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Abstract: The textile industry is a growing sector worldwide and has immense opportunity in terms of
providing employment and boosting a nation’s economy. However, there exist severe environmental
risks associated with textile effluents that impact the surrounding ecosystem. This review offers an
approach for sustainable water management using phycoremediation to treat dye-laden wastewater
and recover bio-based pigments from the residual biomass. Microalgae such as Chlorella, Scenedesmus,
Phormidium, and macroalgae like Sargassum, Enteromorpha, and Codium has been extensively used
in several phycoremediation-based studies, and their residual biomass could be a potent source for
extraction of bio-based pigments. This review also recommends studies involving the algal-bacterial
consortia approach for treating dye-laden wastewater as an alternative to conventional, biobased
methods. The outcome of this study will provide policymakers and researchers with new insight
to manage water and wastewater resources sustainably. Furthermore, this review also enhances
our understanding of nature-based decontamination approaches for treating dye-laden wastewater
through algal-based technologies.

Keywords: textile wastewater; dye degradation; phycoremediation; bio-based pigments; algal-bacterial
consortia

1. Introduction

Rapid urbanization and an increase in global demand for textile apparel due to fast
fashion has made textile industries a major source of the global economy, especially in
developing countries like India, Bangladesh, Pakistan, Malaysia etc. [1]. Apart from being
a major sector providing significant employability and economic growth to these countries,
they are also a major pollution-emitting sector. The textile industry is water-intensive and
requires massive amounts of water to run its unit operations. A typical textile industry
requires around 230–270 tons of water to process 1 ton of product [2]. According to World
Bank Report, approximately 20% of the total effluent generated from the industries is
discharged from the textile industry [3]. Most textile industries comprise a range of wet
processes such as de-sizing, scouring, bleaching, mercerization, dyeing, and washing
units [4]. The water footprint is very high in all these wet processes, leading to a huge
volume of effluent generation and discharge. These industries use a wide range of synthetic
dyes in their dyeing operations [5]. The highly colored effluent inhibits light penetration
in the water bodies and further inhibits the primary producers photosynthetic activities,
adversely affecting the aquatic food web [6]. Introducing synthetic dyes into the aquatic
environment has resulted in mutagenic, carcinogenic, genotoxic implications and aesthetic
harm to waterbodies [7].
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To overcome the threats caused due to textile effluents, several physicochemical
treatment approaches have been applied. Some generally used methods are flocculation,
coagulation, oxidation, precipitation, and membrane filtration [8,9]. All these methods
have some significant flaws like sludge generation, overconsumption of energy, expensive,
requirement of expertise to use them and their applicability on a large scale [10]. Hence,
there is a need for a sustainable and eco-friendly approach to the remediation of dyes in
the textile industry to overcome the problems faced while applying traditional methods
while treating the textile effluent.

Bioremediation and phycoremediation could prove to be a very effective strategies
for tackling pollution of significant environmental concern. The process of bioreme-
diation entails the utilization of living organisms, including bacteria, fungi, or plants,
to decompose or decontaminate harmful substances. Microorganisms can degrade or
convert pollutants, making them safe for discharge into the environment. Bioremedia-
tion has been utilized in diverse contexts, encompassing the mitigation of soil and wa-
ter pollution caused by petroleum derivatives, heavy metals, pesticides, and organic
substances [11–15]. For instance, in the case of textile wastewater treatment, specific bacte-
rial strains like Pseudomonas aeruginosa and Bacillus subtilis have been employed to degrade
azo dyes commonly found in textile wastewater [16]. These bacteria produce enzymes
called azoreductases that catalyze the reduction of azo bonds, leading to the degrada-
tion of dyes. Fungi is also utilized in bioremediation. Species like Trametes versicolor and
Phanerochaete chrysosporium are known for their ligninolytic enzymes, which can efficiently
degrade dyes through oxidative reactions [17,18].

Phycoremediation is a distinct type of bioremediation that utilizes the capabilities
of algae to eliminate or break down contaminants. Algae exhibit distinctive metabolic
capacities and can remediate contaminants via diverse mechanisms such as biosorption,
bioaccumulation and degradation [19–21]. The efficacy of phycoremediation has been
evidenced in treating wastewater, eliminating nutrients, sequestration of carbon, and re-
mediation of contaminants, including heavy metals, organic compounds, and surplus
nitrogen and phosphorus [22–24]. The utilization of algae in phycoremediation offers
several benefits, such as their swift growth, elevated capacities for pollutant removal, and
adaptability to diverse environments such as wastewater ponds or bioreactors. Moreover,
the utilization of algae in phycoremediation can enhance nutrient assimilation and re-
instate equilibrium within the ecosystem—algal species such as Sargassum sp. Ulva sp.,
Spirogyra sp., Spirullina sp., Scenedesmus sp. and Phormidium sp. have shown the ability to
accumulate dyes through the mechanism of biosorption, where dyes adhere to their cell
surfaces [25–32]. Some algae can also metabolize dyes through enzymatic reactions, leading
to their degradation and detoxification. For example, Chlorella vulgaris has been demon-
strated to remove dyes like Congo Red effectively, Brilliant Blue R and Remazol Brilliant
Blue R from wastewater [33,34]. Hence, phycoremediation presents a potentially viable
method for the remediation of textile industry effluent. Algae possess distinctive metabolic
capabilities that facilitate the efficient elimination or degradation of pollutants, such as
dyes [35,36]. The studies have demonstrated that the algal biomass could generate value-
added products like biofuels, biofertilizers, single-cell proteins, astaxanthins, etc., from its
generated biomass [37]. However, pigment extraction from algae after bioremediation is an
untapped area of research and needs to be explored more for its ground-scale applicability.

In recent time, chemical-based dyeing of textile apparel has been widely preferred in
the textile industry [38]. Although these chemical-based dyes have several industrial bene-
fits such as cost-effectiveness, reproducibility of shades, easy applicability etc., but when
released into the environment, they pose a severe threat due to their toxic nature [39,40].
Hence, the natural dye could be an alternative solution to this problem. Plant-based ex-
traction of natural colorants could be an option for obtaining natural pigment. However,
the over-exploitation of any plant species for pigment recovery could bring it to the verge
of extinction and can disrupt the ecological balance [41]. So, to avoid this, the strategy of
using algal biomass for pigment extraction must be explored widely. The algae could be a
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suitable candidate because of its higher regenerative capacity, wide pigment diversity, and
its application as a bioremediating agent for nutrient recovery and wastewater treatment.

