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Abstract: Natural extracts are broadly utilized as remedies, nutrition additives, cosmetics or flavors
as well as natural pesticides, fungicides or herbicides. Green manufacturing technologies are of
added market value and are sustainable towards the climate neutrality politically demanded for 2045.
The concept of digital twins involves experimentally distinct validated process models combined
with process analytical technology that is to be adapted to the existing operations. This is a key
technology for the autonomous operations in industry 4.0. This paper exemplifies this approach
and evaluates the results of the application and implementation efforts of regulated industries. A
conductivity sensor for the measurement of the dry residue content and/or Fourier-transformed
infrared spectroscopy for marker/lead or reference substance concentration determination are the
most feasible and straight forward solutions. Different process control concepts from simple PID
controllers (proportional, integral and differential) to advanced process control using digital twin
models are evaluated and discussed in terms of industrialization efforts and benefits. The global
warming potential CO2 equivalent per kg of natural product could be decreased by a factor of 5–10
as well as the cost of goods, which makes the pay-out time for the industrialization investment less
than 1 year and the approach highly competitive. The success rate of the extraction process under
regulatory constraints can be raised to 100%, reducing waste, overall solvent consumption, personnel
efforts and energy requirements to a minimum.

Keywords: natural remedies; natural extraction; green technology; digitalization; digital twins;
autonomous operation; regulatory approval

1. Introduction

The Quality by Design (QbD) approach to process development, originally developed
for the pharmaceutical industry, can be applied to other process industries as well. By empha-
sizing process robustness and understanding through process modelling and implementing
digital twins and process analytical technologies (PATs), QbD can facilitate advanced process
control (APC) through model predictive control and process status evaluation.

The industry that produces goods from renewable resources, specifically plants, is a
significant supplier of versatile products and has been experiencing growth. The range of
applications for these products is extensive, including pharmaceuticals, food, health and
nutrition as well as plant protection for ecological farming, construction materials, basic
chemicals and energy resources [1–7].

The plant processing industry, particularly in regulated sectors, predominantly em-
ploys traditional extraction processes. This is due to the regulatory environment that ties
manufacturing approvals to traditional processes, hindering the optimization and develop-
ment of processes. As a result, the dependence on conventional manufacturing methods
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may lead to the suboptimal utilization of raw materials due to the selection of inappropriate
process parameters. Additionally, traditional extraction methods can cause high process
variabilities and poor stability. To address these issues, innovative approaches, such as
Quality by Design, which incorporates process analytical technology, offer potential solu-
tions to meet the regulatory requirements, including reducing product variability across
production batches [8–10].

Traditionally, the extraction process is performed with a constant flow rate over a set
amount of time or until a set amount of solvent is consumed. A novel process control
strategy should take information from the process to control it to achieve an optimal result
for each batch. This is especially important considering the variation in plant material
quality, which is the basis of all phytoproducts. The goal of this work is to establish a novel
control strategy for the extraction process to enable it to have a high success rate under
the regulatory constraints while optimizing it to obtain a high space–time yield and low
solvent consumption. These factors are key to enabling a climate-neutral industry while
keeping a competitive advantage in the global market.

1.1. Solid–Liquid Extraction

The extraction of natural components or component groups with suitable organic or
water-based solvents has been described and modelled [11–13]. Those models have been
extensively experimentally validated [14,15] for either maceration or percolation.

The idea of autonomous operation was proposed by Uhlenbrock [16,17], was detailed
by Jensch [18] and is shown in Figure 1. This is based on process analytical technologies
(PATs), with a conductivity sensor for the measurement of the dry residue (DR) content
to control this process parameter and an FTIR detector, as shown in Figure 1. Studies
on various component systems [19,20] have been conducted for the determination of
marker/lead substances or even reference substances as defined in the drug master file for
regulatory approval [21]. In the following section, this concept is explained in detail and is
exemplified as well as discussed and evaluated in terms of industrialization.
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1.2. Regulatory Considerations

The regulatory requirements for a plant extract depend on its intended use. For food
supplements (NEM), no special requirements are set, as the applied regulatory constraints
for food products are set [21].

