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Abstract: As science and technology advance, industrial manufacturing processes get more compli-
cated. Back Propagation Neural Network (BPNN) convergence is comparatively slower for processing
nonlinear systems. The nonlinear system used in this study to evaluate the optimization of BPNN
based on the LM algorithm proved the algorithm’s efficacy through a MATLAB simulation analysis.
This paper examined the application impact of the enhanced approach using the Continuous stirred
tank reactor (CSTR) control system as an example. The study’s findings demonstrate that the LM
optimization algorithm’s identification error exceeds 10-5. The research’s suggested control approach
for reactant concentration CA in CSTR systems provides a better tracking effect and a stronger
anti-interference capacity. Compared to the PI control method, the overall control effect is superior.
As a result, the optimization model for nonlinear systems has a greatly improved processing accuracy.
With some data support for the accuracy study of neural network models and the application of
nonlinear systems, the suggested LM-BP optimization algorithm is evidently more appropriate for
nonlinear systems.

Keywords: LM algorithm; BP neural network; nonlinear systems; algorithm optimization; CSTR
control system

1. Introduction

As part of the industrial revolution, industrial production has been optimized to
be more intelligent and automated. The increasing complexity of industrial production
raises the requirements for control precision and control speed. The controlled object with
multiple inputs and outputs has evolved into the central component of industrial control
systems [1]. In recent years, the predictive control of nonlinear systems (NS) has emerged as
one of the major topics of predictive control. Dynamically predicting the output value is the
key to nonlinear system control, and the system model can be optimized online during each
control cycle. However, the majority of extant control optimization techniques for nonlinear
systems center on the optimization of computational methods. Control and forecasting
of accuracy and efficiency are relatively deficient. In rolling optimization solutions and
nonlinear system modeling, the neural network (NN) algorithm is widely employed. It
has strong nonlinear problem processing ability, high computing efficiency, high-efficient
adaptability to uncertain systems, and enhanced nonlinear system control [2–4]. However,
as research and application have expanded, this algorithm has revealed certain limitations
regarding computational efficacy and model selection. Consequently, it is optimized and
enhanced using the Levenberg-Marquardt (LM) algorithm. LM is a frequently employed
method for solving optimization objective functions that applies to non-least-squares
problems [5–7]. The BP neural network model also utilized the LM algorithm. The nonlinear
system serves as the research object for strategy control simulations. It is anticipated to
increase processing efficacy in nonlinear systems and achieve efficient control of intelligent
industrial systems.
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2. Related Work

The LM algorithm has many advantages, including a lower probability of collaps-
ing into a local extremum and a high degree of stability, widely used in strategic control
problems. To address the difficulty of routinely inspecting smart meters, Chen L et al.
proposed an error estimation model for smart meters based on the genetic optimization
LM algorithm. The optimization model was applied to an investigation of a local electricity
meter. The results demonstrated that it could enhance the accuracy of intelligent meter error
estimation [8]. Distance vector hop (DV hop) has stringent network topology requirements
and poor positioning precision in practical applications. Shi Q et al. developed a weighted
LM algorithm to optimize the initial location of unknown nodes in DV hop in response to
this flaw. The study’s findings indicated that the revised approach had a stronger ability
to adapt to changes in network topology and greatly increased placement accuracy [9].
The pile raft foundation is regarded as a novel offshore and onshore structural technology,
but the load sharing and interaction behavior lacks corresponding guidelines. Deb N et al.
utilized the LM algorithm to develop NN models for this flaw while employing nonlinear
multiple regression and artificial neural network (ANN) models to estimate their safety fac-
tors. It served as a guide for the development and application of this novel technology [10].
Niu Y. et al. proposed the dynamic fusion of the LM and Whale optimization algorithm
(WOA) to enhance the accuracy of star sensor measurements. The global search of WOA
and the local optimization capacity of LM were used to address the dependence on initial
values and local convergence issues of conventional algorithms. The results of the study
demonstrated that this method provided superior performance, greater precision, and
efficient parameter optimization for star sensors [11]. Bilski J. et al. modified the LM algo-
rithm locally to solve the issue of inefficient computation of complex NNs. Experiments
revealed that local modifications to the LM method substantially enhanced the algorithm’s
performance in larger networks, suggesting ways to optimize the LM algorithm [12].

