, which is 10–20 times faster than other direct write methods. In
another case, Unkovskiy et al. [26] utilized drop-on-demand technology to manufacture
a nasal prosthesis with a silicone free of solvents (ACEO Silicone General Purpose). The
results indicated that wearing the prosthesis led to a reduction in follow-up appointments
and an increase in aesthetic appearance compared to traditional methods.

2.1.3. Extrusion Processes

Highly accurate nozzle dispensing systems possess the ability to deposit a broad range
of fluids, encompassing low viscous liquids and extremely thick pastes exhibiting viscosities
as high as 6 × 107 mPa·s (with a shear-thinning behavior), rendering them exceedingly
well-suited to applications in additive manufacturing (AM). In contrast, the recommended
maximum material viscosities for SLA and drop-on-demand inkjet printing processes fall
within the ranges of 300–5000 mPa·s and 10–100 mPa·s, respectively. Utilization of diverse
dispensing mechanisms enables the propulsion of fluids through a nozzle in material
extrusion systems, with pneumatic and mechanical dispensing systems constituting the
most commonly employed techniques. There are three types of silicone material extrusion
processes: direct ink writing, complete support-embedded 3D printing and removable
support-embedded 3D printing [27].

Direct ink writing refers to the printing material being stacked on the printing plat-
form directly according to the scanning path through the extrusion nozzle. Ghazaleh
et al. [28] used the Aerotech AGS1000 3D printing system with two independent z-axis
heads to fabricate aortic root models. Four types of inks possessing distinct properties for
the supporting material were employed and deposited utilizing four high-precision dis-
pensers that controlled four dispensing apparatuses. The result showed that these models
have the potential to open up new and compelling avenues for reducing the incidence of
postoperative complications and aiding the advancement of cutting-edge medical devices.
However, the viscosity of uncured silicone is low and not conducive to solidification and
shaping in direct ink writing. To improve the solidification of liquid silicone, it is often
self-supported by adding filler particles and other materials with stronger rheological
properties, but this changes the material’s mechanical properties (such as elastic modulus),
making the printed products unable to meet design requirements. To avoid using filler
particles, some researchers optimized direct inkjet printing technology and improved the
nozzle squeezing method. Zhou et al. [29] proposed a universal 3D printing solution for
silicone and PDMS soft materials, in which a real-time mixing printing nozzle was designed.
The two-component silicone gel was stored separately and simultaneously extruded during
printing and fully mixed with the help of mixing blades. The printable properties of silicone
gel were improved by adding a rheological modifier (nano-silicon dioxide). Nano-silicon
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dioxide particles dispersed in the silicone gel weakened the interaction between the silicone
gel molecules, resulting in a significant increase in the viscosity of the material system.

Embedded 3D printing can be divided into complete support-embedded 3D printing
and removable support-embedded 3D printing. In the process of support-embedded 3D
printing, the complete supporting matrix is subjected to curing, whereas the printed inks
may either be curable or non-curable. The support structure is first cured into the desired
shape, and then the printing ink is extruded into the supporting structure. Christopher
et al. [30] reviewed the sacrificial materials and related methods used for 3D printing of soft
structures, including the use of sacrificial inks to print a temporary structure surrounded by
permanent material, which is subsequently removed to create a hollow structure. Alterna-
tively, permanent structures can be directly printed into sacrificial support materials, which
act as a support matrix during the solidification or maturation process of the manufactured
structure. The researchers established manufacturing principles for soft matter printing by
analyzing literature data and explored printing performance within the context of instabili-
ties controlled by the rheology of soft matter materials. So, supporting embedded printing
is similar to a combination of casting and 3D printing. The external geometry of the final
model is determined by the support structure, while the internal shape is determined by
the printing ink [17].

Removable embedded printing refers to removing the cured printing ink model from
the uncured support matrix. The curing process is different from that of the complete
support method. In this process, the printing ink is cured, while the support matrix
is not [31], as shown in Figure 3. The advantage of this technology is that it can print
low-viscosity ultra-soft materials, but when printing solid fillings, the problem of the
uncured support matrix being trapped during the printing process will occur. To solve this
problem, Greenwood et al. [27] designed a supporting structure method based on movable
embedded printing technology. The supporting structure only cures inside the printing ink
structure and not in other positions within the reservoir. The results indicate that samples
printed with this technology have an almost isotropic elastic modulus in the directions
perpendicular and parallel to the printing layer, and the modulus is reduced at the fracture
and the elongation rate increases compared with the removable support-embedded 3D
printing. Furthermore, optimizing the design of support material can also improve molding
efficiency. Duraive et al. [32] developed a support material made of silicone oil emulsion to
weaken the interfacial tension of silicone-based ink. This support material eliminates the
interfacial tension generated by the silicone gel ink during the printing process. Researchers
used this technology to successfully print a silicone heart valve model, as shown in Figure 4.
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2.2. Training and Surgical Planning

In the face of complex and difficult surgeries, such as digestive and cardiac valve surg-
eries, preoperative training and planning are essential for doctors to safely and efficiently
complete these surgical procedures. In recent years, medical imaging technologies, such
as CT and MRI, have seen rapid development, allowing medical personnel to accurately
obtain three-dimensional data of patients’ diseased areas. Using 3D printing technology,
medical staff can quickly and accurately manufacture three-dimensional medical models of
patients, providing doctors with a blueprint for preoperative planning and opportunities
for repeated training.

