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Abstract: Recent advances in artificial intelligence (AI) technology have led to increasing interest
in the development of AI-based tool wear condition monitoring methods, heavily relying on large
training samples. However, the high cost of tool wear experiment and the uncertainty of tool wear
change in the machining process lead to the problems of sample missing and insufficiency in the
model training stage, which seriously affects the identification accuracy of many AI models. In
this paper, a novel identification method based on finite-element modeling (FEM) and the synthetic
minority oversampling technique (SMOTE) is proposed to overcome the problem of sample missing
and sample insufficiency. Firstly, a few tool wear monitoring experiments are carried out to obtain
experimental samples with low cost. Then, a FEM model based on the Johnson–Cook constitutive
model was established and verified according to the experimental samples. Based on the verified FEM
model, the simulated missing sample in the experiments can be supplemented to compose a complete
training set. Finally, the SMOTE is employed to expand the sample size to construct a perfect training
set to train the SVM classification model. End milling tool wear monitoring experiments demonstrate
that the proposed FEM-SMOTE method can obtain 98.7% identification accuracy, which is 30% higher
than that based on experimental samples. The proposed method provides an effective approach for
tool wear condition monitoring with low experimental cost.

Keywords: tool wear condition; sample missing and insufficiency; finite-element modeling; synthetic
minority oversampling technique

1. Introduction

Computer numerical control (CNC) machine tools are currently one of the most
widely used pieces of processing equipment in the manufacturing industry. Cutting tools
are the terminals in direct contact with the processed workpiece in CNC machine tools,
and their health condition directly affects the processing quality of the workpiece. In
severe cases, they can even damage the machine tool and affect its service life, not only
affecting processing efficiency but also increasing production costs. It is the most easily
damaged part of the machine tool due to the extrusion and friction with the workpiece
in the machining process. According to [1,2], the proportion of machine tool downtime
caused by tool health problems in the total downtime can be as high as 20%, and the cost
related to tools accounts for 25% of the total processing cost. In addition, the tool wear
condition can affect the surface quality of the workpiece and even damage the machine
tool in some serious cases [3,4]. Timely and accurate recognition of tool wear condition can
greatly reduce the machining cost. Therefore, it is a hot issue to develop an effective online
tool condition monitoring (TCM) method in both academia and industry circles [5].

With the development of artificial intelligence (AI), many AI models have been applied
to tool wear identification [6], including the hidden Markov model (HMM) [7], support
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vector machine (SVM) [8], artificial neural network (ANN) [9,10], and long short-term
memory network [11]. For example, Gao et al. [12] employed hybrid stationary subspace
analysis and least-squares SVM method for machine tool fault diagnosis using a single
vibration sensor. Zhou et al. [1] proposed a TCM method based on a two-layer angle
kernel extreme learning machine (KELM) and binary differential evolution for milling.
Chen et al. [13] identified the tool condition using a convolutional neural network (CNN)
with machine spindle vibration signals. Arellano et al. [14] employed gramian angular
summation field algorithm to convert continuous cutting force signals into images and
input to a CNN model to detect tool wear condition. Mohanraj et al. [15] summarized
various monitoring methods for TCM in the milling process, in which several current AI
models are introduced. These AI models provide strong technical support for tool wear
identification; however, there is a problem that needs to be solved: sample missing and
insufficiency. Due to the complexity of the machining operation, the change of the tool
wear condition has certain uncertainty; it is difficult to obtain complete samples of all tool
wear conditions in a few experiments, resulting in the problem of sample missing and
insufficiency. This problem can be overcome by doing a lot of experiments, but the cost
of repeated experiments will significantly increase. Recently, several researchers studied
TCM methods to overcome the problem of sample insufficiency. Zhou et al. [16] proposed
a phase space reconstruction enhanced multiscale edge-labeling graph neural network
(MEGNN) for TCM, which is demonstrated by two TCM experiments under small samples.
Milind et al. [17] used a singular generative adversarial network and LSTM to predict tool
wear in face milling of stainless steel and obtained very few errors. However, neither SVM,
CNN, nor GNN can recognize the categories they have not learned; they cannot solve the
problem of missing samples. Although SVM is suitable for small sample learning, the
problem of sample imbalance will still significantly affect its classification accuracy [18].
Therefore, a low-cost and easy-to-implement method is needed to solve the problem of
sample missing and insufficiency. In recent years, the numerical simulation technology was
promoted by the improvement of computer technology; more and more researchers have
begun to pay attention to this technology [19,20]. For example, Xiang et al. [21] proposed
a personalized diagnosis method of shaft based on numerical simulation combined with
wavelet packet transform (WPT) and an SVM model to realize the diagnosis of different
shaft faults. Gao et al. [22] solved the problem of missing and insufficient samples of
bearing faults by combining finite-element simulation (FEM) and generative adversarial
networks (GANs) and provided complete training samples for AI models. As for TCM, no
article has been published to carry out the FEM-based method to solve the above problems.
In this paper, a novel tool wear condition identification method based on FEM and the
synthetic minority oversampling technique (SMOTE) is proposed to solve this problem for
tool wear condition identification under low experimental cost.