In this regard, using algae to produce eco-friendly dye is gaining importance among
researchers. Several studies have explored using algal species to produce natural dyes for
the textile industry. Mir et al. [42] utilized the green algae Cladophora glomerata to obtain a
natural colorant for the textile process. El-Khatib et al. [43] also reported using green algae
Spirogyra sp. to produce a natural colorant for dyeing wool fabric. Similarly, Njiru et al. [44]
explored the applicability of macroalgae for its potential to be utilized as a green dye for
the textile sector. Hence, algal biomass generated after the phycoremediation of textile
wastewater could be further explored for its applicability in producing these green dyes
from biobased pigments acquired from residual algal biomass after the treatment.

Considering the challenges of wastewater treatment in a sustainable way, this review
brings forth an in-depth study on algal-based treatment technologies as nature-based
solutions for handling dye-laden wastewater. Further, a better understanding of bio-
based pigment extraction from residual algal biomass after the treatment has also been
comprehensively discussed in this review. This approach for producing bio-based pigments
would form a sustainable treatment approach for dye-laden wastewater treatment through
value addition of the entire phycoremediation process.

2. An Overview of the Textile Industry

The textile industry is one of the world’s most influential and rapidly developing
sectors [45]. These textile industries have a global market share of around $2000 and
offer employment to ~120 million people across the globe. In India textile industry is one
of the oldest industries and the second largest producer of textile apparel which shares
around 5% of total global exports and contributes to 27% of Nationals Gross Domestic
Product (GDP) [46]. Unfortunately, this sector employs a significant amount of water
for its various wet processing activities and generates vast amounts of highly hazardous
wastewater with a wide range of characteristics [47–49]. It is estimated that, on average, to
create 8000 kg of textile fabric each day, a typical textile industry uses 1.6 million liters of
groundwater, of which 30–40% is utilized in the dyeing process, 60–70% in the washing
stage and 10–50% of unwanted dyes are discharged into water resource together with the
produced effluent [50,51]. A typical textile industry is estimated to produce 5.2–6.6 MLD
of textile wastewater through different unit operations [52]. The wastewater from these
industries is generally characterized by high COD, color, and total dissolved and suspended
solids, which make its treatment difficult [53–55]. Although the makeup of textile effluents
varies considerably depending on the methods employed and the kind of fibers used, it
generally includes a variety of unutilized organic and chemical components, such as dye
waste, color residues, acids, alkalis, starch, various kinds of surfactants, cleaning solvents,
inorganic salts [56]. When these complex wastewaters comprising the toxic cocktail of
numerous types of dyes and chemical reaches the water bodies, it threatens the ecological
balance of the aquatic ecosystem. Hence, they should be adequately treated before releasing
them into the environment.

2.1. Varieties of Dyes and Fabrics Used

Dyes are compounds that have the property to absorb light radiance in the visible
spectra (400–700 nm). The chromophoric group in the dye structure is responsible for the
selective absorption of the incident light, and reflected light provides specific color to the
dyes [57]. There are mainly two types of dyes such as natural and synthetic dyes, used
in tie and dye sectors. Natural dyes are mainly derived from plants, animals, microbes,
and minerals. They are considered less toxic to nature and can easily be degraded mi-
crobially. Some important sources of natural dyes are henna (Lawsonia inermis L.), Indigo
(Indigofera tinctoria), Turmeric (Curcuma longa), Safflower (Carthamus tinctorius), Saffron
(Crocus sativus) and Pomegranate rind (Punica granatum) [58]. However, due to rapid
growth and market demand, the industry’s demand for synthetic dyes continuously in-
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creases. Chandanshive et al. [5] reported that around 7 × 107 tons/year of synthetic dyes
are produced worldwide for the textile industry. ~10% of the dyes are discharged into the
waste stream. The dyes are characterized based on chromophore structure, which provides
specific color to the dye. The most common chromophores are azo group (N=N), nitro
(-NO2), nitroso (-N=O), and carbonyl (-C=S) [47]. These chromophores absorb the incident
electromagnetic wave due to the excitation of electrons to the higher orbit. The auxochrome
group is also an important structure present in the dye structure, which is responsible for
the fixation of dye to the fabrics. Various auxochromes exist, such as -COOH, -OH, NH2,
NR2, etc. [57]. The textile industry fabrics are divided into two major categories: natural
fabrics (cotton, hemp, wool, silk) and synthetic fabrics (nylon, polyester, polypropylene).
Table 1 shows the list of industries using various dyes for specific fabrics.

Table 1. List of various dyes used by the textile industry for different fabrics [59–61].

Fiber’s Categories Dyes Used

Natural fiber
Cellulose fibers: Cotton, hemp, rayon, ramie,

lyocell, and linen

Reactive dyes (remazol red and remazol blue), direct
dyes (congo red and direct brown 116), naphthol dyes

(fast yellow GC, and indigo dyes (indigo white and
indigo carmine)

Protein fibers: Wool. silk, cashmere and mohair Acid dyes (azo dyes and anthraquinone dyes) and
lanaset dyes (Bordeaux B)

Synthetic fibers Synthetic fibers: Nylon, polypropylene,
polyester, acrylic and acetate

Dispersed dyes (disperse red and disperse navy blue),
basic dyes and direct dyes,

2.2. Effluent Characteristics

The qualities of the textile wastewater emitted vary by industry depending upon the
machinery, processing unit and the nature of fabric and dyes required for desirable fabric
production [62]. However, most textile industries comprise a range of wet processes such
as de-sizing, scouring, bleaching, mercerization, dyeing, and washing [59]. The water
footprint is very high in these wet processes, leading to a huge volume of effluent discharge.
The steps are commonly known as the pre-treatment range units and are required to remove
the starch and other impurities (like salts, enzymes, dust, etc.) from fabrics and provide
white color to the fabric material. The main purpose of the de-sizing unit is to detach the
starch from the fabric through hydrolysis or oxidation. This leads to the direct discharge
of enzymes, starch, and hydrogen peroxide into the waste stream, making effluent rich in
organic content.