Three-dimensionally printed medical models provide specific anatomical structures
for doctors, avoiding spatial position misunderstandings caused by obtaining anatomical
structures from CT, MRI, and other imaging techniques. Doctors can use the medical
model for repeated practice, honing their surgical skills and reducing training costs. Corpse
models have been the gold standard for surgical training, but they are extremely rare in
major medical schools, which presents an opportunity for 3D-printed medical models to
enter hospitals. Due to their personalized and precise characteristics, 3D-printed medical
models have gradually become the standard model for preoperative training. Casas-Murillo
et al. [33] designed a 3D-printed model for laparoscopic cholecystectomy using flexible
materials. Thirteen surgeons evaluated the model and 61% of evaluators were satisfied with
its realism, while 92% indicated that they would recommend it for training in laparoscopic
cholecystectomy.

In digestive surgery, the digestive system has many complex and changing tubular
channels, and doctors need to use endoscopic instruments to perform observations in
narrow channels. Inexperienced young doctors cannot yet use endoscopic instruments
skillfully and require accurate medical models to assist in their training and improve the
accuracy of the surgery. Li et al. [34] divided 20 interns into a 3D-printed model training
group and a virtual model training group, conducted 2 weeks of gallbladder anatomy
learning and cholangioscopy technology training, and then evaluated the two groups’
performance in cholangioscopy operation tests. The accuracy rate of the two groups in
identifying bile duct anatomy was 95% and 27%, respectively, and the operation time of
the 3D-printed model training group was shortened from 29 ± 8 min before training to
16 ± 3 min after training. Similarly, Zhang et al. [35] trained 16 surgeons with prelimi-
nary surgical experience in laparoscopic fundoplication using a structured evaluation tool
to assess their performance. The 3D-printed model training group showed significant
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improvement compared to the non-trained group, with shorter operation times. Preop-
erative training with 3D-printed medical models not only trains young doctors’ skills,
but also directly simulates actual surgical operations. As 3D-printed medical models can
accurately simulate human tissue and organs, doctors can perform surgical rehearsals
and become familiar with surgical operations. This means that before performing actual
surgery, doctors have already undergone a lot of practice and surgery, greatly improving
the accuracy and efficiency of the surgery. Wei et al. [36] successfully constructed a 3D-
printed surgical model for the minimally invasive radical resection of extrahepatic bile duct
cancer, simulating blood and bile circulation in the portal vein and bile duct, and invited
six hepatobiliary surgeons to perform laparoscopic or robotic surgeries, all of which were
completed successfully.

In terms of valvular heart disease, 3D-printed medical models can display the anatomi-
cal location of lesions and adjacent relationships with surrounding organs and blood vessels
in a three-dimensional, clear, and specific manner, which roughly corresponds to the actual
situation during surgery. Therefore, 3D-printed medical models can help doctors to under-
stand the anatomical characteristics of the affected area and provide a reference blueprint
for clinical decision-making and surgical planning. Engelhardt et al. [37] constructed a
three-dimensional structure of the mitral valve for patients with severe mitral regurgitation
based on transesophageal echocardiography and computed tomography. They used 3D
printing technology to create a high-fidelity silicone model of the mitral valve and per-
formed preoperative simulated repairs. By simulating the surgery on the 3D model before
the operation, they devised the best surgical plan, and the operation proceeded smoothly.
Imbrie et al. [38] demonstrated a 3D-printed valve dilator device that accurately simulates
various degrees of mitral regurgitation induced by annular dilation. This device was used
to design and optimize surgical repair plans through in vitro experiments. In addition to
this, personalized medical strategies using 3D printing not only make complex surgeries
repeatable but also improve patient safety and the effectiveness of treatment. Zelis et al. [39]
created a model of a narrowed aortic valve using 3D printing technology. They achieved
good surgical results through preoperative evaluation, simulation, intraoperative guidance,
and postoperative evaluations.

3. Surgical Navigation Template

Computer-assisted navigation technology utilizes computers and medical robots for
surgical intervention, allowing the real-time display of position during surgery. However,
this technology has made the surgical procedure more complex, lengthening operation time
and increasing surgical difficulty. Additionally, computer-assisted navigation equipment
is expensive, and the navigation system is unstable, making clinical application difficult.
Three-dimensionally printed surgical navigation templates, based on human biological data,
can fit the patient’s surgical site and guide the surgery along pre-determined trajectories.
Interactive surgical navigation templates can reduce the cost of surgical navigation, sim-
plify surgical procedures, and increase surgical precision compared to computer-assisted
navigation systems. Currently, 3D-printed surgical navigation templates are widely used
in surgical assistive fixation for knee joints, spine, hip joints, and surgical trauma. Based
on the clinical use of 3D-printed orthopedic surgical guides, templates can be divided into
nail-plate guides, osteotomy guides, and other series of guides.