The main contributions of this article are as follows:

(1) Samples associated with some tool wear conditions are often missing due to the
complex conditions encountered in the machining process that lead to the inability of
many machine-learning models. To solve the missing and insufficient samples of the
real-world machining process, a novel tool wear condition monitoring scheme using
FEM and the SMOTE is proposed.

(2) FEM is employed to simulate the hard-to-get wear categories collected from the real-
world machining process, and the SMOTE is used to enlarge numerical simulated and
physical experimental tool wear samples to generate relatively complete samples.

2. Proposed Method
2.1. Method’s Framework

The flowchart of the proposed method is shown in Figure 1, and the four steps of the
proposed method are outlined in detail as follows:
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(1) Collect experimental samples. Carry out a few tool monitoring experiments ac-
cording to the production situation, collect the cutting force signals in the machining
process using a three-component dynamometer, and obtain several experimental samples
of different tool wear conditions, as shown in Section 3.1.

(2) Obtain simulated samples through a FEM model. With the help of FEM commercial
software (such as Deform V12), a FEM model based on the Johnson–Cook (J-C) constitutive
model is established according to the tools, workpiece materials and cutting parameters
used in the experiment; the simulated samples are obtained by the FEM model and com-
pared with the experimental samples (shown in Section 2.2). If the signal of the simulated
sample and that of the experimental sample are similar, it can be considered that the FEM
model is effective. Otherwise, the parameters in the FEM model need to be optimized.

The FEM model can be further modified by model updating or parameter optimization
until the Kullback–Leibler (KL) divergence between the simulation data distribution and
the measured data distribution is less than 10. Here, the KL divergence measures the
difference in the probability distributions of the two groups of signals.

(3) Establish a complete training set. Based on the verified FEM model, the simulated
sample of missing tool conditions in the experiments can be supplemented to compose a
complete training sample set. Then, the SMOTE is employed to expand the sample size
for all tool conditions to construct a perfect training set (shown in Section 2.3), including
complete tool conditions and sufficient samples.

(4) Identify tool wear conditions based on a support vector machine (SVM). Several
feature parameters in time and frequency domains are extracted, such as average, root mean
square (RMS), standard deviation (STD), crest factor, shape factor, skewness, kurtosis, and
waveform in the time domain, mean of the power spectrum, RMS of the power spectrum,
crest factor of the power spectrum, modified equivalent bandwidth, high-low ratio of the
power spectrum, stabilization ratio, skewness, and kurtosis of band power in the frequency
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domain (for details, please refer to [20]). These extracted features are used to train an SVM.
And the trained SVM model can be applied to identify tool wear condition.

2.2. Finite-Element Method

Finite-element method (FEM) is a numerical technique for solving approximate so-
lutions of boundary value problems [23,24]. Because of the diversity and flexibility, FEM
has been expanded and applied in many fields to obtain approximate solutions of various
engineering problems [25].