Similarly, the scouring and bleaching processes are required to remove the cotton
wax and natural color substance from the fabric surface. These processes include using
hot alkali, detergent, organic solvent, and hypochlorite (bleaching agent). Afterwards,
mercerization must provide luster, increase strength, and improve dye uptake capacity [63].
The dyeing unit is the central process where a wide range of dyes or pigments are applied
to the fabric to provide desirable shade. As discussed in the previous section, different
dyes are used according to the fabric. In addition, various chemicals such as surfactants,
salts, metals, sulfide, and organic chemicals might also be added to specific dyes to enhance
the dye binding to the fabric. These chemicals and dyes are the key contaminants in the
generated dye effluent. The primary metals responsible for environmental degradation
are zinc, chromium, iron, lead, and mercury. Table 2 shows the reported physicochemical
characteristic of actual textile effluent in different textile industries worldwide. Literature
reported that the high chemical oxygen demand (COD), biochemical oxygen demand
(BOD), TDS, and color of textile effluent were due to the presence of a large number of
chemicals, salts, starch, fabric residue, and complex dyes [64–66]. Moreover, the effluent
also has high pH and temperature. The range of organic content and other parameters in
the effluent varies throughout the year as per the market demand for fabric.
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Table 2. Physico-chemical characterization of real textile effluent.

Parameters [67] [68] [69] [65] [66] [70] [64]

COD (mg/L) 350–700 1017 2200–2800 2200 ± 250 700–1250 3280 1000 ± 100
BOD (mg/L) 150–350 9.8 - - - 689 -

Colour
(Hazen value) - - - 2800 ± 300 500–1250 4225 6383 ± 100

pH 5.5–10.5 9 9.5–11.2 11.5 ± 0.5 8–9.5 8.6 9.2 ± 0.2
Total dissolved
solids (mg/L) 1500–2200 - 1870 3200 ± 300 - - -

Total Suspended
Solids (mg/L) 200–1100 535 - 150–250 200–450 1746 -

Chloride (mg/L) 200–500 38,600 745.5 - 800–1500 - -
Sulphate (mg/L) 500–700 4500 - 350 ± 50 200–600 - 362 ± 100

3. Phycoremediation as a New Age Eco-Friendly Technology for Application in Textile
Effluent Treatment

Phycoremediation refers to the biological method which employs algae as a bioreme-
diating agent for the biotransformation and bioaccumulation of the contaminants from the
polluted sites. Recently, phycoremediation has gained much attention due to its omnipres-
ence and resistance to various environmental variations, making it a suitable candidate
for bioremediation. Several studies have demarcated the potential of suitable algal strains
to acclimatize and grow well in different kinds of wastewater in batches and pilot-scale
studies. [23,71,72]. Apart from remediation of the contaminants, the algal biomass also
sequesters the atmospheric CO2 and can help secure carbon credits for industries [73]. Also,
the algal biomass obtained after the bioremediation can produce value-added products
like fertilizers, feeds, pesticides, pigment extraction, biofuels, etc. [74,75]. Along with the
treatment, it has also been observed that the treated effluent tends to have higher dissolved
oxygen content while releasing into back into the environment [76]. All these factors give
the edge to phycoremediation-based treatment technologies over other treatment methods
for handling textile wastewater.

3.1. Algal Mechanism of Dye Removal

Microalgae are unicellular organisms with a wide diversity and cosmopolitan distribution [77].
In an approximation, around 72,500 species of microalgae are available, among which
around 44,000 species have been discovered to date [78]. Such a vivid diversity and
omnipresence of these algal species develops the potential to achieve a wide array of
metabolic diversity to produce several novel enzymes. These enzymes could help in the
bioremediation of the contaminants in the environment. Other than the enzymes, the live or
dead biomass produced can be used as biosorbing agents [79,80]. Hence, these microalgae
could serve as potential candidates for decolorizing the dye from the textile effluents by
reducing its toxicity significantly before its disposal.

These microalgal species could contribute to the decolorization of textile dyes through
the mechanism of biosorption and biodegradation, which are briefly discussed in the
below-given sections.

3.1.1. Biosorption

The sequestration of the pollutant through their passive binding on the surface of
dead or live biomass is termed biosorption, as depicted in Figure 1. The adsorption could
occur through the phenomenon of physisorption, in which the formation of weak Van der
Waals forces or electrostatic forces could take place between biomass and pollutant, or it
may take place through the phenomenon of chemisorption, which takes place through the
covalent bond formation between the biomass and pollutants [81].
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Figure 1. Schematic representation of phycoremediation through biosorption and biodegradation mechanism.

The benefit of using algal biomass as an adsorbent lies in the high surface area of
their cell wall and the diversity of functional groups attached to them that give them
desired electrostatic force and binding ability. This is because biosorption tendency mainly
depends on the structure and composition of their cell wall. In the case of brown algae,
alginate plays a crucial role in dye decolorization through adsorption by binding pollutant
ions [30]. Table 3 shows the list of some recent studies done on the biosorption of dyes
using algal biomass.

In recent trends, diatoms have also been found to be efficient biosorbing agents.
Ref. [82] studied live and dead biomass of diatom Phaeodactylum tricornutum, which was
explored for the biosorption of dye from seawater. It was found that both the live and dead
biomass in a condition of very high ionic strength of seawater were able to remove color
within 4 h from synthetic dye effluent. The study done by El-Ahmady et al. [83] has also
shown that diatom Gelidium corneum, under optimized conditions, is capable of biosorbing
mercury (Hg) and ramazol brilliant blue from the dye solution. Hence, these diatom-based
biosorbents could also be utilized for their dual-action-based contaminant removal.

Table 3. Algal biosorption efficiency for various synthetic dyes.

Algae Degraded Dye Efficiency Incubation Time pH Temperature (◦C) Reference

Codium
decorticatum

Crystal violet (CV)
&

Congo red (CR)

96.9% Color
removal
89.8% Color
removal

60 min 10
4 25 [84]

Chlamydomonas
variabilis Methylene blue (MB) 98% Color

removal 30 min 7 25 [85]

Ulva lactuca Congo red 97.89% Color
Removal 120 min 6 30 [29]

Ulva lactuca Methylene blue (MB) 91.92% Color
Removal 110 min 8 25 [31]

Enteromorpha
flexuosa

Crystal violet (CV)
Methylene blue (MB)

90.3% Color
removal
93.4% Color
removal

1 min 1.7–5.2
1.8–5.4 - [86]
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Table 3. Cont.