NS is a system in which output and input alterations are not proportional. Controlling
NSs is one of the most active research areas in the discipline of control. He D et al. proposed
a model-free prescribed time controller for NSs. To address controller inaccuracies, an adap-
tive RBFNN compensator was developed. Using the Lyapunov theorem, the stability of
closed-loop systems with model-free prescribed time controllers was analyzed. The study
results demonstrated that the proposed control strategy was effective [13–16]. Liu S. et al.
proposed a framework for the dynamic identification of folded fins with free gap nonlinear-
ity based on backbone curves. The methods proposed in this study were more direct and
efficient than the majority of extant NS identification methods, and they produced accurate
dynamic models for folded fin structures [17]. Kien C V et al. introduced an adaptive
inverse multilayer T-S fuzzy controller (AIMFC) for optimal computation of robust control
in uncertain NSs. The performance of the algorithm in both SMD systems and coupled
liquid tank systems were superior to that of inverse fuzzy controllers [18], according to the
results of a study that compared the performance of the algorithm under various control
parameters. Zhang Z et al. adapted the dynamic frequency-based parameter identification
method to NSs with a periodic response. The oscillator with nonlinear stiffness and damp-
ing assessed the performance of the identification method. Results demonstrated that the
proposed method required less time and had high recognition accuracy [19]. Zheng Y et al.
investigated the adaptive fuzzy event-triggered control problem for a class of uncertain
nonlinear systems. To update the controller and fuzzy weight vector to accomplish aperi-
odic control input signals for NSs, a novel method with combined trigger (CT) behavior
was proposed. The analysis revealed that this method significantly decreased controller
update frequency while maintaining control performance [20].

According to the aforementioned studies, the LM algorithm and nonlinear system
have relatively in-depth and abundant findings from research. In today’s studies, however,
nonlinear system control strategies are predominantly based on neural networks, which
are susceptible to local optima and delayed convergence. In the interim, the applicability of
this control strategy is limited. Control precision and effectiveness cannot be guaranteed.
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Consequently, this study utilizes the LM algorithm to optimize and enhance the BP neural
network. The simulation experiment is conducted in the nonlinear system in order to
enhance the nonlinear-ar system’s strategy control.

3. Optimization and Identification of NS Model Based on LM-BPNN
3.1. Construction of NS Strategic Control Method Based on BPNN

Table 1 presents the definition of terms used in this paper.

Table 1. The definitions of terms.

Term Definition

CSTR Continuous stirred tank reactor
LM Levenberg–Marquardt

BPNN Back Propagation Neural Network
NN Neural Network
PI Proportional-Integral
Ca Reactant concentration

RMSE Root mean square error
MAE Maximum absolute error
AAE Average absolute error

GN-BP Gauss–Newton-Back Propagation
ANN Artificial neural network

NS Nonlinear system

The structure and operating principles of the human brain are the basis for ANNs. This
structure is a simplification and abstraction of biological NNs. Figure 1 depicts the neural
structure model of ANNs. There are infinite NN models with various structures, whereas
ANNs have three basic structural elements: connection weights, activation functions, and
summation units [21,22]. The connection weight value represents the strength of the neural
connection. When the value is positive, the connection is active; when the value is negative,
connection suppression is indicated. Nonlinear mapping of nonlinear issues is handled by
the activation function, and the input signal is weighted by the summation unit.
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Figure 1. Neuron structure model. Figure 1. Neuron structure model.

Formulas (1) and (2) represent the summation result and output value result of the
NN, respectively. xj represents the input value. wkj represents the connection weight value.
ϕ(·) is the excitation function. θk represents the threshold value.

uk =
n

∑
j=1

wkjxj (1)

yk = ϕ

(
n

∑
j=1

wkjxj − θk

)
(2)
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The excitation function is the core of NNs, which is closely related to the ability of
NNs to handle problems. The sigmoid-type excitation function is a commonly used NN
excitation function with an input value within (0, 1). The sigmoid-type excitation functions
can be divided into hyperbolic tangent type (tansig) excitation functions or logarithmic
type (logsig) excitation functions. The function expression is shown in Formulas (3) and (4).

f (x) =
1

1 + e−x (3)

f (x) =
1− e−2x

1 + e−2x (4)

BPNN is a feedforward neural network. The forward transmission of signals and the
backward propagation of errors make up the two stages of the learning process. Figure 2
depicts the BPNN’s structure. Forward propagation possesses two properties. One is that
the connection weights for network connections have not been updated. The second step
is to return to the error backpropagation procedure when there is a discrepancy between
the output and the expected value. Backpropagation is characterized by transmitting error
signals to neurons in each layer and receiving error signals for each layer. In addition, the
connection weight value is modified based on each layer’s error signal, thereby correcting
the output value of each layer.
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Although the BPNN technique offers distinct advantages for handling nonlinear map-
ping issues, it nonetheless has certain drawbacks in practical uses [23]. First, BPNN has a
non-convex optimization problem, meaning that it is simple for this algorithm to converge
to a local optimal. The second issue with BPNN is gradient disappearance. As the number
of training iterations increases, the convergence rate and learning efficacy of the BPNN will
decrease dramatically. Thirdly, BPNN suffers from the issue of overfitting. The character-
istics of global approximation have enhanced the algorithm’s capacity for generalization
to some extent, but the issue of overfitting has not been fundamentally resolved. There
are currently numerous optimizations for BPNNs. The primary optimization objectives
include accelerating the algorithm’s convergence rate and overcoming non-convex opti-
mization. Momentum factor optimization is to improve the weight correction amount of
the algorithm by introducing a momentum factor α into the weight correction amount,
α ∈ [0, 1]. This optimization concept aims to accelerate the algorithm’s convergence rate by
suppressing and mitigating learning-process disruptions. The variable step size momentum
optimization method addresses the problem of the difficult selection of learning rate η by
utilizing momentum factor optimization. The variable step size algorithm determines the
change in step size based on the gradient change direction of the iterative process and
the rate of weight correction. Combining the optimization concept of momentum factor,
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Formula (5) represents the weight correction formula for the variable step size momentum
optimization method.