Currently, commonly used commercial FEM software packages include Deform,
Abaqus, and Ansys. The preprocessing part of Deform has special cutting modules and rich
material library, which provides convenience and professionalism for cutting simulation,
and its accuracy has been internationally recognized. Therefore, Deform is applied in this
paper to simulate the machining process of the machine tool.

The constitutive equation of metal cutting can reflect the relationship between stress
and strain. In the process of metal cutting, the constitutive equation can describe the stress–
strain relationship of materials under a large strain rate. In this paper, the Johnson–Cook
(J–C) model is employed to describe the material constitutive relationship, as its structure
is simple and the influence of temperature change on the material is considered [26].

The J-C constitutive equation is as follows:

σ = (A + Bεn)

(
1 + C ln

(
ε′
ε0′

))(
1−

(
T − T0

Tmelt − T0

)m)
(1)

where σ denotes the flow stress; ε, ε′, and ε0
′ denote the plastic strain, strain rate, and

reference plastic strain rate, respectively (set 1.0 s−1 generally); and T, Tmelt, and T0 are the
cutting temperature, material melting point, and room temperature (usually 20 degrees),
respectively. A is the initial yield stress, B is the strain hardening coefficient, and C is the
strain rate sensitivity coefficient. N and M are the strain hardening index and temperature
softening index, respectively.

2.3. Synthetic Minority Oversampling Technique

The SMOTE is a new sample expansion method based on a random oversampling
algorithm, which can supplement the training data and provide multiple data copies of
categories with fewer samples, which is one of the earliest methods proposed and proved
to be reliable [27]. Random oversampling is to copy each category with fewer samples
and randomly select some of them for replacement. However, the resulting samples will
easily lead to model overfitting. The SMOTE increases the sample number by synthesizing
samples rather than simply copying samples.

The flow of the SMOTE is as follows:

(1) For each sample x of category C, its K-nearest neighbor is obtained by calculating the
Euclidean distance from it to all samples in category C.

(2) Several samples are randomly chosen from the K-nearest neighbors of x, recorded as xn.
(3) For each xn, a new synthetic sample is constructed with the original sample x by:

xnew = x + rand(0, 1)× |x− xn| (2)

where rand (0,1) denotes a random number in the interval (0,1).
Repeat the above steps to generate more samples to achieve the purpose of sample expansion.

2.4. Support Vector Machine

An SVM is a pattern classification algorithm proposed by Vapnik [28]. The devel-
opment of SVM models is mature, and different software platforms have corresponding
algorithm modules with good compatibility and fast speed. Thus, the SVM model is
employed here to identify tool wear conditions.
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The purpose of the SVM is to find a hyperplane to segment the training data set. The
segmentation principle is to maximize the margin, which is finally transformed into a
convex quadratic programming problem [12]. The SVM obtains excellent classification
accuracy by finding the hyperplane with the maximum margin, that is:

max
w,b

2
‖W‖

s.t. yi
(
ωTxi + b

)
≥ 1, i = 1, 2, · · · , m

(3)

For the convenience of calculation, Equation (3) is transformed into the following:

min
w,b

1
2‖W‖

2

s.t. yi
(
ωTxi + b

)
≥ 1, i = 1, 2, · · · , m

(4)

Equation (4) is the basic type of an SVM. Due to the low requirements for raw data
distribution, the SVM has been widely applied and obtained good performance.