Contrast extracts used for pharmaceutical products have to fulfill specific regulatory
requirements. For extracts where the total dry residue is the target component, the drug–
extract ratio (DER) is chosen as the regulatory parameter. This is calculated according to
Equation (1) with the plant mass mplant and the mass of the dry residue mDR. The upper
and lower limits are defined for the DER, which must be observed. The boundaries are of a
magnitude between 4 and 7:1 for plants obtained through cultivation [14].

DER =
mplant

mdry residue
: 1 (1)

For the analytical concept, a lead substance (“marker”) is established, which is used
for recovery estimation, stability studies, etc. This group of extracts is officially called
“other extracts”.

If a specific group of ingredients, e.g., flavonoids for ginkgoes [22], is the target of
extraction, the marker substance is representative of the substance class. In this case, the
total content of the extract of the substance class is inferred from the so-called marker or
lead substance. The extracts are classified as quantified extracts. Quality requirements,
such as the DER, are set by the published monographs in the European union [23]; growing
and collection procedures as well as primary processing are set by the Good Agricultural
and Collection Practice (GACP) [24,25].

If a component with a proven pharmacological effect is the target substance of ex-
traction, it is called the reference substance. This is the case for only a small group of
herbal remedies. The DER has to be determined for all classes of extracts used for herbal
remedies [26].

Another regulatory specification that is frequently used is the solvent ratio, which is
shown in Equation (2). This indicates which ratio of solvent (Vsolvent) to plant material is
prescribed. The intention is to guarantee complete extraction [27].

SMR =
Vsolvent
mplant

(2)

1.3. Digital Twin

Digital twins are virtual models that mirror physical objects or processes. They enable
real-time connections between the physical and virtual worlds, making it possible to
monitor and control these objects from any location. Digital twins can represent any living
or non-living object, from airplanes to production equipment to people. Digital twins are
being developed and, in some cases, are already in use in all sectors of industry and society.
Some important application areas are preventive maintenance, process monitoring, testing
and continuous optimization [28,29].

The basis for the scalable digital twin in process engineering is always a validated
physicochemical process model. By separating thermodynamics, reaction kinetics and
fluid mechanics, the process model can be transferred to other scales. For control, the
process model must be validated with respect to the process to represent it as accurately
and precisely as the process is. For use as a digital twin, a bidirectional interface is required
to ensure communication between the process and the digital twin. This must be faster
than how fast a new state can occur in the process. In this way, model predictive control of
the process can be implemented [30,31].

The course of the development of a digital twin starting from steady-state or dynamic
process models over validated models and a digital shadow has been defined and demon-
strated manifold in the meantime, e.g., in [32–35]. Model development and validation
run through the process developed by Sixt and was tested many times [9,10,15,36]. For
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development, it must be proven through simulation that the digital twin can sufficiently
fulfill the control task set for it. For this purpose, process optimization is first performed
with the validated process model and the experimentally determined model parameters.
For this optimized operating point, a risk analysis is performed to determine the limits of
the safe operating range. Within this operating range, it can be guaranteed that the critical
quality attributes (CQAs) are within the specified limits. For solid–liquid extraction, this is
the DER. A subsequent PAT study explores whether the critical process parameters (CPPs)
that determine the CQAs can be measured and how accurate this measurement is. With
this data, a simulation study tests whether a stable process can be run. This involves testing
in various disturbance scenarios when the product is still within the limits of the CQAs.

If controllability is proven, the digital twin is implemented in an existing process. This
is performed as shown in Figure 2 for the first time via standardized data interfaces. If the
data exchange and the simulation of the digital twin are performed at a sufficient speed, a
demonstration with the real process can be performed. A sufficient speed is achieved here
when the control system can intervene in the running process faster than a new operating
state is established.
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2. Process Development
2.1. Process Model

In this study, a model developed and validated by Sixt [15] was used. This included
mass transport through the extraction column in the form of an axial dispersion model.
This considered both convective and dispersive mass transport in the axial direction of
the extraction apparatus. In addition, mass transfer from the solid to the liquid phase was
considered. This was performed with a pore diffusion model, which described the mass
transfer within the plant material. The particles were assumed to be spherical. A Langmuir
model was used for the desorption of the components under consideration within the
particles [11,37].