w(k + 1) = w(k) + η(k)(1− α)D(k) + αD(k− 1) (5)

In momentum factor optimization and variable step size algorithms, the learning rate
η of the BPNN remains constant. However, in different training periods, the learning rates
suitable for BPNNs are different. Therefore, a learning rate increment and decrement factor
are introduced into the BP algorithm to adjust the learning rate to the change of error. The
functional expression for learning rate selection is shown in Formula (6). η represents the
initial learning rate. kinc and kdec B represent the learning rate increment and decrement
factors. E(k) represents the mean square error of the time.

η =

{
η · kinc, E(k− 1) < E(k)
η · kdec, E(k− 1) > E(k)

(6)

The convergence rate of Newton’s method is significantly better than that of the
gradient descent method. H(k) represents the Hessian matrix of the error performance
function E(k). The following Formulas (7) and (8) can be obtained. w(k + 1) represents the
connection weight value at k + 1.

w(k + 1) = w(k)− H−1(k)∇E(k) (7)

H(k) = ∇2E(k) (8)

However, Newton’s method requires the calculation of the second-order Taylor series
of the error performance function E(k), which has limitations in practical applications.
Gauss–Newton method is an improvement over the Newton method. This method changes
the Hessian matrix with approximate values so that it does not have to be calculated. This
makes the optimization technique easier to use [24].

3.2. Construction of NS Strategic Control Method Based on Optimized BPNN

LM incorporates gradient descent and the Gaussian Newton method’s advantages. It
possesses the property of global approximation and is capable of producing local conver-
gence. Not only does it accomplish the global nature of the gradient descent method, but it
also achieves convergence at a rate comparable to the Gauss–Newton method. Utilizing
the LM algorithm, this study optimizes BPNN to enhance the processing efficacy of BPNN
in NSs. The error performance function E(k) of the LM algorithm is expressed in the form
of a sum of squares error. Formula (9) shows the functional expression. y(k) is the actual
output value. ym(k) is the desired output value. e(k) represents the current error.

E(k) = 1/2(y(k)− ym(k))
2 = 1/2e2(k) (9)

Formula (10) is the current gradient function.

∇E(k) =
∂E(k)
∂w(k)

= e(k)
∂e(k)
∂w(k)

= JT(k)e(k) (10)

In Formula (10), J is the Jacobian matrix of the first derivative of the error function
concerning the threshold and weight values. When the error performance function ap-
proaches the minimum value, the elements of the matrix can be ignored, thus obtaining
Formula (11).

∇2E(k) = JT(k)J(k) (11)
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Hessian matrices are not always invertible. Therefore, a coefficient λ is introduced to
obtain an LM algorithm that updates the weight value.

w(k + 1) = w(k)−
[

JT(k)J(k) + λI
]−1

JT(k)e(k) (12)