3. Experimental Research
3.1. Experimental Setup

The milling experimental platform is built on a machining center (DMTG VDL850A,
Dalian Machine Tool Group, Dalian, China), as shown in Figure 2. A Kistler dynamometer
(No. 9139AA) is installed below the workpiece to measure the cutting forces in three
directions and collect the cutting force signals with 12 kHz sampling frequency using an
Avant MI-7016 data acquisition instrument (Econ Technologies Co., Ltd., Hangzhou, China).
The workpiece material is AISI 1045 steel, and the size is 300 mm × 100 mm × 80 mm.
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Eight uncoated three-edge tungsten steel end-milling tools are applied to finish the
milling operation, and each tool corresponds to a certain cutting parameter combination.
Three cutting parameters, spindle speed (rpm), depth of cut (mm), and feed rate (mm/min),
are set to three levels, as shown in Table 1; for the details, refer to [20]. The wear of each
cutting edge of tools was measured offline by a GP-300c tool microscope (Gaopin Precise
Instrument Co., Ltd., Suzhou, China) after finishing a workpiece surface, which represented
individual milling stages. Each stage included three forward and two backward cuts. Here,
the length of rake face wear was employed as the tool wear criterion (shown in [20]), and
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the tool wear value after each milling stage was defined as the maximum wear length of
the three cutting edges [28].

Table 1. Value of cutting parameters.

Cutting Parameters Level 1 Level 2 Level 3

Spindle speed (rpm) 2300 2400 2500
Depth of cut (mm) 0.4 0.5 0.6

Feed rate (mm/min) 400 450 500

The maximum value of tool wear in our experiments is 2.054 mm. Therefore, the tool
wear condition is divided into seven categories that the interval of each wear category is
0.3 mm, as shown in Table 2. The value in the table represents the sample number in the
corresponding wear category; ‘No’ indicates that there is no sample in the corresponding
wear category, that is, the sample is missing. It can be found from Table 2 that there are one
or two categories with a missing sample in all tools. Moreover, the sample sizes of each
category greatly vary from 5 to 17.

Table 2. Tool wear classifications of the eight tools.

Category Tool 1 Tool 2 Tool 3 Tool 4 Tool 5 Tool 6 Tool 7 Tool 8

The first category No 1 No No 1 No 2 1
The second category 2 1 2 2 2 2 2 1
The third category 2 1 1 2 2 2 3 2

The fourth category 2 3 3 2 3 2 1 1
The fifth category No 1 1 1 2 1 2 1
The sixth category 2 3 2 3 No 1 No 4

The seventh category 2 No 1 No No 2 No No

3.2. FEM Construction

Firstly, the geometric model, boundary conditions, and initial conditions of the FEM
model are defined. The dimensions of the workpiece and tool are modeled by SolidWorks
V2020 according to the dimensions in the experiment, and imported into Deform. We
simplify the simulation model and replace the fixture and other components of the actual
machine tool in boundary conditions. Boundary conditions include three cutting elements,
constraints between the workpiece and tool, etc. Secondly, the parameters of the J-C model
are set. The material library in Deform contains relevant data for about 300 materials.
We select AISI 1045 and tungsten steel based on the materials used in the experiment for
the workpiece and tool models, respectively. According to the material properties of the
experimental workpiece and tool, the parameters in Equation (1) can be set as [29,30]:
A = 53.1 Mpa, B = 600.8 MPa, C = 0.0134, n = 0.23, and m = 1. For the friction model, the
adhesion occurs in the area near the cutting edge where the tool and chip come into contact,
and the frictional shear stress is equal to the average shear flow stress at the tool chip
interface in the chip. In the sliding friction zone, the friction shear stress can be calculated
by the friction coefficient in the sliding friction between the tool and chip. Therefore, the
improved Coulomb friction model is adopted here to better reflect the friction phenomenon
between the tool and workpiece, where the friction coefficient is set to 0.6 according to [31].

The meshing numbers of the workpiece and tool are defined as 40,000 and 10,000,
respectively. The local refinement ratio is 0.01 on the machined surface. The flow stress
under the corresponding strain can be calculated by the friction model and material model,
and then the cutting force can be obtained through an integral on the contact surface.
Figure 3 shows the simulation process and cutting force data generated.
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3.3. Verification of Simulation Results

The simulation data can be used as training samples for learning only when they
are significantly similar to the experimental data. Here, 1 s (12,000 points) cutting force
data of the simulated and experimental signal under the normal condition of the tool are
compared to measure their similarity. Since the materials used are common metal materials,
a reference value of five parameters in Equation (1) has been suggested in [32,33]. The
average KL divergence between the FEM simulated data and experimental data under
normal tool conditions is 2.9508, which is lower than the preset threshold. It can be
considered that the simulated model is effective. In addition, if the material used is not a
commonly used metal material, it is likely that the reference values for the five parameters
in Equation (1) are not referenced. It is necessary to select a set of parameter values based
on engineering experience and optimize the parameters using orthogonal experimental
techniques until the average KL divergence between simulated and experimental data is
lower than the preset threshold.