3.1. Osteotomy Guide Plate

Traditional osteotomy surgeries often use the X-ray plotting method, making it difficult
to effectively execute the angle of osteotomy during surgery. In traditional joint replacement
surgeries, doctors mainly rely on preoperative imaging data and intraoperative osteotomy
guides to determine the amount and scope of osteotomy, while accurate osteotomy and
perfect reconstruction of the lower limb axis is the key to achieving excellent postoperative
outcomes [40]. Therefore, precise osteotomy during surgery is very challenging and has a
significant negative impact on surgical outcomes.
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Osteotomy guides are mainly used to guide the location, depth, and direction of
osteotomy, thereby improving the accuracy of force line correction, the fitting between pros-
theses or implants and the affected area, and can effectively quantify preoperative planning,
thus improving the accuracy of osteotomy and reducing the difficulty of surgery [41–43].
Three-dimensionally printed guides have been applied successfully in osteotomy surgeries.
The patient’s imaging data are processed using digital software to reconstruct the model
of the patient’s affected area and prosthesis. Based on this, a matching osteotomy guide
is designed for the patient’s surgical site to improve surgical accuracy. Hafez et al. [44]
conducted experimental research on cadaveric specimens, and for the first time, used
knee joint CT data to create individualized osteotomy templates for use in TKA surgery.
Compared with previous methods, the template operation was simpler, less invasive, and
time-saving. Ikram et al. [45] used 3D printing technology for TKA surgery and compared
the predicted amount of osteotomy before surgery with the actual amount of osteotomy
during surgery. The results showed that 90% of the osteotomy errors were <1 mm, and
there were no complications or infections in any of the TKA surgeries. Jie Yu et al. [46] ana-
lyzed the efficacy of 3D-printed navigation templates in Salter osteotomy for children with
DDH. The researchers evaluated 32 consecutive patients who underwent Salter osteotomy
and divided them into a conventional group (n = 16) and a navigation template group
(n = 16) according to different surgical methods. The two groups were compared in terms
of acetabular correction, radiation exposure, and surgical time, as shown in Figure 5. The
results showed that compared with the conventional group, the navigation template group
had more accurate acetabular correction, less radiation exposure, and shorter surgical time.
At the same time, the navigation template group achieved better surgical outcomes than
the conventional group.
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3.2. Guide Plate for Nail Placement

The guide plate for nail placement is used to guide the position and angle of nail
placement in orthopedic surgery to improve the safety and accuracy of nail placement [47].
For example, the spinal and pelvic areas are adjacent to important blood vessels and nerves
with complex anatomical structures. Deviations in the position and angle of screw place-
ment during surgery can affect adjacent spinal cords and nerves, and lead to a significant
decrease in fixation strength, and, in severe cases, can cause vertebral artery injury [48,49].
When patients also have spinal deformities, the difficulty of accurately placing pedicle
screws is further increased [50]. Using 3D-printed navigation templates to determine the
position and direction of nail placement can improve the accuracy of pedicle screw place-
ment in surgery [51]. The workflow mainly includes first reconstructing a 3D vertebral
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model based on CT scan data and using it to design a navigation template consistent
with its anatomical structure, and then integrating the optimal screw trajectory with the
navigation template to design a navigation template with guide holes.

Sugawara et al. [52] applied 3D navigation template technology to clinical practice
and inserted 58 pedicle screws using 3D-printed templates in 10 patients with thoracic and
cervicothoracic vertebral lesions. Postoperative CT images showed that the screws did not
penetrate the pedicle cortex, and the average deviation from the expected screw trajectory at
the coronal midpoint of the pedicle was 0.87 ± 0.34 mm, indicating that the screw placement
was very successful. Liang et al. [53] analyzed the practicality of navigation templates
in guiding accurate placement of iliac screws. The researchers collected preoperative
CT images of eight patients with pelvic fractures to reconstruct a 3D pelvic model, and
designed and printed a surgical navigation template for the position of the iliac screw based
on this model. The researchers used the surgical navigation template for intraoperative
deep screw positioning on the iliac crest, and according to postoperative X-rays and CT
scans, there were no significant differences in the entry point, convergence angle, and
tail angle of the screw before and after surgery. The results showed that personalized
surgical navigation templates are an improvement over traditional techniques, can improve
positioning accuracy and depth, and have good mechanical stability and lower risk of
screw-related complications. Wenjie Shi et al. [54] improved the placement of cortical bone
trajectory screws in the lumbar spine using a navigation template. They reconstructed a 3D
lumbar spine bone model based on CT scan data and made a surgical navigation template
from it. The researchers used the same surgical navigation template to insert cortical
trajectory screws into both 3D-printed navigation templates and cadaveric specimens.
After screw insertion, they directly observed the screw path in the 3D-printed specimen
and determined the screw position and direction by CT scanning the anatomical specimen.
The results showed that the excellent rate of screw placement was 100% and 95% in each
3D-printed specimen and anatomical specimen, respectively.

The use of digital technology to reconstruct patient-specific disease models, combined
with 3D printing technology to manufacture surgical navigation templates, can effectively
guide surgeons in the placement of internal fixation devices, the repositioning of bones, and
the determination of bone cutting ranges. However, the research on 3D-printed surgical
navigation templates has mainly focused on clinical applications, with less attention paid
to the design methods, formative accuracy, and performance evaluation of the templates.
Additionally, during surgery, navigation templates may require the removal of more soft
tissue to better match the anatomical structure and avoid interference from soft tissue.
Nevertheless, the question of whether the implantation of navigation templates needs to
consider soft tissue remains controversial. Currently, personalized 3D-printed surgical navi-
gation templates have become more mature, but there are still few long-term research cases,
and the quality of navigation templates lacks unified standards, requiring considerable
clinical data on 3D-printed navigation template applications. Therefore, further research on
the development and application of 3D-printed personalized surgical navigation templates
is necessary.