In the improved algorithm, when λ→ 0 , Formula (12) represents the Quasi-Newton
method. When λ→ ∞ , the above formula represents the gradient descent method. Com-
bined with the analysis process of the LM algorithm, this algorithm has three main advan-
tages. First, the idea of this algorithm is the second derivative solution, so its convergence
speed is significantly higher than the gradient descent method. Second, the JT(k)J(k) of this
method is constantly positive, which means the LM algorithm always has a solution. Third,
when calculating, the matrix J can be simplified, reducing the computational complexity.
Figure 3 shows the training steps of the LM-BP optimization algorithm.
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System identification is the inverse of the system control problem. It determines
a system model from a known type of model that satisfies the equivalent requirements
based on input and output signals and equivalence criteria. This system model is identical
to the system being evaluated. System identification, therefore, encompasses input and
output signals, known models, and equivalence criteria. Signals of input and output are
the foundation of system identification. The known model must correspond to the initial
system. The equivalence criterion determines the precision of the model’s operation, which
is typically a function of input and output errors.
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For system identification, NN models can be arbitrarily approximated and self-learned
for nonlinear problems. To train a model with the characteristics of the identified system,
it is necessary to ascertain the known NN model. Based on the input and output data of
the identified system, learning, and weight correction are carried out using established
models until the error performance function satisfies the accuracy requirements. In actual
operation, it is necessary to contemplate NN identification’s limitations. One is the limit on
the number of sample data, which impacts the model’s accuracy. The second is the system
model’s approximate characteristics. The third factor is the presence of disturbance in the
original data. To ensure that the identification results are as error-accurate as possible,
the equivalent criterion function is used to evaluate the results and determine whether
the parameters of the identification model need to be modified. Figure 4 depicts the
serial-parallel structure of NN identification.
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The NN model can monitor the input and output changes of the identified system
in an adaptive manner. Therefore, NN identification is divided into parallel and serial-
parallel identification structures. In the parallel identification structure, both the output
feedback and the process input serve as the model’s input. The historical output value
of the NN serves as the input for the identification model. As model inputs, the serial-
parallel identification structure utilizes the NN’s inputs and the system’s outputs from
the past. Figure 3 is a serial, parallel structure diagram for NN identification. Therefore,
the study employs a serial-parallel structure that can observe the most recent system data
and accomplish advanced output prediction. The LM-BP structure is identical to that of
the BPNN. The excitation function between the input layer and the hidden layer in this
investigation is the hyperbolic tangent excitation function (tansig) of Formula (3). The
logarithmic excitation function (logsig) of Formula (4) is the excitation function between the
concealed and output layers. The output value for the hidden layer is given by Formula (13).
xi represents the input node value. wij is the connection weight value between the input
and the hidden layer.

hj = g
(
netj

)
, j = 1, 2, . . . , m (13)

netk =
n

∑
i=0

wijxi, j = 1, 2, . . . , m (14)
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The LM-BP algorithm model is a single output structure. The functional expression
of the output value is shown in Equation (15). wjk represents the connection weight value
from the hidden layer to the output layer.

y(k) = f (netk), k = 1, 2, . . . , l (15)

netk =
m

∑
j=0

wjkhj, k = 1, 2, . . . , l (16)

The function of the equivalence criterion is the benchmark and objective of system
identification. LM-BPNN identification uses the root mean square error (RMSE), aver-
age absolute error (AAE), and maximum absolute error (MAE) of the actual output and
expected output as equivalent criterion functions.

4. Simulation Analysis Based on LM-BP Optimization Algorithm in Nss
4.1. Performance Analysis of LM-BP-Based Optimization Algorithms

To determine the efficacy of LM algorithm optimization and model identification,
a simulation experiment of LM-BP algorithm model identification is conducted on NSs.
Formulas (17) and (18) illustrate the functional representation of the nonlinear system
model and system input signals.

y(k) =
y(k− 1)

1− y(k− 1)2 + u(k)3 (17)

u(k) = 0.5 sin(6kπt) (18)

MATLAB is utilized to simulate the behavior of a nonlinear system. The LM-BPNN
is used to identify models with the nonlinear object of Formula (18). Table 2 outlines the
simulation-specific experimental environment parameters.

Table 2. The situation/setup of the Nonlinear System.

Test Conditions Parameter Value

Input signal [y(k− 1), u(k− 1)]
Output signal y(k)

Training function Trainlm function
Number of hidden layer nodes 7

Learning Rate θ = 0.5
Maximum Number of Iterations 500

Target error accuracy 10−4

Inertial coefficient 0.05
Input reference trajectory 10 Hz square wave signal

The convergence rates of the BP, Gauss–Newton-Back Propagation (GN-BP), and LM-
BP models are compared in order to verify the convergence ability of the LM-BP model
proposed in this study. Figure 5 displays the findings. The BP model has a convergence time
of 0.054 s, with a minimal convergence time of 0.028 s and a range of 0.026 s. The GN-BP
model has maximum and minimum convergence times of 0.049 s and 0.026 s, respectively,
with a range of 0.023 s. The LM-BP model has a maximum convergence time of 0.042 s,
a minimum convergence time of 0.022 s, and a range of convergence times of 0.02 s. The
average convergence speed of the BP model is 0.041 s, while those of the GN-BP and
LM-BP models are 0.036 s and 0.029 s, respectively. According to the preceding analysis,
the convergence time of BP and GN-BP methods is highly variable, and the convergence
effect is inadequate. The convergence time of the LM BP model proposed in the study is
relatively stable and fluctuates minimally across various training periods. The convergence
performance is vastly superior to that of the BP model.
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The ratio of the training set to the test set influences the model’s identification accuracy.
Therefore, the identification accuracy of LM-BP models is contrasted under various training
and test set ratios. Figure 6 depicts the effect of the model’s recognition. The maximal
recognition accuracy for a 60% training set model with 100 iterations is 92.56 percent,
as shown in Figure 6a. Overall, the recognition accuracy is unstable due to an abrupt
increase followed by a rapid decrease. The maximum recognition accuracy for a model
with 130 iterations and a 70% training set is 94.47%. Under this classification ratio, the
overall accuracy of recognition exhibits a rising trend. The maximal recognition accuracy
for 80% of the training set after 110 iterations is 94.51%. The overall accuracy of recognition
fluctuates and is unstable under this classification condition. With 190 iterations, the 90%
training set model’s maximum recognition accuracy is 95.53%. The accuracy of recognition
demonstrates a relatively stable state. In other words, classifying training sets and training
sets at a ratio of 9:1 can effectively enhance recognition accuracy. Machine learning models
have a relatively sophisticated network structure, which necessitates the use of more
training data to increase model accuracy.