To verify the rationality of the simulated data, the time- and frequency-domain char-
acteristics of the simulated data were compared with the experimental data. Figure 4a
shows the time series in the directions of Tool 5, and Figure 4b shows the frequency domain
diagram. It can be seen that there is high similarity in time waveform and frequency
distribution between the simulated and experimental signals.
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3.4. Supplement of Missing Sample

Several missing tool conditions in the experiment are artificially added in the FEM
model to supply missing samples. Taking Tool 5 as an example, it lacks the sample of
the 7th category, and the sample sizes of other categories are different. The tool wear of
Tool 5 not measured in the experiment is calculated by a linear interpolation method and
then imported into the FEM model to generate simulation samples of the corresponding
category [20].

4. Discussion

Due to the length of the paper, the missing samples of the 1st category are not discussed
here. According to Table 2, we take Tools 2, 4, 5, 7, and 8 as the training set because the
data of their 7th wear category are missing. Therefore, the other three tools (1, 3, and 6)
are used as the testing set. The FEM model is employed to establish the complete training
set by simulating samples of missing categories in the original training set. Thus, the
sample size of experimental, simulated, and completed (experiment + simulation) training
sets are 900, 300, and 1200, respectively. In addition, the sample sizes of all categories
in each training tool are expanded to 100 through the SMOTE, in which the number of
neighbors k is set to 5 according to [33]. Finally, the sample size of experimental, completed,
experiment + SMOTE, and perfect (experiment + simulation + SMOTE) training sets are
900, 1200, 4500, and 6000, respectively.

Several feature parameters in time and frequency domains [20,31,34] are extracted,
such as average, RMS, STD, crest factor, shape factor, skewness, kurtosis, and waveform in
the time domain, mean of the power spectrum, RMS of the power spectrum, crest factor of
the power spectrum, modified equivalent bandwidth, high-low ratio of the power spectrum,
stabilization ratio, skewness, and kurtosis of bandpower in the frequency domain. These
extracted features are used to train the SVM model; the radial basis kernel (RBK) function
is selected as the kernel function, and the kernel parameter σ is optimized using a fast
leave-one-out cross-validation optimization proposed in [32]; the optimal kernel parameter
σ is 2.78.

The classification results are shown in Table 3, in which the classification accuracy of
each category and the overall accuracy are defined as follows:

Accuracy o f the i− th category = True positives in the i−th category
Sample size o f the i−th category

Overall accuracy =

7
∑

i=2
True positives in the i−th category

7
∑

i=2
Sample size o f the i−th category

(5)

Table 3. Classification accuracy of different training set.

Training Set Experiment Completed Experiment + SMOTE Perfection

Sample Size 900 1200 4500 6000

Testing set:
category

(sample size)

2nd (120) 100.0% 100.0% 100.0% 100.0%
3rd (100) 56.0% 87.0% 100.0% 100.0%
4th (140) 97.9% 97.9% 100.0% 100.0%
5th (40) 95.0% 97.5% 100.0% 100.0%
6th (100) 61.0% 95.0% 93.0% 98.0%
7th (80) 0.0% 82.5% 0.0% 93.8%

Overall accuracy 71.0% 93.8% 85.0% 98.8%

It can be found that the classification accuracy based on the completed training set is
22.8% higher than that based on the experimental training set. It can be considered that
the simulation samples generated by the FEM mode can effectively solve the problem of
sample missing. The classification accuracy based on the experiment + SMOTE training
set can get 85% and is 14% higher than the one based on the experimental training set.
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Thus, the expanded samples generated by the SMOTE can reduce the impact of insufficient
samples on classification models. However, it is 13.8% less than the one based on the perfect
training sets. The reason is that AI classification models cannot identify the category they
have not learned.