Algae Degraded Dye Efficiency Incubation Time pH Temperature (◦C) Reference

Enteromorpha
intestinalis Malachite green 99.63% Color

removal 38.5 min 9.92 28 ± 2 [87]

Spirulina
platensis Malachite green 94.12% Color

removal 52.43 min 7.57 - [27]

Spirogyra sp.
Acid Orange 7 (AO7),
Basic Red 46 (BR46),
Basic Blue 3 (BB3)

6.2 mg dye/g
biomass
13.2 mg dye/g
biomass
12.2 mg dye/g
biomass

60 min
4
10
10

30 [28]

Laminaria digitata Methylene Blue
Reactive Blue 19

95% Color
removal
60% Color
removal

15 min 5.6
1 25 [88]

Ulva fasciata

Reactive Yellow 2
Reactive Red 195
Rective Blue 19
Reactiv Black 5

82.75%
83.23%
100%
100% Color
removal

8 h 2 25 [32]

Bifurcaria
bifurcata

Acid Orange 7
Basic Red 5

88.8% Color
removal
94% Color
removal

120 min 7.5 25 [89]

PDA modified
Oscillatoria
princeps

Reactive Red 120 260.3 mg dye/g
biomass 120 min 3 25 [90]

Fucus vesiculosus Methylene Blue
Rhodamine B

98.71% color
removal
96.68% color
removal

420 min 8 45 [91]

Microalgae Crystal Voilet 243 mg dye/g
biomass 5.2 min 9.8 30 [92]

3.1.2. Biodegradation

Biodegradation or bioconversion is the breaking down of contaminants and changing
them into smaller molecules, as depicted in Figure 1. Microalgae break down the pollutants
into smaller molecules and further utilize them for nutritional purposes [93]. The degrada-
tion of dyes through microalgae is mainly based on the release of enzymes. These enzymes
break the bond in the dye’s chromophore groups during their metabolic process, decoloriz-
ing the dye effluents. Some of the most common types of enzymes reported for treating
textile dye produced by algal systems are azoreductase, laccase peroxidase, polyphenol
oxidase, etc. [94,95]. The most common mode of the dye degradation pathway is through
the activity of the azoreductase enzyme. These are the oxidoreductase enzymes that cleave
azo linkages in the dye, leading to the formation of aromatic amines. Further, the algae
catabolize these aromatic amines into CO2 and H2O [96]. In the presence of reductase en-
zymes, algal cells can convert complex dye molecules into smaller, less harmful compounds.
The critical biochemical conversion of dyes into inorganic compounds through catalysis by
enzymes, referred to as mineralization, is pivotal to mitigating the detrimental effects of
these pollutants on the environment [97]. The process can occur through either direct or
indirect mechanisms. In the direct method, electrons are transferred between the enzyme
and the dye, enabling the enzymatic cleavage of the dye into simpler aromatic compounds.
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However, the indirect technique necessitates electron carriers, namely FAD, NAD+, and
flavin, which enable the conveyance of electrons from the enzymes to the dyes via an
indirect route. These coenzymes act as electron carriers, mediating degradation [98,99].
The presence of reductase enzymes in algal cells highlights their inherent capacity to mit-
igate the harm caused by complex dyes. By employing enzymatic pathways, algal cells
contribute to transforming dyes into less harmful compounds, minimizing their impact on
the ecosystem.

The chemical composition of dye and algal species are the two most important factors
deciding the dye degradation rate in the phycoremediation based approach. Studies
based on the remediation of dyes through the degradation mechanism by algae have
been illustrated in Table 4. There are several microalgae that have been reported to show
such dye-degrading characteristics. Some of them include Chlorella vulgaris, capable of
degrading Congo Red dye [34], Phormidium autumnale, capable of complete degradation of
indigo, red dye [100], Oscillatoria sp. effective against acid black 1 dye and basic fuchsin
dye [95,101].

Table 4. Algal degradation efficiency for different types of textile dyes.

Algae Degraded Dye Efficiency Incubation Time pH Temperature Reference

Oscilltoria sp.

Malachite Green
(5 mg/L)

Methylene Blue
(5 mg/L)

Safranin (5 mg/L)

93%
66%
52%

5 Days - 25 ◦C [102]

Haematococcus sp. Congo Red (10 mg/L) 98% 15 Days 7 24 ◦C [103]

Hydrocoleum oligotrichum
and

Oscillatoria limnetica

Basic Fuchsin (5 mg/L)
Methyl Red
(20 mg/L)

92.44% 90.23%
53.23% 50.18%, 7 Days 7.4 25 ◦C [101]

Scenedesmus obliquus Methyl Red (20 mg/L)
Congo Red (20 mg/L)

55.45%
62.05% 10 Days 7.4 25 ◦C [104]

Spirogyra sp. (CKW1)
and

Cladophora sp. (PKS33)

Reactive Blue
(100 mg/L)

~90%
~88% 7 Days 7 30 ◦C [105]

Phormidium autumnale
UTEX1580 Indigo dye 91% 14 Days 7 25 ◦C [100]

Chlorella vulgaris

Reactive Black 71
(200 mg/L)

Disperse Red 1
(200 mg/L)
Direct Blue
(300 mg/L)

80%
84%
78%

10 Days
10 Days
10 Days

5
8
8

40 ◦C
40 ◦C
40 ◦C

[106]

Blue-green algal biofilm
Acid

Orange
(100 mg/L)

>95 12–24 h 7 25 ◦C [107]

4. Phycoremediation of Real Textile Effluent

Microalgae utilize textile industrial wastewater as a media from which it utilizes dye
molecules as a carbon source, and other nutrients are obtained from nitrate, phosphate and
other mineral components present in the dye wastewater, which leads to the promotion of
cell proliferation of algal biomass [108]. In this way, nutrient removal and decolorization
are achieved during the phycoremediation of dye wastewater. Some studies demonstrating
phycoremediation on real textile industrial wastewater are presented in Table 5.