4. Invisible Aligners

Most of the invisible aligners currently used in the market are produced by using 3D-
printed dental models as the mother molds, and then applying thermoforming technology
to attach medical films to the resin mother molds for compression molding. However, this
method produces aligners with uncontrollable thickness throughout the entire structure,
making it impossible to estimate the generated force during the correction process, which
may affect the final correction result by affecting tooth posture changes [55]. With the
development of new materials and 3D printing technology, there has been growing interest
in combining invisible orthodontic aligners with 3D printing technology [56–58]. Direct 3D
printing technology allows for personalized customization according to patients’ specific
conditions, making the aligners adaptable to the complex and multi-curved surface shapes
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of teeth in the oral cavity, and can simplify the thermoforming steps, ultimately achieving
personalized diagnosis, treatment, and precision medicine in the clinic [59]. Currently, the
main 3D printing technologies that can be applied to the manufacture of invisible aligners
are SLA technology, SLS technology, and FDM technology, and the workflow of directly 3D
printing invisible aligners is shown in Figure 6. Among these, photosensitive resin material
has the advantages of strong fluidity, fast photocuring speed, and high manufacturing
precision, making it the optimal choice for printing invisible aligners [60].
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The accuracy of three-dimensional (3D) model reconstruction plays a crucial role in
determining the quality of the final parts produced by the entire 3D printing technology
process. In practice, achieving higher product formation accuracy for specific materials
and 3D printing processes hinges on a critical step before printing: the reconstruction of a
precise 3D virtual model. In the field of oral aesthetic restoration, computer-aided design
and computer-aided manufacturing (CAD/CAM) technology has demonstrated sufficient
reliability. By using computed tomography (CT) scanning or magnetic resonance imaging
(MRI) techniques to obtain the anatomic structure features of patients and then leveraging
CAD/CAM technology, precision 3D model reconstruction can be effectively achieved.
For example, the surface-to-surface matching technique allows the superimposition of
3D objects to evaluate the Euclidean distances between the relative surfaces; also, this
digital technique provides, on a 3D color map, the morphological differences between the
superimposed structures in different colors by setting specific levels of tolerance, as shown
in Figure 7. Achieving precise segmentation is crucial for the physical reconstruction of
anatomy, specifically in the context of 3D printing, in order to minimize errors and ensure
accuracy. Lo Giudice et al. [61] assessed the precision of four distinct software programs in
the semiautomatic segmentation of the mandibular jaw, in comparison with the manual
segmentation approach that is considered as a gold standard. Twenty cone beam computed
tomography (CBCT) scans were selected to compare the efficiency of manual segmentation
using Mimics software versus four different semi-automatic approaches—Invesalius, ITK-
Snap, Dolphin 3D, and Slicer 3D—for mandible segmentation. The results show that there
were no significant differences observed in the overall volume in 3D mandible models
However, different software produced varying matching percentages for the generated
mandible models, and there was a high correlation between semi-automatic and manual
segmentation methods. Similarly, Lo Giudice et al. [62] assessed the accuracy of mock-ups
produced through the use of milling and 3D printing technology in combination with a
full digital workflow system. Ten adult subjects were selected, and digital analysis of the
trueness was carried out by means of surface matching of scanned-milled models and
scanned-prototype models with digital waxing. Specific linear measurements were also
taken. The results showed that the prototype models exhibited a significant increase in
horizontal measurements, whereas the milled models showed a significant increase in both
vertical and horizontal measurements. Notably, the prototype models demonstrated better
fit performance. It can be seen that the study by Lo Giudice et al. has some instructional
significance for improving the accuracy of 3D model reconstruction.
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To be used for invisible orthodontic aligners, the material needs to meet certain
conditions, including non-toxicity to cells, biocompatibility, and suitability for 3D printing
processes. Dental LT resin was the first material used for the direct 3D printing of invisible
aligners. Compared to traditional thermoplastic molding techniques, using this material
for photocuring molding produces aligners with higher precision and greater comfort for
patients. Another material that can be used for direct 3D printing is TC-85, a photosensitive
resin material with high flexibility, low viscosity, and aligners that exert less pressure
on teeth while maintaining continuous correction force. In addition, the material’s high-
temperature stability and shape memory properties provide it with advantages in clinical
applications. Currently, there are no certified transparent materials available on the market
for the direct 3D printing of invisible aligners.

To investigate the feasibility of directly 3D printing invisible aligners, some researchers
compared the mechanical properties and geometric accuracy between direct 3D printing
and hot-press molded aligners. In 2014, Nasef et al. [63] first attempted to use direct 3D
printing to produce dental fixators, but did not evaluate their accuracy. Subsequently,
Jindal et al. [64] directly 3D printed 0.75 mm LT orthodontic aligners and compared them
with thermoformed Duran aligners. The results showed that the geometric accuracy of the
3D-printed cured aligners was more accurate than thermoforming, which can cause plastic
and irreversible deformation, resulting in large displacement, while the deformation of
3D printing has the elasticity of reversibility for lower displacement. However, this study
lacked clinical data to evaluate the effect of Dental LT resin and its durability.

The 3D printing process has a significant impact on its printing quality, and when direct
3D printing invisible aligners, factors such as the printing equipment, ambient temperature,
curing time, etc., need to be considered. Some researchers analyzed the factors that affect
the direct 3D printing of aligners. Zinelis et al. [65] compared the mechanical properties of
invisible aligners produced by different printing equipment, selecting TC-85DAW to be
printed using five different printing devices, and the results showed that the orthodontic
aligner was different in terms of Martens hardness, indentation modulus, elastic index,
etc., under different conditions. In addition, the 3D-printed model’s orientation and curing
time may also affect the performance of the product. McCarty et al. [66] investigated the
impact of model printing direction and curing time on the mechanical properties. They
designed different printing angles such as horizontal, vertical, and 45◦, and compared
them with different photosensitive curing times. The results showed that they had little
effect on the overall dimensions. Relevant studies have also shown that improving the
mechanical isotropy of the model can improve its mechanical properties compared to
improving the accuracy of the invisible aligner [67]. However, when using 3D printing to
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produce invisible orthodontic aligners, its design thickness cannot be accurately controlled.
Moreover, controlling its printing thickness is more complex, and the effect is not ideal.