5. Conclusions

This paper proposed a novel tool wear condition identification method based on
FEM and the SMOTE to overcome sample missing and insufficiency occurring in practical
experiments. Firstly, a few tool wear monitoring experiments are carried out to obtain
experimental samples with low cost. Then, a FEM model based on the Johnson–Cook
constitutive model was established and verified according to the experimental samples.
Based on the verified FEM model, the simulated missing sample in the experiments can
be supplemented to compose a complete training set. Finally, the SMOTE is employed to
expand the sample size to construct a perfect training set to train the SVM model. End-
milling tool wear monitoring experiments demonstrate that the proposed FEM-SMOTE
method can obtain good classification accuracy with a small number of experiments at
low cost.

Next, there are three aspects worth further exploration:

(1) The cutting force signal used in this paper can be directly obtained through the FEM
method. However, the simulation performance of other signals, such as vibration and
acoustic emissions, still needs to be studied to explore other effective approaches in
TCM methods.

(2) The methods and technologies proposed in this paper are established in a laboratory
environment and have not been applied in actual machining processes. Therefore, a
TCM online monitoring system can be considered in combination with hardware and
software development.

(3) In this article, commonly used metal materials are used in the experiment, and the
parameters of the FEM model have reference values. For uncommon useful metal
materials, although orthogonal experimental techniques can theoretically be used to
find the optimal parameters that meet the threshold, further research is still needed.
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Abbreviations
Abbreviation Term
CNC Computer numerical control
TCM Tool wear condition monitoring
AI Artificial intelligence
HMM Hidden Markov model
SVM Support vector machine
KELM Kernel extreme learning machine
ANN Artificial neural network
LSTM Long short–term memory network
WPT Wavelet packet transform
CNN Convolutional neural network
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GNN Graph neural network
FEM Finite-element modeling
GANs Generative adversarial networks
SMOTE Synthetic minority oversampling technique
J–C model Johnson–Cook constitutive model
KL divergence Kullback–Leibler divergence
RBK Radial basis kernel
RMS Root mean square
STD Standard deviation

References
1. Zhou, Y.Q.; Sun, B.T.; Sun, W.F.; Lei, Z. Tool Wear Condition Monitoring Based on a Two-layer Angle Kernel Extreme Learning

Machine using Sound Sensor for Milling Process. J. Intell. Manuf. 2022, 33, 247–258. [CrossRef]
2. Zheng, G.X.; Chen, W.; Qian, Q.J.; Kumar, A.; Sun, W.; Zhou, Y. TCM in milling processes based on attention mechanism-combined

long short-term memory using a sound sensor under different working conditions. Int. J. Hydromech. 2022, 5, 243–259. [CrossRef]
3. Asif, I.; Zhao, G.L.; Cheok, Q.; He, N.; Nauman, M.M. Sustainable Machining: Tool Life Criterion Based on Work Surface Quality.

Processes 2022, 10, 1087.
4. Najm, S.M.; Paniti, I. Predict the Effects of Forming Tool Characteristics on Surface Roughness of Aluminum Foil Components

Formed by SPIF Using ANN and SVR. Int. J. Precis. Eng. Manuf. 2021, 22, 13–26. [CrossRef]
5. Zhou, Y.Q.; Sun, W.; Ye, C.Y.; Peng, B.; Fang, X.; Lin, C.; Wang, G.; Kumar, A.; Sun, W.F. Time-frequency Representation -enhanced

Transfer Learning for Tool Condition Monitoring during milling of Inconel 718. Eksploat. Niezawodn.—Maint. Reliab. 2023,
25, 165926. [CrossRef]

6. Jung, S.; Kim, M.; Kim, B.; Kim, J.; Kim, E.; Kim, J.; Lee, H.; Kim, S. Fault Detection for CNC Machine Tools Using Auto-Associative
Kernel Regression Based on Empirical Mode Decomposition. Processes 2022, 10, 2529. [CrossRef]

7. Govind, V.; Kumar, R. An amended grey wolf optimization with mutation strategy to diagnose bucket defects in Pelton wheel.
Measurement 2021, 187, 110272.