Several algae like Chlorella, Scenedesmus, Phormidium, Oscillatoria etc. [109] have shown
to be promising for the dye degradation and treatment of textile industrial effluent. Cur-
rently, these algal species could be utilized for the phycoremediation-based treatment of
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dye wastewater, but the cocktail of toxic chemicals and synthetic dyes could hinder the algal
growth significantly, affecting the overall performance of the phycoremediation process.
Tolerance to such toxic wastewater and the phycoremediation potential is attributed to the
environmental conditions and the type of algal species employed during this treatment
approach [110]. Hence a detailed characterization of textile effluent is an important step
based on which the algal species should be selected and employed for phycoremediation of
dye wastewater. Some studies have demonstrated that employing native algal species could
perform better with textile wastewater as these species have already been acclimatized to
the dye-laden environment and could perform better [111,112]. Also, genetic engineering
of algal species could further enhance their dye degradation potential [113].

It can be seen from different studies that Chlorella sp. is the most commonly used
microalgal species for phycoremediation due to its robustness and its high tolerance to
synthetic dyes during the treatment process [34,112,114]. A phycoremediation-based study
done by Sinha et al. [99] on the dye-laden wastewater with Direct Red 31dye has shown that
a resistant strain of Chlorella vulgaris could be employed for complete decolorization of the
dye wastewater, and significant contaminant removal could be achieved. The mechanism
involved in decolorization was rapid biosorption followed by degradation with the help of
the azoreductase enzyme.

Apart from the microalgal strains, several other factors like pH, temperature, light, the
composition of textile wastewater, reactor configuration etc., can affect the phycoremedia-
tion potential of dye wastewater [115]. External factors like pH, temperature, light, and
reactor configuration can be optimized based on the requirement for microalgal growth. But
the composition of textile wastewater cannot be changed as it depends on textile operations
in those industries from which these effluents are released.

To overcome this limitation, the strategy of diluting the textile effluent is performed to
enhance the performance of the phycoremediation process. Diluting the dye wastewater
further decreases toxicity and promotes algal cell growth. Also, the decrease in the color due
to dilution will further enhance the light penetration, thus increasing the photosynthetic
potential and enhancing the phycoremediation process.

However, trade-offs should be considered. Dilution requires substantial freshwater,
posing challenges in water-scarce areas. Additionally, dilution requires extra space, which
can be problematic for large-scale projects in densely populated or constrained areas. Recog-
nizing these trade-offs is crucial for comprehensively understanding dilution’s implications
and guiding decision-making toward sustainable and efficient bioremediation strategies.

The study done by Oyebamiji [110] demonstrated that a 2% dilution of dye wastewater
further enhanced the overall biomass production, heavy metal and color removal. The
dilution required is based on the tolerance level of selected algal species for the phycore-
mediation process. Hence before starting the phycoremediation-based treatment amount
of dilution required must also be explored based on the effluent characteristics and the
microalgal species employed during the phycoremediation process.

Table 5. Phycoremediation based studies on real textile effluent.

Sr. No. Microalgal
Species

Pretreatment
Experimental Conditions Treatment

Efficiency Reference
Light Intensity Temperature Time

1 Chlorella vulgaris

Algal cultivation
in diluted

textile effluent
(5–30%) + 10 g/L

sodium bicarbonate
as a supplement

3000 lux 25 ◦C 15 Days
75.68%

Decolorization;
COD 69.9%

[112]

2 Mixed Algal
Consortium

In 4 L of textile
effluent 0.5 L of

algal consortium
170 µmol m−2 s−1 -

5 cycles
for

95 days.

68–72%
Decolorization;
COD 50–70.7%;
* TN 70.8–100%;
* TP 88.5–100%

[116]
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Table 5. Cont.

Sr. No. Microalgal
Species

Pretreatment
Experimental Conditions Treatment

Efficiency Reference
Light Intensity Temperature Time

2 Mixed Algal
Consortium

In 4 L of textile
effluent 0.5 L of

algal consortium
170 µmol m−2 s−1 -

5 cycles
for

95 days.

68–72%
Decolorization;
COD 50–70.7%;
* TN 70.8–100%;
* TP 88.5–100%

[116]

3
Chlorella

pyrenoidosa NCIM
2738

Photobioreactor
with 0.5 OD algal

beads
- 28 ± 2 ◦C 10 days

100% Decolorization;
COD 87.60%;

Chloride 97.3%;
Sulphate 56.06%;

Phosphate 29.11%.

[99]

4

Chlorella vulgaris
Wu-G22 and
Chlorella sp.

Wu-G23

Dilution rate (0%,
10%, 20%, 40%,

60%, 80%)
- - 7 days

60% Decolorization;
COD 75%;

Ammoniacal
nitrogen 90%

[114]

5 Chlamydomonas sp.
TRC-1 - 100 µmol m−2 s−1 27 ◦C 7 days

100% Decolorization;
COD 83.08%

Nitrogen 87.15%
Phosphate 92.36%

[111]

6 Chlorella
sorokiniana

Dilution
(0.25–16.0%) 60 µmol m−2 s−1 NA 14 days

70% Decolorization
with

2% Dilution
[117]

* TN: Total Nitrogen; * TP: Total Phosphorus.

5. Algal-Bacterial Consortia for Dye Laden Wastewater

A single strain of bacteria, fungi, and algae effectively removes only a limited type
of dye from the textile effluents. In contrast, a microbial consortium comprised of sev-
eral microbial communities tends to produce a wide variety of dye-degrading enzymes,
which could be the most suitable biological approach for treating raw textile industrial
effluents [118].

In an algal bacterial consortium, there is a mutual relationship between them, as they
help each other in their growth. In this microalgal bacterial synergism, the algal partner
performs photosynthesis, and the end-product oxygen is utilized by the aerobic bacteria.
These aerobic bacteria use this oxygen to mineralize nutrients and make them available
for algae [119]. Hence promoting the growth of each other synergistically, as depicted in
Figure 2. Also, these bacterial members have been reported to produce valuable metabo-
lites like indole-3-acetic acid, Vit B12, etc., that could enhance microalgae growth in the
wastewater, resulting in greater biomass production. Bacterial members of this consortium
can also increase the availability of several organic and inorganic compounds like iron,
sodium acetate, D-glucose, etc. which usually remain unavailable for the microalgae in
their native environment [120] and some proteins and polysaccharides released by the
bacterial member can also promote the self-flocculation for the microalgal biomass [121].