A validation experiment for the LM optimization algorithm is designed based on the
simulation parameters listed above. The LM-BPNN model is initially trained, then the
algorithm model is validated with test data. Figure 7 depicts the identification outcomes
of training samples using LM-BPNN. Figure 7 demonstrates that the object output of the
training sample is largely consistent with the identification output of the neural network.
The object input and output trends of the sample used for training are consistent. The
simulation results of training samples indicate that system identification modeling for NSs
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is possible using the LM-BPNN algorithm. When 114 iterations are performed, the output
value of the training sample satisfies the error accuracy requirements.
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The performance of the proposed LM-BP model’s verification is evaluated. Figure 8
depicts the results of the verification of the LM-BPNN identification model using test
data. Observing the images reveals that there is a certain discrepancy between the test
data object output and the NN identification output. The identification error result of
the test data is between ±2× 10−5. Based on the analysis of the identification results of
the training samples, the actual output of the NN algorithm and the model output are
basically consistent in the identification results. The identification error of the test data and
training samples have reached the order of 10−5, reaching the accuracy requirements of the
target error.
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Using an equivalence criterion function, the identification results of the LM-BP algo-
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Using an equivalence criterion function, the identification results of the LM-BP algo-
rithm model, GN-BPNN, and BP are evaluated in order to accurately depict the modeling
performance of the optimization algorithm. Three algorithm models’ modeling perfor-
mance statistics are presented in Table 3. According to the results, the RMSE of the
LM-BPNN optimization algorithm is 0.0451, the MAE is 0.0958, and the AAE is 0.0351. The
RMSE of the BPNN is 0.0744, while the MAE and AAE are 0.1775 and 0.0536, respectively.
The GN-BPNN optimization method has an RMSE of 0.0539, an MAE of 0.1108, and an
AAE of 0.0443. Consequently, the model identification accuracy of the LM optimization
algorithm is superior to that of the BPNN algorithm and the Gaussian Newton optimization
algorithm. The LM-BPNN is more efficient at processing NSs.

Table 3. Statistical results of Modeling Performance of LM-BP and BP algorithm models.

Model Type RMSE MAE AAE

LM-BPNN 0.0451 0.0958 0.0351
BPNN 0.0744 0.1775 0.0536

GN-BPNN 0.0539 0.1108 0.0443
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4.2. Application Analysis of LM-BP Optimization Algorithm in NSs

Experiments are conducted on a nonlinear system object to validate the proposed LM
BP model as a solution method for the optimization link in NN predictive control. Two
hundred iteration stages are included in the experiment. Figure 9 depicts the results. Ac-
cording to Figure 9, the overshoot values for the BP and GN-BP methodologies are 0.25 and
0.2, indicating a significant overshoot. The control outcomes of these two approaches differ
significantly. The proposed LM-BP nonlinear system control method has an overshoot of
0.1, the corresponding speed is quicker, and the control effect is relatively stable. Based on
the reference output values depicted in the figure, this method has greater stability when
monitoring the predetermined values of the nonlinear control system.
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Figure 9. Output effects of different methods under ideal conditions.