2.2. Process Model Parameter Determination

Model parameter determination followed the scheme described in Kaßing, Altenhöner
and others [38–40] and demonstrated in Uhlenbrock [16]. Existing correlations from Al-
tenhöner [41] were used for the axial dispersion coefficient. For the determination of the



Processes 2023, 11, 1790 5 of 22

maximum loading of the Langmuir model of the particles, exhaustive percolation was per-
formed. Furthermore, a series of macerations was performed to determine the equilibrium
parameter Kh of the Langmuir model. At last, the pore diffusion had to be quantified, and
this was performed through percolation experiments [11,42].

2.3. Process Analytical Technologies

An established chromatography method was used for the quantitative determination
of the content of the target component from the samples [18]. One goal of process devel-
opment in the area of Quality by Design is the online monitoring of product quality. For
this purpose, FTIR was investigated as PAT following the procedure described in [18]. For
calibration and PLS model building, the samples from model parameter determination
were measured using this measurement method. A model with a good correlation between
spectrum and target component content could be formed (calibration: R2 = 0.999) (vali-
dation: 0.937). Furthermore, a strong correlation between electrical conductivity of the
extract and extracted dry residue could be observed in previous work [18]. Linear regres-
sion between conductivity and concentration of dry residue showed a good correlation
score of R2 = 0.997. For the system investigated in this study, a similar procedure was
performed, and a strong correlation was also observed. Thus, a sufficiently accurate online
measurement procedure was established for both target components.

2.4. Operating Point Determination

In the context of QbD-based process design, the modeling and simulation of the
processes were relied upon. The primary goal was to maximize product quality and space–
time yield. In the case of phytoextraction, the trade-off between plant material yield and
productivity was of particular importance here. To determine the optimum operating
point, the process attributes (space–time yield and productivity) were investigated here
by simulating the process at different volumetric flows. In addition, the yield was also
considered. All process attributes are shown in Figure 3 in relation to volumetric flow rate.
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A typical behavior of extraction processes could be observed [43–45]. At high volume
flow rates, the time until a yield was achieved decreased asymptotically since the kinetic
limitation was reached here. At low volumetric flows, on the other hand, the equilibrium
limit was reached. The optimum operating point was determined by combining the space–
time yield and productivity, and it was about 0.5 CV/min. This value depended on the
kinetic and equilibrium behavior of the plant material and the target component.

For the current example, the following was considered with respect to the DER. For
extraction, a DER of 5.7 was obtained for the selected extraction conditions. For a variation
of ±25% of the DR content of the plant material, bands for the DER were set from 4.5 to 7.5
as shown in Figure 4. For a plant material with a higher dry content distribution of ±50%,
DER bands of 3.7 to 11.3 would result. Due to the reciprocal character of the DER, a higher
dry residue content in the plant material caused a smaller absolute deviation in the DER
than the “deterioration” of the plant material quality.
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3. Process Control Studies

With an optimal operating point, different control strategies were tested and evaluated.
These were examined according to the disturbance scenarios and their effects on the critical
quality attributes as well as the process attributes.

This was performed by simulating the control strategies. In doing so, the influences of
the individual parameters were examined in an initial one-factor-at-a-time (OFAT) study,
and the interactions of the parameters were examined in a multiple-factor-at-a-time study
(MFAT). This was performed in an expectable range of process and operational parameters
(Table 1). The evaluation was achieved using ordinary least squares regression. The quality
of regression was quantified using the coefficient of determination R2, and the influences
of the operating and process parameters were quantified using the p-value. For clarity and
understanding, these were converted to qualitative scores. Here, the highest values were
given for the strongest influences. By multiplying the highest influences on the relevant
process and the quality attributes, an overall score was determined as previously calculated
in [31,33].