Although, several interactions can occur in systems where bacteria and microalgae
coexist, including mutualistic, synergistic, competitive, or inhibitory relationships. While
there are instances where bacteria can enhance microalgal growth and vice versa, as
discussed above, the competition for resources, such as nutrients and light, can also arise
between them [122]. These competitive interactions can impact the overall performance and
productivity of the system, making it challenging to secure consistent and predictable gains.
By recognizing the potential competition and complexity of algal/bacterial interactions,
it is crucial to adopt a balanced perspective when discussing the potential benefits of
synergy [123]. Emphasizing these relationships’ intricate nature can help set realistic
expectations and provide a more comprehensive understanding of the challenges and
opportunities associated with such systems.
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In one of the recent studies conducted by [124] on the algal bacterial consortium
for CI RB 40 reactive azo dye degradation, they demonstrated that the consortium of
Pseudomonas putida, Chlorella and Lactobacillus plantarum under the optimized conditions
was able to decolorize CI RB 40 dye up to 99% along with COD removal of 89% at 1000 ppm
of dye concentration. In another study, Ref. [76] compared the conventional activated
sludge system (CAS) and algal bacterial symbiosis (ABS) for treating printing and dyeing
wastewater under natural light conditions. This study determined that ABS was more
efficient than CAS and demonstrated 80% more color removal through ABS with a hydraulic
retention time (HRT) of 16 h. Ref. [125] evaluated the decolorization and heavy metal
removal potential of Chlorella and Enterobacter sp. MN17 at different dilutions of real
textile wastewater. This study demonstrated that with a 5% dilution, their algal bacterial
synergism decreased the COD up to 74% and decolorized the real textile effluent by 70%.
Along with this, a considerable amount of heavy metal removal was also observed in
the study. In a study by Rawat et al. [126], the role of bacterial partners in increasing
the bioavailability of micronutrients to the algal partner was demonstrated and found to
enhance the dye degradation phenomenon. They revealed that synergism between the
algae Chlorella sorokiniana and siderophores producing bacteria Ralstonia pickettii helped
the algal member in the uptake of iron, an essential micronutrient that generally is a vital
micronutrient largely remains unavailable to the algal member from the environment and
in return, the algal member provides dissolved organic matter to sustain this mutualistic
interaction. In this study, they showed that this interaction increased the degradation
potential of Acid Black 1 dye by the C. sorokiniana through the enhancement of azoreductase
activity by increasing the bioavailable iron that regulates this oxidoreductase pathway.

These recent studies showed that this synergism of algal bacterial interaction could
have broad applicability for efficiently bioremediating dye-laden wastewater. These in-
terkingdom interactions are mutualistic and self-sustaining, significantly promoting each
other’s growth and metabolic activity. So, these mutualistic interactions need to be ex-
ploited through in-depth study. Their textile dye bioremediating potential must be explored
for an efficient and comprehensive biological treatment of the wide variety of dyes in
textile wastewater.

6. Opportunity and Challenges of Phycoremediation

Conventional biological treatment methods usually result in the generation of a large
amount of sludge which creates the problem of its disposal [127]. Further, this treatment
method also releases a significant amount of CO2 into the atmosphere [128]. Phycoremedi-
ation can overcome these limitations as it can be used for wastewater treatment, biomass
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generation, and CO2 sequestration. The phycoremediation approach has already been
applied to the tertiary treatment [129] as well as in secondary treatment [130] of wastewater
as they tend to withstand stress due to a polluted environment and can grow in them [24].
Also, they can be used in the primary treatment process as a biosorbent. Integrating pol-
lutant and dye removal using algal biomass may establish an effective biological textile
wastewater treatment and generate valuable algal biomass. This generated biomass can
be used to produce value-added products like lipids, pigments, fertilizers, etc., offsetting
the cost of the overall treatment process. Hence, algae can be explored as an eco-friendly
approach for textile dye and effluent treatment [131,132].

Though with such a great potential of phycoremediation to mitigate the contaminant
from the environment. There are still some constraints regarding its applicability in real-
world scenarios as most studies are lab-based, working on simulated textile wastewater
with few dyes. Their applicability in natural conditions remains unpredictable. Though
several pollutants of the real textile effluent remain constant, the exact composition of these
effluents is hard to mimic because they are based on several other biotic and abiotic factors.
When such studies are conducted in real textile effluent, their color removal efficiency is
reduced significantly. Hence, field studies are needed to prove reliability to demonstrate
their efficiency with respect to variable pH, temperature, and changing characteristics
of real textile effluent. Also, in large-scale applications of the phycoremediation process,
sunlight is one of the most critical aspects for the biodegradation of pollutants. Microalgae
use photosynthesis to convert light into chemical energy, fueling their metabolic activities.
Therefore, an adequate and consistent supply of light is essential to support microalgae
growth and optimize their remediation capabilities [133,134]. Microalgae cultivation typ-
ically involves constructing open ponds or closed bioreactors, which must be exposed
to sunlight for extended periods. The land area required can be significant, especially
when aiming to achieve high biomass productivity and efficient pollutant removal. The
land area requirement for light capture depends on various factors, including the spe-
cific microalgae species used, local climatic conditions, cultivation system design, and
the target pollutant concentration [135]. The availability of suitable land and associated
costs can challenge the widespread implementation of large-scale bioremediation with
microalgae. Researchers and industry practitioners have explored alternative approaches to
optimize light utilization and minimize land requirements to mitigate this drawback. Some
strategies include using high-efficiency photobioreactors that maximize light exposure
and capture and implement floating systems to utilize water bodies effectively should
be explored [136,137]. Other significant challenges faced during the phycoremediation
involve the identification of robust algal species [138], scaling up of the developed algal
treatment [128], and designing a cost-effective treatment system [108]. These are additional
problems that need to be addressed while planning a phycoremediation based technology
for treating textile wastewaters.