5. Implants
5.1. PEEK Implants

Polyetheretherketone (PEEK) is a semi-crystalline polymer material with excellent
mechanical properties, good biocompatibility, and X-ray transparency. In particular, PEEK
has an elastic modulus that is closer to normal human bone tissue, thereby reducing or
eliminating stress shielding effects. However, pure PEEK is a biologically inert material
that is not conducive to the adhesion and proliferation of osteoblasts, resulting in poor os-
seointegration and limited application in bone implants [68]. Incorporating active particles
or fiber-reinforced materials into PEEK can effectively enhance its biological activity and
improve its binding efficiency with bone tissue. Such composite materials mainly include
hydroxyapatite–PEEK composites optimized for bone activity and carbon fiber-reinforced
PEEK composites optimized for mechanical properties [69]. Han et al. [70] used FDM
technology to print pure PEEK and carbon fiber-reinforced PEEK composite materials, and
the results showed that the mechanical strength of CFR-PEEK samples after 3D printing
was significantly better than that of pure PEEK specimens.

The 3D printing technologies for PEEK and its composite materials mainly include
selective laser sintering (SLS) and fused deposition modeling (FDM). SLS printing technol-
ogy has high accuracy and can print complex lattice or hollow structures, but most SLS
devices cannot perform multi-material printing, making them unsuitable for printing PEEK
composites [71]. The FDM printing process uses filament printing, where the material is
melted and extruded through a nozzle and deposited layer by layer on the work platform
along the scanning path to form the object [72]. Using the FDM process to print PEEK
composite models, filaments of hydroxyapatite–PEEK and carbon fiber-reinforced PEEK
composites can be prepared in advance and then printed using FDM equipment, making it
suitable for the 3D printing of complex-shaped composite bone implants.

The mechanical properties of PEEK composite products produced using FDM printing
are influenced by various factors, primarily the printing parameters and materials used.
Different PEEK composite materials result in products with different mechanical properties,
with an important influencing factor being the material ratio. Oladapo et al. [73] demon-
strated that for hydroxyapatite–PEEK composites, the quality fraction of hydroxyapatite is
generally between 0% and 20%, with PEEK/CHAP composites containing 15% exhibiting
optimal mechanical properties. For CF/PEEK and GF/PEEK composites, Wang et al. [74]
found that 5% CF/PEEK and 5% GF/PEEK exhibit higher tensile and flexural strengths.

In addition to considering the mechanical properties of PEEK composite materials,
biocompatibility with bone tissue must also be taken into account, whereby implants must
have good adhesion, osteoconductivity, and cell activity to fuse well with bone tissue. The
combination of HA and PEEK can significantly improve the osteogenic activity of cells and
enhance the bioactivity of PEEK. Zheng et al. [75] demonstrated that PEEK–HA composite
scaffolds produced using FDM can promote MC3T3-E1 cell adhesion and mineralization
due to their porous surface structure. Considering the good mechanical properties of
PEEK materials, new approaches have been proposed for the treatment of jawbone defects.
For instance, Mohamed et al. [76] used a 3D-printed PEEK mesh to fix severely damaged
alveolar bone, which was found to increase bone volume. Similarly, Kang et al. [77] utilized
3D-printed PEEK implants to fix the fibula and restore the continuity of the mandible,
resulting in improved safety and stability. Moreover, 3D-printed PEEK composite dentures
exhibit significant advantages in retention force, stability, and comfort. Chen et al. [78]
fabricated denture bases using a TiO2- and PEEK-based PMMA composite resin using 3D
printing technology, and the experimental results demonstrated ideal mechanical properties
and antibacterial activity.

In summary, producing PEEK composite products using FDM printing involves opti-
mizing material ratios and printing parameters to achieve optimal mechanical properties.
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Biocompatibility with bone tissue is also critical, and adding HA to PEEK can enhance its
bioactivity. PEEK is a promising material for repairing jawbone defects, and 3D-printed
PEEK composite dentures exhibit significant advantages in terms of retention force, stability,
and comfort.

5.2. Titanium Alloy Implants

In the field of 3D printing of metal implants, porous metallic materials are the preferred
choice for orthopedic hard implants, with Ti-6Al-4V being the most important material due
to its superior mechanical properties and biocompatibility with tissues [79]. Compared
to stainless steel and other metals, titanium has a more favorable strength-to-weight ratio
and a smaller modulus of elasticity, enabling medical titanium alloys to exhibit better
performance, particularly in terms of the ability to promote bone tissue growth and fusion
into the implant. Laser-based 3D printing techniques such as selective laser melting (SLM)
are highly promising solutions for this field. Researchers have conducted studies on the
SLM printing process of Ti-6Al-4V, aiming to obtain Ti6Al4V implants with high density,
low roughness, and excellent mechanical properties. Edwards et al. [80] investigated the
effect of different stacking orientations on the fracture toughness and fatigue crack growth
behavior of Ti6Al4V specimens produced by SLM process. It was found that the average
results of crack propagation in three directions and the critical stress intensity values did not
differ significantly. L.Y. Chen et al. [81] investigated the anisotropic response of hardness
and electrochemical behavior of Ti6Al4V specimens prepared by means of SLM using a
zigzag laser scanning path in the X, Y, and Z directions. It was found that the hardness was
approximately 20% lower in the cross-sectional direction perpendicular to the laser motion
compared to the other two directions, and the corrosion resistance was the lowest.