However, the above experiments represent the results of implementing the control
method under optimum conditions. What rarely occurs in the actual production process is
the optimal state. Signal interference is one of the numerous external interference factors.
Therefore, k = 120 will apply an external interference signal to the system with a magnitude
of d_(120) = 0.2 in order to make the research findings more in line with the actual condition.
Figure 10 depicts the control effects of various control methods under external interference.
The addition of interference signals affects all three control methods. The curve of the
output result fluctuates. Figure 10a demonstrates that, prior to enhancement, the control
effect of the BPNN model has the largest deviation from the expected results and the lowest
degree of fit. It has a negligible impact on the best control of nonlinear systems. After
improving the Gaussian Newton algorithm in Figure 10b, the control effect of the algorithm
has been enhanced to some extent. Figure 10c demonstrates that the LM-BP optimization
method obtains the best control effect, as evidenced by the highest degree of fit between
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the output result and the reference value. This method yields a relatively stable control
effect, enabling the optimal control of nonlinear systems to be achieved.
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A continuous stirred tank reactor (CSTR) is a highly nonlinear and coupled control 
system. The complexity of the process makes it challenging to regulate reactor perfor-
mance indicators, including temperature, reactant concentration, and coolant flow. CSTR 
is, therefore, a prevalent method for evaluating the effectiveness of nonlinear control [25–
27]. The proposed LM-BP model is applied to the CSTR to evaluate its efficacy and com-
pared to the Proportional-Integral (PI) control method. In order to imitate the actual situ-
ation, Gaussian white noise with a mean value of 0 is added to interfere with it at the same 
time. The simulation evaluation is conducted in a MATLAB 7.14 environment. The CSTR 
system predicts and regulates the reactant concentration CA. Figure 11 displays the find-
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in Figure 11b. After introducing noise interference, the results of both prediction methods 
are altered to a certain degree. The control effect of LM-BP on CA is essentially consistent 
with the reference results. It is capable of producing relatively optimal control effects. The 
tracking control effect of the PI control method varies significantly. The difference be-
tween the effect of control and the standard value is relatively substantial. This method's 
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A continuous stirred tank reactor (CSTR) is a highly nonlinear and coupled control
system. The complexity of the process makes it challenging to regulate reactor performance
indicators, including temperature, reactant concentration, and coolant flow. CSTR is,
therefore, a prevalent method for evaluating the effectiveness of nonlinear control [25–27].
The proposed LM-BP model is applied to the CSTR to evaluate its efficacy and compared
to the Proportional-Integral (PI) control method. In order to imitate the actual situation,
Gaussian white noise with a mean value of 0 is added to interfere with it at the same
time. The simulation evaluation is conducted in a MATLAB 7.14 environment. The CSTR
system predicts and regulates the reactant concentration CA. Figure 11 displays the findings.
Figure 11a illustrates the predictive control utilizing the optimization method proposed
in the study. The results of the experiment using the PI control approach are shown in
Figure 11b. After introducing noise interference, the results of both prediction methods
are altered to a certain degree. The control effect of LM-BP on CA is essentially consistent
with the reference results. It is capable of producing relatively optimal control effects. The
tracking control effect of the PI control method varies significantly. The difference between
the effect of control and the standard value is relatively substantial. This method’s control
effect has not produced apparent optimal results. Comparatively, the control method
proposed in this study has a better monitoring effect on reactant concentration CA and
stronger anti-interference capability. The cumulative effect of control is superior to the PI
control method.
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5. Conclusions 
The BPNN model is most frequently employed in the present research on industrial 

predictive control. Nonetheless, as data processing and system complexity increase, the 
performance progressively degrades. The LM-BP optimization algorithm is proposed for 
NS issues. Identification of the LM optimization model is validated through simulation 
analysis. When the number of iterations for the model identification of the LM optimiza-
tion algorithm reaches 114, the output value satisfies the error accuracy requirements, and 
the identification error is on the order of 10-5. The RMSE of the LM optimization algorithm 
is 0.0451, the MAE is 0.0958, and the AAE is 0.0351 in the evaluation of modeling perfor-
mance. Using the CSTR control system as an illustration for application effect analysis, the 
tracking effect of its reactant concentration CA is superior to that of the PI control method, 
with greater anti-interference capacity. The performance of BPNN in NSs has been con-
siderably enhanced through LM algorithm optimization, which not only improves the 
processing efficiency and accuracy of BPNN in NSs but also provides data support for the 
study of NSs. However, in the real-world setting, the system is subject to numerous inter-
ference factors. The research only considers one signal to be interference. To enhance the 
model’s robustness, it is necessary to verify additional interference factors in future re-
search. 
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5. Conclusions

The BPNN model is most frequently employed in the present research on industrial
predictive control. Nonetheless, as data processing and system complexity increase, the
performance progressively degrades. The LM-BP optimization algorithm is proposed for
NS issues. Identification of the LM optimization model is validated through simulation
analysis. When the number of iterations for the model identification of the LM optimization
algorithm reaches 114, the output value satisfies the error accuracy requirements, and the
identification error is on the order of 10-5. The RMSE of the LM optimization algorithm is
0.0451, the MAE is 0.0958, and the AAE is 0.0351 in the evaluation of modeling performance.
Using the CSTR control system as an illustration for application effect analysis, the tracking
effect of its reactant concentration CA is superior to that of the PI control method, with
greater anti-interference capacity. The performance of BPNN in NSs has been considerably
enhanced through LM algorithm optimization, which not only improves the processing
efficiency and accuracy of BPNN in NSs but also provides data support for the study of
NSs. However, in the real-world setting, the system is subject to numerous interference
factors. The research only considers one signal to be interference. To enhance the model’s
robustness, it is necessary to verify additional interference factors in future research.