7. Scope for Algal Biomass as a Resource for Bio-Based Pigments

As discussed in the earlier sections, the existing technologies for textile dye removal were
majorly concerned with phycoremediation rather than its valorization of generated biomass
through this process. However, some studies have focused on converting algal biomass into
biofuels productions or generating bioelectricity during phycoremediation [121]. Excluding
these, using generated algal biomass for natural pigment production could be encouraged
to potentially replace the synthetic dyes used in the textile application since several studies
reported on natural dye production from algal pigments.

For instance, Kappaphycus alvarezii (red seaweed) has been utilized as natural colorants
such as greenish-yellow and brown shades of chlorophyll and carotenoids for dyeing silk
and bamboo fabrics [139]. Similarly, Galaxaura subverticillata, red algae with fucoxanthin
and carotenoid pigments, have been used to produce dark red and brown color dyes [44].
Also, brown algae like Sargassum muticum and Colpomenia sinuosa can produce brown
and creamy white dyes for cotton fabrics [140]. The dye production from diverse algal
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species is mainly due to different classes of pigments such as chlorophyll, phycobiliprotein,
carotenoids, and fucoxanthin.

7.1. Algal Pigments and Their Applications
7.1.1. Chlorophyll

Chlorophyll is an abundant green pigment in chloroplast and photosynthetic lamellae
of microalgae and blue-green algae, respectively. There are different types of pigments,
such as chlorophyll-a, b, c, d, and f (Figure 3). Based on its distribution, chlorophyll
a is commonly distributed among all algal species, whereas chlorophyll b, c, d, and f
were present mainly in classes like Chlorophyceae, Phaeophyceae, Rhodophyceae, and
blue-green algae, respectively [141].
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Several methods have been proposed to extract this chlorophyll which does not follow
a common protocol due to the diverse nature of algal species [142]. The efficiency of
extraction depends on its duration, the resistance of the cell wall towards solvent, the
properties of the solvent, and the cell disruption method used [143]. Generally, organic
solvents such as acetone, ethanol, methanol, and dimethylformamide were used for the
extraction of intracellular chlorophyll after the pre-treatment of algal biomass through
homogenization, microwave, and sonication methods for disruption of the cell wall [144].
The extracted pigment is quantified using a spectrophotometric equation [145].
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For textile application, the chlorophyll pigment extracted from green algae such as
Cladophora glomerata and Spirogyra sp. has been shown to impart green color onto cotton
and wool fabrics, respectively [42,43]. Also, other green algae, such as Ulva reticulata, rich
in chlorophyll c and phycocyanin pigments, have been shown to produce green dye [44].
Surprisingly, they act as strong radical scavengers and exhibit beneficial biological activities
such as anti-obesity and antimutagenic [146].

7.1.2. Phycobiliproteins (PBPs)

PBPs are water-soluble, autofluorescent, and multi-colored accessory pigments in
the thylakoid membrane (Figure 4). On a dry weight basis, it accounts for about 20–30%
of the algal cells, which could be enhanced through optimization of light intensity [147].
According to Kannaujiya et al. [148], based on absorbance spectra of chromophore present
in PBPs structure, it is classified into three subunits such as phycoerythrin (560–570 nm),
phycocyanin (610–620 nm) and allophycocyanin (650–660 nm). The effective methods
for isolating PBPs were sonication, organic solvent extraction, freeze, and thaw method,
microwave-assisted extraction, homogenization, etc. [149]. The most challenging parameter
for its extraction is the presence of multilayered and rigid cell walls, which could be pre-
treated with hydrolyzing enzymes (especially polysaccharides) to release PBPs from the
algal cells [150].
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From a textile application perspective, the phycocyanin pigment from microalgae is
used as a natural dye for cotton fabrics [151]. Besides utilising PBPs to produce eco-friendly
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dyes, it has several other diverse applications in the food, cosmetics, and nutraceutical
industry. For instance, PBPs are used as the natural colorant for food processing, such as
jellies, cake decorations, lollipops, soft drinks, and fermented milk products, due to their
non-toxic nature over synthetic colorants [146]. Besides, PBPs obtained from microalgae
exhibit spectroscopic properties such as high fluorescence and absorption in the visible
light range. Hence, it has been widely applied in molecular science as a marker for chro-
matography, electrophoresis, flow cytometry, histochemistry, and fluorescence-activated
cell sorting [152]. Also, PBPs act as pharmaceutical agents due to their biological activities,
such as antioxidants, anti-inflammatory, and anticancer [146,152]. In the commercialization
aspect, few companies employ microalgae as a source for PBPs extraction to produce eco-
friendly dye like Linablue® spirulina extract, which is popular for producing blue colorant
with wide application in food products. Moreover, other companies promote natural dyes
for cosmetic applications from PBPs subclasses, such as phycoerythrin and phycocyanin
produced from Porphyridium sp. and Spirulina sp., respectively [146].

7.1.3. Carotenoids

Carotenoids are yellow to red-coloured compounds which two subgroups, such as carotenes
and xanthophylls, based on their structural difference [153]. Carotenes comprise α-carotene and
β-carotene, whereas xanthophylls comprise lutein, violaxanthin, and canthaxanthin (Figure 5) [154].
Some of the carotenoids are specifically identified among diverse algal species. For instance,
blue-green algae: β-carotene and zeaxanthin; red algae: α-carotene, β-carotene, lutein, zeaxan-
thin, and antheraxanthin; brown algae: fucoxanthin; green algae: lutein, β-carotene, and
siphonaxanthin pigments [155–157]. The extraction of carotenoid pigments is efficiently
achieved by addressing several obstacles such as polarity, prone to degradation, and oxi-
dation of carotenoids. Considering these limitations, effective protocols were developed
based on short extraction time, control over temperature, and light exposure. In this con-
text, organic solvents with a range of wide polarities, such as possible combinations of
hexane, ethanol, acetone, and other solvents, were used for the extraction of carotene and
xanthophyll, which are non-polar and polar, respectively [158].
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Carotenoids have wide application in the cosmetic industry since it acts as an antiox-
idant and UV protectant that protect cells from the harmful effects of free radicals and
protects skin cells against UV, respectively [159,160]. Specifically, some xanthophylls such
as zeaxanthin, astaxanthin, and lutein exhibit several biological activities such as anti-
inflammatory, anticancer, and anti-diabetic associated with chronic diseases [146,160,161].
In food applications, carotenoids were used as flavoring and coloring agents, such as soft
drinks, juices, and confectionery [152]. Also, the β-carotene derived from the carotene is
a provitamin that can be used as a vitamin supplement. Commercially, β-carotene from
Dunaliella sp. is supplied as food supplements with a brand name called Solgar [146].