The clinical application of 3D-printed metal implants has gradually developed. Ti-
tanium alloy implants manufactured using electron beam selective melting (EBSM) tech-
nology obtained European CE and US FDA certification in 2007 and 2010, respectively.
Three-dimensional printing technology can print personalized metal implants for human
repair and reconstruction. Dekker et al. [82] treated 15 patients with complex large bone
defects and deformities using custom 3D-printed titanium alloy scaffolds. After 22 months
of follow-up, CT image fusion occurred in 13 cases, and pain was significantly improved.
Mobbs et al. [83] used laser direct melting technology (similar to LENS technology) to
manufacture patient-specific custom anterior lumbar interbody fusion (ALIF) implants and
successfully performed anterior lumbar interbody fusion surgery, significantly shortening
the operation time. Belvedere et al. [84] designed and customized three CoCrMo ankle
joints using SLM technology, and successfully performed replacement surgery, achieving
good results in joint mobility and stability after surgery. Xu et al. [85] reported the use of
3D-printed personalized titanium alloy prostheses to treat bone defects after pelvic tumor
resection. Through preoperative computer-aided design, combined use of 3D-printed tu-
mor resection guides, prosthesis installation guides, and personalized 3D-printed titanium
alloy prostheses for repair and reconstruction after pelvic tumor resection, more accurate
tumor resection and more ideal prosthesis shape and mechanical matching can be achieved,
reducing surgical trauma, shortening operation time, and promoting postoperative func-
tional recovery.

Titanium alloy implants are able to meet the requirements of repairing and recon-
structing human tissue, but they need to maintain a certain level of strength, hardness,
and elasticity within the human body to support functions such as weight bearing [86].
To ensure that metal implants can effectively transfer loads to adjacent bone tissues and
avoid relative displacement between the implant and bone, the structure of the implant can
be optimized. The structure of titanium alloy implants has a significant impact on their
mechanical properties, with the pore structure and porosity having a direct effect on the
mechanical performance of porous bodies, as well as the biomechanical compatibility of
porous implants in the human body. Jian Li et al. [87] studied the mechanical properties of
porous implants with diamond, rhombic dodecahedron (RD), and octahedral truss (OT)
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pore structures, as shown in Figure 8. The results showed that different pore structure
units can directly affect the mechanical properties of porous implants and provide different
biomechanical behaviors. The rhombic dodecahedron pore structure has better comprehen-
sive mechanical properties. The RD and OT pore structures with central symmetry have
better compression performance than the DO pore structure with diagonal symmetry. The
elastic modulus of the Ti6Al4V porous body samples with three pore structures printed us-
ing 3D printing is between 2.59 and 4.89 GPa, which is similar to the mechanical properties
of human bones.
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In another study, Epasto et al. [88] specifically studied the static and dynamic me-
chanical properties of 3D-printed rhombic dodecahedron porous Ti6Al4V samples and
discussed the influence of unit size and pillar diameter on mechanical properties. The
experimental results reached a similar conclusion that the rhombic dodecahedron structure
has good compressive strength and a low elastic modulus, and is a suitable solution for
low-stiffness applications such as biomedical implants. Similarly, changes in pore size also
affect the performance of the implant, and uniform pore size and non-uniform pore size
have different effects.

Wang et al. [89] used an improved non-uniform pore size porous design and elec-
tron beam melting (EBM) technology to prepare a Ti-6Al-4V titanium alloy structure,
and from the perspective of mechanical properties and biological reactions, the non-
uniform pore size porous design has an acceptable Young’s modulus and compressive
strength values, showing mechanical properties similar to bone, with a Young’s modulus of
8–15 GPa and strength of 150–250 MPa. As can be seen, the clinical application of 3D-
printed metal implants is still mainly based on printing titanium alloy materials. Although
titanium alloy materials have good performance, there are still some pressing issues that
need to be addressed: although Ti-6Al-4V materials with porous structures have good
comprehensive physicochemical properties, there is still a “stress shielding” phenomenon,
which increases the possibility of reducing bone healing rates. Furthermore, there are cur-
rently few systematic biological evaluations and effectiveness studies on porous titanium
alloys, as well as verifications of post-processing effects after the 3D printing of porous
titanium alloys.

In addition to implantable materials, there are other biological materials that can be
used for human implants. Generally speaking, clinical medicine has the following basic
requirements for biomedical materials: (1) non-toxic, non-carcinogenic, non-teratogenic,
and do not cause sudden reactions of human cells or tissue cell reactions; (2) good com-
patibility with human tissues, do not cause poisoning, hemolysis, coagulation, fever, and
allergic reactions; (3) stable chemical properties, resistant to the action of antibodies, blood,
and enzymes; (4) have physical and mechanical properties that are compatible with natural
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tissues; and (5) have specific functions for different application purposes. More implant
materials are discussed for comparison in Table 3.

Table 3. The characteristics and applications of different implant materials.