Table 1. Parameters varied in the control studies, and their respective derivations were used.

Parameter Positive Derivation Negative Derivation

Flow rate 25% 25%
Material mass 20% 20%

Dry residue content 20% 20%
Target component content 60% 60%

Particle diameter 20% 20%
Water content 50% 50%
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3.1. Fixed Cutoff Time

With a fixed cutoff time, the extraction process is operated with a constant volume
flow independent of the plant material. In this case, the process was terminated after a
previously determined time. The advantage of this strategy is a simple design methodology.

As shown in Figure 5, the result of this process was highly sensitive to the volume flow,
plant mass and target component content of the plants. Unconscious and conscious changes are
included in this process evaluation. Here, it also depended on what performance key figure
was important to the operator of the plant. Should this be limited to the DER, only the content
of dry residue would be important. For example, the concentration of the target component in
the extract was most dependent on the volume flow. As such, the evaluation could be tailored
to the regulatory constraints and the important CQAs for downstream processing.
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3.2. Fixed Solvent–Drug Ratio

In this control strategy, extraction is carried out with a fixed volume of solvent. The
amount of solvent is determined through a series of piloting experiments and is set to
ensure the total extraction of the target component. This can prove to be wasteful in terms of
the solvent and can result in a less concentrated extract. The process attributes and quality
attributes are strongly dependent on the selected solvent ratio; here, one was selected
according to the reference process. The risk assessment is shown in Figure 6.
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Figure 6. Display of the risk assessment for fixed solvent–drug ratio with the quality of regression and
parameter sensitivity for the key process figures. DER (a,b), concentration of extract (c,d), extracted
mass (e,f), space–time yield (g,h) and summary (i). * Severity score refers to combination the main
impact and interaction of process parameter.

Solvent consumption was not a process attribute here since, in the control strategy, the
amount consumed was set by process development. It is shown that, compared to the fixed
cutoff time strategy, the volumetric flow rate and the plant mass were not very sensitive
here. However, the size of the particles played a greater role. This can be explained by
the higher diffusion due to the shorter diffusion path of the dry residue into the extract.
Since it could no longer be offset by a higher flow rate in the simulation studies, it gained
importance in particular in its interaction with other parameters as can be seen in Figure 6.

3.3. In-Line Cutoff

In the course of developing a PAT strategy for the quality monitoring of the process,
the measurement of electrical conductivity for the dry residue and FTIR for the marker
substance were determined as quantitative measurement methods. These can be used as
control technologies. For the in-line cutoff control strategy, the minimum value of the target
component or the dry residue is determined at which the extraction is considered complete.
Until this in-line concentration is reached, extraction is carried out at a constant volume
flow rate.

By establishing this control strategy, the effect of the volume flow, particle size and
plant material mass can be reduced, especially on the DER, as shown in Figure 7. The
content of the target component/dry residue in the plant material remains a major influence
on the quality of the extract and the productivity of the process. The severity of all other
processes and operating parameters can be reduced by implementing this control strategy.
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Figure 7. Display of the risk assessment for in-line cutoff controlled by conductivity with the quality
of regression and parameter sensitivity for the key process figures. DER (a,b), concentration of extract
(c,d), space–time yield (e,f), water consumption (g,h) and summary (i). * Severity score refers to
combination the main impact and interaction of process parameter.
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3.4. PID-Controlled Process

The extension of this control strategy is the direct control of the volume flow via the
concentration of the target component or dry residue in the extract. The PID controller
reduces the volume flow to maintain a high concentration in the extract until a minimum
volume flow is reached at which the process is stopped. This requires the concentration
measurement to be as fast as possible. In the simulation studies used, the signal of the
measurement signal was assigned an experimentally determined standard deviation and a
delay in order to simulate the real process conditions as well. This is shown in Figure 8.
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From this simulation, the process and operating parameters shown in Table 1 were
used to simulate and evaluate the influences.