7.2. Potential Role of Microalgae in Textile Wastewater Treatment & Simultaneous Bio-Based
Pigment Production

The phycoremediation research involves several potential algal species from the
division of blue-green algae, microalgae, and macroalgae which tends to degrade the
textile dye in the industry effluent, as discussed in earlier sections. Besides, these algal
species have been effectively reported for their pigment extraction with several beneficial
applications, including dye production. For example, genera of some microalgae such
as Chlorella, Spirulina, Scenedesmus, Haematococcus, Chlamydomonas, and macroalgae like
Sargassum, Enteromorpha, and Codium.

Briefly, microalgal strains like Chlorella vulgaris, Scenedesmus obliquus, and Phormidium sp.
are enriched with carotenoids, phycobiliproteins, and chlorophylls which are efficiently
extracted with ethanol as solvent [162]. This study reported total chlorophylls (a, b) and
lutein with concentrations of 15.4 mg/g and 5.4 mg/g, respectively, from Chlorella vulgaris [162].
However, Scenedesmus obliquus contains 0.24% of total carotenoids and 0.71% of chlorophyll a,
and 0.32% of chlorophyll b in biomass, respectively [163]. Similarly, Phormidium sp. has been
reported to possess three important classes of pigments such as chlorophylls, carotenoids, and
phycobiliprotein. The predominant pigments among these were carotenoids: β-carotene, lutein,
and zeaxanthin; c-phycocyanin; chlorophyll a with concentration of 225.44, 117.56, 88.46,
2.05 × 105, and 2.700 µg/g, respectively [164]. These algal species predominated with
specific pigments in their biomass are capable of simultaneously degrading the textile dyes
such as Lanaset red 2GA, Congo red, and Acid red P-2BX [104,131,165].

Also, a few species of blue-green algae selectively contribute to this process, such
as Arthrospira platensis, through the degradation of methylene blue [166]. At the same
time, it can produce effective pigments by valorising their biomass like chlorophyll a,
c-phycocyanin, and total carotenoids of 4.43, 10.8, and 251.2 mg/g, respectively [167].
Similarly, macroalgal species are recognized by their colored pigments, such as green algae
(Enteromorpha sp. and Codium sp.) and brown algae (Sargassum sp.). The major pigment
from Enteromorpha sp. was pheophorbide a pheophytin a, and chlorophyll a; Sargassum sp.
and Codium sp. were pheophytin a and siphonaxanthin, respectively [168–171]. Concur-
rently, both Enteromorpha sp. and Sargassum sp. can degrade methylene blue, whereas
Codium sp. degrades crystal violet [84,172]. Based on this evidence, algae are a rich re-
serve of different pigments that can be extracted from generated biomass after treating
dye-laden wastewater. Also, the extracted pigment could be further explored for its ap-
plicability to produce dyes. Hence, this review highlighted the scope for utilizing the
generated biomass from wastewater treatment for bio-based pigment production to form a
closed-loop approach through the value addition of the entire phycoremediation process.

However, the extracted pigments were easily affected by physicochemical factors such
as pH, temperature, and light during unit operations [173,174]. The major factor, pH plays
a vital role in the spectral properties, aggregation, and dissociation of the pigments into
their monomers, hexamers, and other oligomers in the dissolved solution. Among them,
the predominant form is hexamer with optimal pH 6.0 to 7.0, which holds the most stable
structure of the pigment and avoids denaturation, especially in the case of PBPs [173,175].
Additionally, an increase in the operational conditions, such as temperature and light,
denature the pigment’s structure by decreasing the alpha helix amount, resulting in stability



Processes 2023, 11, 1793 17 of 24

loss. Hence, it needs an optimal range to resist the degradation of the pigment, such as
temperature from 25 to 47 ◦C (PBPs) and 4 to 20 ◦C (Carotenoids and chlorophylls), whereas
the light should be within 50 µmol m−2 s−1 to maintain its stability light [173,176,177].
Similar optimal conditions for the stability of the pigments were applied to improve
the textile application’s efficiency using natural dye. For instance, the dye Sandocryl
Golden Yellow C-2G extracted from Caulerpa scalpelliformis (green macroalgae) resulted
in increased uptake between the pH range 3.0 to 8.0 and temperature from 20 to 60 ◦C
which influenced the surface properties of the adsorbent for the enhanced biosorption of
the dye [178,179]. Also, another report involved phycocyanin from Spirulina platensis for
the dyeing process where the step was performed at optimal temperatures (9–27 ◦C) as the
pigment was sensitive to the higher temperature, which showed similar adherence and
uptake of dye as control dyed fabric [180]. Nevertheless, future research on improving
algal pigment stability might increase its applicability to the textile sector.

8. Future Prospects

• Algal biomass harvesting is a difficult task since it is costly, so its scale-up for the
large production of value-added products is difficult. Innovative algal harvesting
methods must be investigated to make algal treatment financially viable and ensure it
is implemented on a large scale.

• In-depth studies are required to understand the microbial biochemical pathways that
participate during the degradation of the dyes.

• Suitable and robust algal species are to be explored, which could be utilized for the
dual role of dye abatement and bio-based pigment extraction.

• In most of the studies, techno-economical aspects and carbon footprint were missing,
which is very important for analyzing the sustainability and cost-effectiveness of a
treatment system.

• To treat high-strength textile effluents in a cost-effective and environmentally beneficial
manner, hybrid solutions integrating with phycoremediation based systems should
be emphasized.

9. Conclusions

In recent times algal-based bioremediation of contaminants is gaining popularity due
to its multifaceted applications. It can potentially solve the dual problem of treating textile
effluent and resource recovery in the form of value-added products obtained from its
biomass, thus paving the way for sustainable wastewater management. The technologies
discussed above highlight the trends in the phycoremediation of textile dye and effluent,
along with successive usage of algal biomass for bio-based pigments extraction, as algae
fulfil nearly most of the criteria to be an efficient dye mitigating tool. It can be well
considered that phycoremediation can act as a potent technology for the abatement of
dye-laden wastewater in the near future.
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