Materials Characteristics 3D Technology Applications

Co-Cr Alloy
Strong corrosion resistance, high
hardness, excellent mechanical

properties, and low cost

Selective laser melting
Electron beam selective melting

Prosthesis, fixation screw, bone plate,
denture, cobalt-chromium alloy
porcelain-fused-to-metal crown

316L Stainless Steel
Excellent mechanical properties,
favorable biocompatibility, good
corrosion resistance, and low cost

Selective laser melting
Electron beam selective melting

Fracture internal fixation, cardiovascular
intervention therapy, dental implant and

periodontitis treatment stent

Tantalum
Corrosion resistance, good

plasticity, excellent
biocompatibility

Selective laser melting
Electron beam selective melting

Spinal fusion surgery, cranial shaping
surgery, ankle surgery, tumor

reconstruction surgery

Titanium Alloy

Low material density, low elastic
modulus, good mechanical

properties, corrosion resistance,
biocompatibility

Selective laser melting
Electron beam selective melting

Joint replacement surgery, percutaneous
coronary intervention (PCI), dental
implantation, periodontal scaffold

Magnesium Alloy
Similar to bone density, enhances
osteoblast proliferation, promotes

bone growth and healing

Selective laser melting
Electron beam selective melting

Biodegradable cardiovascular stent, bone
plate, fixed screw

PLA Biocompatible and biodegradable Fused deposition modeling
Selective laser sintering Soft tissue repair, bone repair

PMMA
Good plasticity, stable chemical

structure, and good
mechanical properties

Fused deposition modeling
Selective laser sintering

Fracture repair, joint replacement surgery,
spinal surgery, denture, dental crown

restoration, cochlear implants

PEEK
Good biocompatibility and

chemical stability, elastic modulus
similar to human bone

Fused deposition modeling
Selective laser sintering

Spinal fusion device, artificial
intervertebral disc, bone plate,

tissue scaffold

Hydrogel
Good hydrophilicity,
biocompatibility, and

biodegradability

Stereolithography
Embedded 3D printing

Material jetting

Tissue scaffold, heart valve, vascular and
dermal tissue, drug delivery

6. Discussion and Prospects

As an advanced manufacturing technology, 3D printing technology combined with
personalized precision medicine has brought about new breakthroughs in the medical field.
Currently, there are various types of 3D printing technologies that can be applied in the
medical field, including FDM, SLA, SLS, SLM, and silicon printing technology. Materials
that can be used include plastic materials, metal materials, composite materials, and flexible
materials. It can be seen that 3D printing technology has significant advantages in the
application of precision medicine.

Firstly, it can improve material utilization and save materials. Traditional metal pro-
cessing produces a surprisingly high amount of material waste, and some fine production
processes can even result in the discarding of 90% of raw materials. However, the waste
generated by 3D printers will be significantly reduced, and as printing materials continue
to improve, 3D-printed “net-shaping” manufacturing will become a more environmentally
friendly way of processing.

Secondly, 3D printing technology can achieve integration molding. The 3D printing
process no longer requires traditional tools, fixtures, machine tools, or any molds. In
modern factories, machines produce identical parts, which are then assembled by workers.
The more components a product has, the more time and cost it takes to assemble. However,
the feature of 3D printing’s integrated molding eliminates the need for further assembly,
thereby shortening product delivery times.

Furthermore, 3D printing technology can achieve diversified production without
increasing costs. With regard to traditional manufacturing, the more complex the shape
of an object, the higher the manufacturing cost. However, for 3D printers, the cost of pro-
ducing complex-shaped objects does not correspondingly increase. In addition, traditional
manufacturing equipment has limited functions, resulting in limited types of shaped items
being produced. One 3D printer can print different shapes, and like a craftsman, it can
make differently shaped objects every time. This kind of manufacturing diversification
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without increasing costs will fundamentally break the traditional pricing model and change
the cost composition of our entire manufacturing industry.

Finally, 3D printing technology can achieve multi-material manufacturing molding.
Traditional manufacturing machines find it difficult to merge multiple raw materials during
cutting or mold forming processes, but 3D printing allows for the arbitrary combination
of raw materials, enabling the creation of performance structures that people desire. For
example, nylon-glass fiber or nylon-carbon fiber composite materials can improve the
mechanical properties of nylon, and adding 50% titanium metal to nickel alloy powder
can significantly improve its performance. For example, nylon-glass fiber or nylon-carbon
fiber composite materials can improve the mechanical properties of nylon, and adding
50% titanium metal to nickel alloy powder can significantly improve its performance.

Based on the aforementioned technological advantages, 3D printing technology can
rapidly and accurately manufacture complex medical assistive devices that conform to
human characteristics. This will greatly improve the efficiency of precision medicine.
Three-dimensionally printed personalized medical auxiliary devices have gradually en-
tered clinical applications and serve as an important connection point between new medical
engineering and clinical practice, showing promising application prospects and develop-
ment trends. However, there are still some deficiencies in the current applications of
3D-printed auxiliary devices, mainly in the following areas related to medical applications
discussed in this paper:

(1) Strength issue: Compared with traditional manufacturing, products manufactured
by means of 3D printing have certain differences in many aspects such as strength,
hardness, and flexibility. The manufacturing process of 3D printing is additive, layer-
by-layer production, which makes it difficult to match the material properties achieved
by traditional molding techniques, even if the layers are bonded tightly. Currently,
3D-printed products cannot be used on a large scale as functional parts.

(2) Accuracy issue: Due to the layer-by-layer production method of 3D printing, there
is a common “stair-step effect”, especially when manufacturing objects with curved
surfaces, which inevitably leads to deviations in accuracy. In addition, many 3D-
printed objects require secondary processing such as sanding and high-temperature
heating. The produced objects can easily warp due to material shrinkage, further
reducing their accuracy.

(3) It is difficult to achieve functional medical models. Although 3D-printed personalized
medical models can solve the problem of the scarcity and high cost of medical training
models, and provide medical staff with a three-dimensional understanding of patients’
anatomical structures, these models are still static. Currently, silicone medical models
can simulate the flexibility of human organs, but lack functional simulation, which
means that 3D-printed models cannot truly simulate the physiological characteristics
of the human body. In complex minimally invasive surgeries such as those involving
the heart, major blood vessels, and neurovasculature, functional medical models
will provide precise surgical guidance to medical personnel, thereby achieving high-
precision medical outcomes.