The risk assessment of this control strategy in Figure 9 showed a pattern similar to
that of the cutoff control. This was due to the fact that both strategies were related to the
same signal and were expected.
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Figure 9. Display of the risk assessment for PID-controlled flow rate with the quality of regression
and parameter sensitivity for the key process figures. DER (a,b), concentration of extract (c,d),
space–time yield (e,f), yield (g,h), water consumption (i,j) and summary (k). * Severity score refers
to combination the main impact and interaction of process parameter.
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3.5. Comparative Evaluation

The quantitative comparison of the control strategies is shown in Figure 10. Again,
the cutoff and PID strategies showed similar patterns for the reasons shown. However, it
can be seen that the cutoff strategy showed more desirable values in all of the categories.
Since the process was run to completion with a full volume flow, the space–time yield
increased. The most inefficient control strategy was the fixed-time strategy, with the lowest
space–time yield and the highest solvent consumption. This was due to the lack of ability
to influence the existing process variables. The highest space–time yield and therefore the
lowest COGs were achieved through the in-line cutoff strategy.
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4. Digital Twin Performance Evaluation for Autonomous Operation

In all of the previous control strategies, the most sensitive process parameter was the
target component/dry residue content of the plant material. To reduce this, a digital twin
was proposed that was supported by on-line PATs (FTIR or electrical conductivity). By
measuring the concentrations, the sum curves of the target components were formed, and
these were used as the basis of an estimate of the total content of the plant material. In
doing so, a proprietary algorithm reduced the sum of the squares of the error between the
simulated cumulative curve and the measured one. This was performed at fixed intervals
depending on the estimated process time.

Using this, the digital twin can accurately predict the course of extraction and can
intervene in the process. First, the digital twin simulates the expected quality of the extract.
If this does not meet the desired criteria, especially the DER, the volume flow can be
adjusted. As shown in Figure 11, a lower volume flow rate can thus lead to more acceptable
results from a regulatory point of view in respect to the DER even with a plant material of
poorer quality, e.g., a lower dry residue content. The basis for this is shown in Figure 11;
in these contour plots, the volume flow rate is varied on the X-axis, and the dry residue
content is varied on the Y-axis. Thus, for a fixed SMR, the extract reached a different DER.
In the figure, the regulatory defined areas are colored green. At a high SMR, the volume
flow rate and dry residue content were not sensitive to the DER of the extract. On the other
hand, at a lower SMR, if the dry residue content deviated negatively, a sufficiently good
extract could only be achieved with a lower volume flow.
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Figure 11. Representation of the area of acceptable DER with decreasing SMR as a function of flow
rate and derivation of DR content of the plant material.

For the determination of the dry residue content, model parameters according to [15,16]
were determined before the operation with the digital twin. In addition, the mass and particle
size of the plant material had to be recorded. With these data, the course of the volume
flow and the cumulative curve of the extraction process, the dry residue content of the plant
material was determined. Figure 12a shows the exemplary estimation, and Figure 12b shows
the evaluation of its quality with green color showing good fit. Here, a good estimate of the
dry residue content could be given after 4 min of extraction time. This was performed for
variations in the model, operating and process parameters. As expected, the accuracy of the
estimate increased with a longer sampling time. A significant degradation of the quality of the
estimate happened only due to inaccuracies in the recording of the particle size. However, a
technical solution to ensure the measurement accuracy of the particle size is very cost-effective
and ready-to-use [46,47].
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Figure 12. Example of online parameter estimation of DR content and predicted process (a) and
relative derivation from actual value dependent on derivation of estimated model parameters and
sample time (b).

For target components with a very low diffusion coefficient or slow mass transfer, data
could be recorded over a longer time span, and the estimation could thus be improved.
However, for specific target components, the measurement method used was FTIR. This
may have a higher standard deviation at low concentrations and a higher percentage
of minor components than the measurement of electrical conductivity. This is shown in
Figure 13. Due to much slower extraction, the particle size did not have a high influence on
the estimation quality here since the effect was superimposed by the slower desorption due
to the shorter diffusion paths. The most inaccurate estimation was present for a deviation
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in the diffusion coefficient, the accuracy of this value could only be improved with the data
from production. Thus, the performance of the digital twin will continue to improve after
implementation [48–50].
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Figure 13. Example of online parameter estimation of TC content and predicted process (a) and
relative derivation from actual value dependent on derivation of estimated model parameters and
sample time (b).