Author Contributions: X.H.: Conceptualization, methodology, formal analysis, writing—original
draft preparation, writing—review and editing; H.C.: Data curation; B.J.: Data curation, formal
analysis. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All the data supporting this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mariappan, M.; Tamilselvan, A. An efficient numerical method for a nonlinear system of singularly perturbed differential

equations arising in a two-time scale system. J. Appl. Math. Comput. 2022, 68, 1069–1086. [CrossRef]
2. Alabedalhadi, M. Exact travelling wave solutions for nonlinear system of spatiotemporal fractional quantum mechanics equations.

Alex. Eng. J. 2022, 61, 1033–1044. [CrossRef]
3. Jin, H.Y.; Wang, Z.A. Global stabilization of the full attraction-repulsion Keller-Segel system. Discret. Contin. Dyn. Syst. -Ser. A

2020, 40, 3509–3527. [CrossRef]
4. Mazumdar, S.; Gangopadhyay, G. Centre manifold analysis of 3-d nonlinear system and kinetic stability of protein assembly. J.

Appl. Nonlinear Dyn. 2022, 11, 139–152. [CrossRef]
5. Kandel, S.; Maddali, S.; Nashed, Y.S.G.; Hruszkewycz, S.O.; Jacobsen, C.; Allain, M. Efficient ptychographic phase retrieval via a

matrix-free Levenberg-Marquardt algorithm. J. Opt. Express 2021, 29, 23019–23055. [CrossRef] [PubMed]
6. Gan, H.; Xu, C.; Hou, W.; Guo, J.F.; Liu, K.; Xue, Y.J. Spatiotemporal graph convolutional network for automated detection and

analysis of social behaviours among pre-weaning piglets. J. Biosyst. Eng. 2022, 217, 102–114. [CrossRef]

https://doi.org/10.1007/s12190-021-01559-0
https://doi.org/10.1016/j.aej.2021.07.019
https://doi.org/10.3934/dcds.2020027
https://doi.org/10.5890/JAND.2022.03.008
https://doi.org/10.1364/OE.422768
https://www.ncbi.nlm.nih.gov/pubmed/34614577
https://doi.org/10.1016/j.biosystemseng.2022.03.005


Processes 2023, 11, 1794 15 of 15

7. Almaiah, M.A.; Zahrani, M.A. Multilayer neural network based on mimo and channel estimation for impulsive noise environment
in mobile wireless networks. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 315–321. [CrossRef]

8. Chen, L.; Huang, Y.; Lu, T.; Dang, S.L.; Kong, Z.M. Metering equipment running error estimation model based on genetic
optimized LM algorithm. J. Comput. Methods Sci. Eng. 2022, 22, 197–205. [CrossRef]

9. Shi, Q.; Xu, Q.; Zhang, J. Amended DV-hop scheme based on N-gram model and weighed LM algorithm. Electron. Lett. 2020,
56, 247–250. [CrossRef]

10. Deb, N.; Pal, N. Interaction behavior and load sharing pattern of piled raft using nonlinear regression and LM algorithm-based
artificial neural network. Front. Struct. Civ. Eng. 2021, 15, 1181–1198. [CrossRef]

11. Niu, Y.; Zhou, Y.Q.; Luo, Q. Optimize star sensor calibration based on integrated modeling with hybrid WOA-LM algorithm. J.
Intell. Fuzzy Syst. 2020, 38, 2691–2693. [CrossRef]

12. Bilski, J.; Kowalczyk, B.; Marchlewska, A.; Zurada, J.M. Local levenberg-marquardt algorithm for learning feedforwad neural
networks. J. Artif. Intell. Soft Comput. Res. 2020, 10, 299–316. [CrossRef]

13. Li, X.; Sun, Y. Stock intelligent investment strategy based on support vector machine parameter optimization algorithm. Neural
Comput. Appl. 2020, 32, 1765–1775. [CrossRef]

14. Li, K.; Ji, L.; Yang, S.; Li, H.; Liao, X. Couple-group consensus of cooperative–competitive heterogeneous multiagent systems: A
fully distributed event-triggered and pinning control method. IEEE Trans. Cybern. 2022, 52, 4907–4915. [CrossRef]

15. Li, B.; Tan, Y.; Wu, A.; Duan, G. A distributionally robust optimization based method for stochastic model predictive control.
IEEE Trans. Autom. Control. 2021, 67, 5762–5776. [CrossRef]