(4) It is difficult to establish uniform quality testing standards. Surgical navigation tem-
plates, invisible orthodontic appliances, and human implants can all be considered
medical auxiliary devices. Due to the differentiated physiological characteristics of
the human body, medical devices manufactured through 3D printing are personalized
rather than standardized. Establishing quality assessment standards for these person-
alized auxiliary devices is therefore challenging. Without quality testing standards,
it will be difficult to determine the performance of these devices, increasing clinical
application costs and reducing medical efficacy. This deficiency will also severely
hinder the application and promotion of 3D printing technology in the market.

(5) Static auxiliary devices cannot adapt to complex biomechanical characteristics. In-
visible orthodontic appliances need to move with the upper and lower jawbones
and be subject to dynamic tooth forces, while implants in the human body need to
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be in contact with bone tissue and withstand certain stresses. Three-dimensionally
printed internal auxiliary devices in the human body will experience complex and
variable stress conditions, but the devices cannot change with changing surrounding
conditions. This lack of dynamic biological characteristics makes it difficult for these
auxiliary devices to adapt to complex human tissue structures, thereby reducing their
therapeutic effectiveness.

In order to promote the widespread application of 3D printing technology in clinical
settings, future research on precise medical applications of 3D printing can be developed
through the following areas, based on the current research of 3D printing medical applica-
tions:

(1) Developing application standards for 3D printing medical auxiliary devices. The
major obstacle for promoting the application of 3D printing medical devices is the
lack of corresponding quality testing standards. Traditional inspection standards for
manufactured parts are relatively straightforward to develop, as common indicators
can be summarized for mass-produced parts. However, 3D printing medical devices
are personalized and their application cases are also individualized, making it difficult
to find uniform quality testing standards to evaluate their printing quality and clinical
effectiveness. In order to establish a sound set of quality testing standards for 3D
printing medical devices, application standards for 3D printing can be added to
existing standards, such as material standards and surface quality standards.

(2) Conducting applications of 4D printing technology. The human body can be under-
stood as a complex and variable biological field, making it difficult for static and
unchanging internal assistive devices to adapt to this dynamic environment. Research
and development of assistive devices that can adapt to changes in working conditions
can greatly improve medical effectiveness. These devices can respond to changes
in the surrounding physical field, and their structure also correspondingly changes
to meet the compatibility with other tissues and avoid the impact of biologic forces.
Four-dimensional printing technology can achieve the effect of corresponding struc-
tural changes due to changes in temperature, humidity, and mechanics, etc., and has
good adaptability in the human body. For example, an invisible orthodontic appliance
manufactured using 4D printing technology can adapt to new mechanical conditions
as the force field between the appliance and teeth changes due to changes in biting
or alignment. However, controlling its structure is still a challenge that requires
extensive research.

(3) Development of new materials and new processes. Biocompatibility is an important
performance of internal assistive devices. Traditional single implant materials can-
not meet the biological characteristics of human tissues, including biomechanical
properties and biocompatibility. The clinical demand for implants with excellent
biocompatibility will greatly increase. The development of new composite materials
and their printing processes can improve the level of medical treatment and enhance
the effectiveness of precision medicine. This is an important research direction for
3D printing of human implants. For example, tantalum metal has excellent biocom-
patibility and has become a research hotspot for orthopedic implants. However, the
clinical application of 3D-printed porous tantalum is limited, and there is a lack of
supporting design theories and manufacturing processes. Related studies are not yet
systematic. Therefore, research on new materials, composite materials and their 3D
printing processes is an important breakthrough for achieving precise 3D printing of
medical implants.

(4) Intelligent manufacturing applications. Traditional 3D printing of medical models
cannot record information such as the force, position, and motion trajectory of the
operator’s actions, and the level of skill and training effectiveness cannot be quantified.
By combining multi-sensor technology with medical models and using big data to
simulate the real surgical environment, it is possible to achieve the quantitative
evaluation of skill levels, such as by incorporating pressure sensors for quantitatively
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evaluating operating pressure. This can create an objective evaluation method system
for surgical procedures and achieve a quantitative score for surgical skills.

(5) Three-dimensional bioprinting technology. Three-dimensional bioprinting technology
can create disease models with highly simulated physiological structures by control-
ling the spatial arrangement of tissue cells. Many functions of the body’s tissues
are essential, such as the multilayer barrier function that controls transdermal drug
delivery. Researchers can replicate this function by creating 3D-printed biological
tissues to improve drug testing. Furthermore, bio-3D printing technology can achieve
the reconstruction of human tissue organs for repairing or transplanting human tissue
organs. Therefore, the development of 3D bioprinting technology can bring new
breakthroughs to precision medicine.

In summary, this review focuses on the application of 3D printing technology in the
medical field, particularly in medical models, surgical navigation templates, clear aligners,
and human implants. However, due to the broad range of medical applications, it is not
possible to cover all fields, such as drug delivery and prosthetics, which is a limitation
of this article. It is crucial to note that compliance with relevant sterilization protocols is
necessary for the application and experimental research of 3D printing technology in human
implants and surgical navigation templates. Although there are many experimental cases
throughout this article, the sterilization protocols are not explicitly explained. Nevertheless,
all of the cited research examples comply with the relevant sterilization protocols. Overall,
this review partially covers most of the research areas in the medical field, particularly
in direct silicone 3D printing technology, which is relatively novel. This review provides
readers with a clear understanding of the current applications of 3D printing technology in
the medical field.
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