Parameter estimation took 5 min on average but could be shortened to 2.5 min. Thus,
a new optimized extraction strategy could be applied after 6.5 min. As demonstrated in
Figure 14, after approximately 7 min, the volume flow was ramped down to continue
to meet the bands of the DER at a regulatory SMR. If the process were to continue at a
constant flow rate, this extract would have to be discarded. In the simulation studies, there
was a 14% error rate when running at the SMR, and there was a 100% success rate when
implementing the digital twin. The digital twin did slow down production and reduce
the space–time yield; however, the higher success rate resulted in higher overall efficiency.
More of the plant material could be used, reducing waste. This should be particularly
reflected in the GWP balance since each discarded batch included not only the GWP of
the process with solvent use but also of the entire value chain beforehand. This started
with plant breeding or wild collection and also included GWP-intensive drying, which can
make up 90% of the GWP of a botanical product [20,51].
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Figure 14. Example of the extraction process for a fixed SMR regulatory constraint with a constant
flow rate and a process controlled by digital twin.
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5. Discussion

Pharmaceutical products are approved according to regulatory definitions, while
non-prescription food products allow more degrees of freedom in manufacturing. The
requirements have changed over the years.

Either the product is defined as a DR via a DER or a marker and lead substance
as a non-pharmacologically active but analytically easily measurable representative of a
substance group, while a reference substance has a pharmacological effect.

Under regulatory constraints, a DER range and an SMR are usually specified, and
sometimes an extraction time and/or a particle size range is specified.

The DER implies that exceeding the lower limit would be economically efficient
process-wise. With a low DR content per plant, the DER range may be exceeded, with
rather high operating costs. Good plant material selection thus provides a narrow DER of
3–4:1 for cultivated plants but a DER of about 6–8:1 for wild collections.

5.1. Case 0—All Parameters (DER, SMR, Process Time Ranges) Fixed

If everything is specified, the process variance in the preliminary studies is taken
out, and there is no more freedom to react to potential variations and disturbances. Any
deviation is a batch out of specification.

If one wanted to improve this, a QbD approach would have to be pursued with respect
to the DS and CS. This would be a re-registration with the corresponding expenses.

Pharmaceutical re-authorization is unlikely, but switching to NEM regulations would
be reasonable. However, for the GMP, consider the current state of science and technology
as a way to maintain the lower cost structure.

5.2. Case 1a—DER Range to Be Met, but SMR Free or Broad Range Defined

Rarely, the case occurs that a regulatory dry residue area DER is to be met and that no
SMR is prescribed:

The optimum control strategy in this case is to stop the extraction process when the
extract concentration falls below a critical level (in-line cutoff). The dry residue content of
the extract is determined through the in-line measurement of the electrical conductivity so
that the extraction can be stopped when this target value is reached.

In principle, the highest possible volume flow rate is selected without exceeding the
kinetic limitation of the extraction in order to have a high space–time yield. The upper
limit of the volume flow rate is determined in previous laboratory experiments. In these
experiments, the conductivity value at which the extraction is terminated is also determined.
The criterion for the termination value is the near exhaustion of the extraction.

• In the process, approx. 9–40% of the solvent can be saved, and a 9–65% increase in the
space–time yield can be achieved. The regulatory limits of the DER are reliably met.

• This corresponds to a COG reduction of up to 65% (STY) and a GWP reduction of up
to 40% (solvent).

This control strategy can optionally be supported by a digital shadow or digital twin. The
task of this would be to predict the quality (concentration and DEV) of the extract during the
extraction process and the termination of the extraction for predictive production planning.

• In the process, approx. 14% of additional solvent can be saved, the space-time yield
can increase by up to 14%, beacuse the success rate can be increased. The regulatory
limits of the DER are reliably complied with.