16. He, D.; Wang, H.; Tian, Y. An α-variable model-free prescribed-time control for nonlinear system with uncertainties and
disturbances. Int. J. Robust Nonlinear Control. 2022, 32, 5673–5693. [CrossRef]

17. Liu, S.; Zhao, R.; Kaiping, Y.U.; Bowen, Z. Nonlinear system identification framework of folding fins with freeplay using backbone
curves. Chin. J. Aeronaut. 2022, 35, 183–194. [CrossRef]

18. Kien, C.V.; Anh, H.; Son, N.N. Adaptive inverse multilayer fuzzy control for uncertain nonlinear system optimizing with
differential evolution algorithm. Appl. Intell. 2021, 51, 527–548. [CrossRef]

19. Zhang, Z.; Wang, W.; Wang, C. Parameter identification of nonlinear system via a dynamic frequency approach and its energy
harvester application. Acta Mech. Sin. 2020, 36, 606–617. [CrossRef]

20. Zheng, Y.; Gao, S.; Zheng, W.; Dong, H.R. Fuzzy adaptive event-triggered control for uncertain nonlinear system with prescribed
performance: A combinational measurement approach. J. Frankl. Inst. 2022, 359, 371–391. [CrossRef]

21. Chen, H.X.; Liu, M.M.; Chen, Y.T.; Li, S.Y.; Miao, Y.Z. Nonlinear lamb wave for structural incipient defect detection with sequential
probabilistic ratio test. Secur. Commun. Netw. 2022, 9851533. [CrossRef]

22. Zhang, H.; Tian, Z. Failure analysis of corroded high-strength pipeline subject to hydrogen damage based on FEM and GA-BP
neural network. Int. J. Hydrog. Energy 2022, 47, 4741–4758. [CrossRef]

23. Zhang, S.; Zhang, L.; Gai, T.; Xu, P.; Wei, Y. Aberration analysis and compensate method of a BP neural network and sparrow
search algorithm in deep ultraviolet lithography. Appl. Opt. 2022, 61, 6023–6032. [CrossRef] [PubMed]

24. Hu, K.; Wang, L.; Li, W. Forecasting of solar radiation in photovoltaic power station based on ground-based cloud images and BP
neural network. IET Gener. Transm. Distrib. 2022, 16, 333–350. [CrossRef]

25. Wang, B.; Zhang, Y.; Zhang, W. A composite adaptive fault-tolerant attitude control for a quadrotor uav with multiple uncertainties.
J. Syst. Sci. Complex. 2022, 35, 81–104. [CrossRef]

26. Mule, G.M.; Kulkarni, S.; Kulkarni, A.A. An assessment of a multipoint dosing approach for exothermic nitration in CSTRs in
series. React. Chem. Eng. 2022, 7, 1671–1679. [CrossRef]

27. Mukherjee, D.; Raja, G.L.; Kundu, P.; Ghosh, A. Design of optimal fractional order lyapunov based model reference adaptive
control scheme for CSTR. IFAC-Pap. 2022, 55, 436–441. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.30534/ijatcse/2020/48912020
https://doi.org/10.3233/JCM-215896
https://doi.org/10.1049/el.2019.2957
https://doi.org/10.1007/s11709-021-0744-6
https://doi.org/10.3233/JIFS-179554
https://doi.org/10.2478/jaiscr-2020-0020
https://doi.org/10.1007/s00521-019-04566-2
https://doi.org/10.1109/TCYB.2020.3024551
https://doi.org/10.1109/TAC.2021.3124750
https://doi.org/10.1002/rnc.6105
https://doi.org/10.1016/j.cja.2022.05.011
https://doi.org/10.1007/s10489-020-01819-9
https://doi.org/10.1007/s10409-020-00972-1
https://doi.org/10.1016/j.jfranklin.2021.09.033
https://doi.org/10.1155/2022/9851533
https://doi.org/10.1016/j.ijhydene.2021.11.082
https://doi.org/10.1364/AO.462436
https://www.ncbi.nlm.nih.gov/pubmed/36255838
https://doi.org/10.1049/gtd2.12309
https://doi.org/10.1007/s11424-022-1030-y
https://doi.org/10.1039/D2RE00045H
https://doi.org/10.1016/j.ifacol.2022.04.072

	Introduction 
	Related Work 
	Optimization and Identification of NS Model Based on LM-BPNN 
	Construction of NS Strategic Control Method Based on BPNN 
	Construction of NS Strategic Control Method Based on Optimized BPNN 

	Simulation Analysis Based on LM-BP Optimization Algorithm in Nss 
	Performance Analysis of LM-BP-Based Optimization Algorithms 
	Application Analysis of LM-BP Optimization Algorithm in NSs 

	Conclusions 
	References