• This corresponds to an additional COG reduction of 14% and GWP reduction of 14%.

The additional financial outlay for the development of a digital twin is particularly
worthwhile for extraction processes with cost-intensive or environmentally harmful extrac-
tion agents. The reduction in the COGs of the phytoproducts results from the slope of the
space–time yield and the reduction in the solvent consumption; thus, the change in the
process control strategy has a double effect here.
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5.3. Case 1b—DER Range Defined as Well as SMR Range

A dry residue area DER is to be met from a regulatory point of view, and an SMR is to
be adhered to in the process:

As a rule, a volume of solvent in relation to the solid plant material is also specified in
the SMR in addition to the DER range that has to be met in which case the only manipulated
variable for percolation is the volume flow over the extraction time.

For this case, the optimal control strategy is the digital twin because, with a given
SMR, only the time remains as a variance, so the control variable must be the volume
flow over the extraction time, which is individually optimized depending on the extract
concentration. Without this newly proposed control, any variance in the plant ingredient
content is found in the DER range specifications. In total, ± 25% variance in the plant
ingredient content is covered in a DER of 3.7 to 11.3.

The digital twin can predict the dry residue content of the plant material used at any
given time through the in-line measurement of the electrical conductivity of the extract. With
this prediction, the digital twin can estimate if the flow rate has to be adjusted to stay within
the previously defined regulatory bands of the DER with the still-needed solvent volume.

Three scenarios emerge in the process:

1. At the current volume flow rate, the extract will meet the regulatory requirements
(DER) after the extraction process has been completed. There is no need for action;
the extraction is completed at the current volume flow.

2. The predefined DER is exceeded, e.g., if the content in the plant material is too low.
The digital twin reduces the volume flow to increase the extraction efficiency and to
extract more dry residue.

3. The DER is undercut, e.g., if the content in the plant material is too high. Even if this
case is rather unrealistic since this specification of a quality maximum makes little
economic sense, the digital twin can increase the volume flow here and thus reduce
the extraction efficiency.

The advantage of this control is its ability to ensure the quality of the extract when
integrating it into an existing process. Thus, the quality (concentration as the SMR and DER)
of the extract can be calculated during the process and can be predicted for the completed
process. This reduces the number of extracts that do not meet regulatory requirements and
must be discarded.

Another major advantage arises when designing a new process. Here, a lower solvent
ratio can be selected. By controlling it via the digital twin, the quality of the extract
can still be guaranteed from a previous 86% to 100% success rate. This can save solvent
operating costs and can increase the concentration of the extract. This can, in turn, make
the downstream process more cost effective.

• In the process, approx. 64% of the solvent can be saved, and the space–time yield
increases by up to 64%. The regulatory limits of the DER are reliably complied with.

• This corresponds to a COG reduction of up to 75% and a GWP reduction of up to 64%.

5.4. Case 2—Marker/Lead or Even Reference Substance Content Range Defined as Well as SMR Range

A regulatory marker or lead substance, or even a pharmacologically active reference
substance, is defined as the target component, and an SMR must be adhered to.

The concentration of the marker/guide/reference substance in the extract can be
determined through an in-line measurement using FTIR. This is used to record data for
the digital twin. This creates the same situation as in case 1b; again, the introduction of
the digital twin can improve the existing process. In addition, when a new process is
introduced, optimization can be achieved by using less solvent, further increasing the
efficiency up to the maximum quoted amount.

This study proves the benefits of such an approach under industrial constraints in reg-
ulatory approval, COG competitiveness and GWP reduction towards politically demanded
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climate neutrality; see Figure 15 to visualize the benefits of digital twin application as a
summary of the case studies.
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The presented concept corresponds to the future procedure for the development of
new extraction procedures. In the case of herbal medicinal products, the adaptation of
the extraction procedures that already exist and are described in marketing authorization
documentation can only take place via notifications of change. If necessary, this can be a
cumbersome procedure. For new marketing authorization procedures, on the other hand,
the concept can be easily implemented. For the implementation of the concept presented,
it is advisable to apply the recommendations of the ICH Guidelines for the Development
of Active Substances and Medicinal Products, e.g., on design space. In addition, for
established medicinal drugs, the requirements of the corresponding monograph of the
HMPC of the European Medicines Agency (EMA) must be met [52,53].

5.5. Discussing Finally Efforts End Benefits

A typical small and medium entity with about 100 employees utilizes in magnitude
about 30 mil. tons per year of plant material and generates about a EUR 30 mil. sale with
about a 10–20% margin, i.e., about EUR 4.5 mil.

Estimating for simplicity about forty batches per year, i.e., one per week, one batch is
valid for about EUR 1,000,000 in sales and a EUR 110,000 profit at the typical cost of goods
at about 10–20%, i.e., EUR 100–200,000.

The implementation of an additional conductivity sensor (~EUR 20,000) and an FTIR
detector (~EUR 150,000) for any process control concept, even the sophisticated digital twin
application for advanced process control, is estimated to have the following costs:

• An equipment and device investment CAPEX of about EUR 200,000, which will
depreciate technically over 10 years for simplicity, i.e., EUR 20,000/a;

• With the implementation the cost of about EUR 200.000, it will again depreciate an
additional EUR 20,000/a and will have an added standard maintenance lumped-sum
rate of about EUR 20.000/a;

• In sum, a cost of about EUR 60,000/a, i.e., of lower than EUR 100,000/a [53];
• The ROI will be less than 1 year if only one of the points is gained;
• One batch failure will be reduced (~EUR 110,000 profit);
• OR will be operated nearer to the optimal operation point and will correspond to a

reduction in the solvent amount, recycling efforts and the energy reduced (i.e., about
50% of COGs, i.e., ~EUR 150,000/2 = EUR 75,000);
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• OR the personnel manpower of about two coworkers (~EUR 200,000/a) with a proba-
bility near 100% regarding the simulation study presented.

Thus, any economic and COG vs. GWP evaluation towards the politically demanded
climate neutrality in 2045 point out that the implementation of the presented autonomous
operation concept is, without a doubt, ecologically and economically efficient.

The return on the investment is lower than about 1 year and, with a probability near
100%, product quality assurance is improved for patients’ safety.

Therefore, such approaches should have a regulatory demand to be implemented as
mandatory and as the actual state-of-the-art method under a continuous good manufactur-
ing practice. The concept is ready for industrialization.

6. Conclusions

This paper addressed the process control of percolation in the regulatory environment.
The problem is the high variability in plant materials. They have different contents of
ingredients due to their cultivation and collection conditions. This can lead to the rejection
of product batches if the extract does not meet the specified standards. This increases the
ecological footprint and the cost of the product.

To address this, simulation studies on different control strategies were conducted and
compared based on their space–time yield and solvent consumption. The best strategy
is an in-line cutoff supported by the PATs of conductivity and FTIR. These can achieve
reductions of up to 65% in the COGs and up to 40% in GWP. The further improvement of
the process can be achieved with the digital twin conceptualized here. By estimating the
content of the plant material online, the success rate of extraction can be increased to 100%.
This reduces the COGs of extraction by a total of up to 75% and the GWP of extraction by
64%. The implementation of this technology has an ROI of less than one year for a typical
small and medium entity and can thus contribute to a reduction in the global warming
potential while improving the competitiveness of the company.
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Abbreviations

API Active pharmaceutical ingredient
COGs Cost of goods
CPP Critical process parameter
CQA Critical quality attribute
CS Control space
CV Column volume
DER Drug–extract ratio
DS Design space
DT Digital twin
EMA European Medicines Agency
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FTIR Fourier-transformed infrared spectroscopy
GMP Good manufacturing practice
GWP Global warming potential
HMPC Committee on Herbal Medicinal Products
NEM Food supplements
ICH International Council for Harmonization
PAT Process analytical technology
PLS Partial least squares regression
QbD Quality by Design
SC Solvent consumption
SLE Solid–Liquid extraction
SMR Solvent–plant material ratio
STY Space–time yield
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