8. Kothuru, A.; Nooka, S.P.; Liu, R. Application of audible sound signals for tool wear monitoring using machine learning techniques
in end milling. Int. J. Adv. Manuf. Technol. 2018, 95, 3797–3808. [CrossRef]

9. Wang, H.C.; Su, W.; Sun, W.F.; Ren, Y.; Zhou, Y.; Qian, Q.; Kumar, A. A novel tool condition monitoring based on Gramian angular
field and comparative learning. Int. J. Hydromechatron. 2023, 6, 93–107. [CrossRef]

10. Johanna, M.F.; José, V.A.; Sergio, B.N.; Rosado Castellano, P.; Romero Subirón, F. A Tool Condition Monitoring System Based on
Low-Cost Sensors and an IoT Platform for Rapid Deployment. Processes 2023, 11, 668.

11. Zhou, Y.; Kumar, A.; Parkash, C.; Vashishtha, G.; Tang, H.S.; Xiang, J.W. A novel entropy-based sparsity measure for prognosis of
bearing defects and development of a sparsogram to select sensitive filtering band of an axial piston pump. Measurement 2022,
203, 111997. [CrossRef]

12. Gao, C.; Xue, W.; Ren, Y.; Zhou, Y.Q. Numerical Control Machine Tool Fault Diagnosis Using Hybrid Stationary Subspace
Analysis and Least Squares Support Vector Machine with a Single Sensor. Appl. Sci. 2017, 7, 346. [CrossRef]

13. Cao, X.C.; Chen, B.Q.; Yao, B.; He, W.P. Combining translation-invariant wavelet frames and convolutional neural network for
intelligent tool wear state identification. Comput. Ind. 2019, 106, 71–84. [CrossRef]

14. Arellano, G.; Terrazas, G.; Ratchev, S. Tool wear classification using time series imaging and deep learning. Int. J. Adv. Manuf.
Technol. 2019, 104, 3647–3662. [CrossRef]

15. Mohanraj, T.; Shankar, S.; Rajasekar, R.; Sakthivel, N.R.; Pramanik, A. Tool condition monitoring techniques in milling process—A
review. J. Mater. Res. Technol. 2020, 9, 1032–1042. [CrossRef]

16. Zhou, Y.Q.; Zhi, G.F.; Chen, W.; Qian, Q.; He, D.; Sun, B.; Sun, W. A New Tool Wear Condition Monitoring Method Based on Deep
Learning under Small Samples. Measurement 2022, 189, 110622. [CrossRef]

17. Milind, S.; Vinay, V.; Rakesh, C.; Vora, J.; Pimenov, D.Y.; Giasin, K. Tool wear prediction in face milling of stainless steel using
singular generative adversarial network and LSTM deep learning models. Int. J. Adv. Manuf. Technol. 2022, 121, 723–736.

18. Zhou, Y.Q.; Kumar, A.; Parkash, C.; Vashishtha, G.; Tang, H.S.; Glowacz, A.; Dong, A.; Xiang, J.W. Development of entropy
measure for selecting highly sensitive WPT band to identify defective components of an axial piston pump. Appl. Acoust. 2023,
203, 109225. [CrossRef]

19. Xu, Z.; Guo, D.; Wang, J.; Ge, D. A numerical simulation method for a repairable dynamic fault tree. Eksploat. Niezawodn.—Maint.
Reliab. 2021, 23, 34–41. [CrossRef]

20. Zhu, Q.S.; Sun, B.T.; Zhou, Y.Q.; Sun, W.F.; Xiang, J.W. Sample Augmentation for Intelligent Milling Tool Wear Condition
Monitoring Using Numerical Simulation and Generative Adversarial Network. IEEE Trans. Instrum. Meas. 2021, 70, 3516610.
[CrossRef]

21. Xiang, J.W.; Zhong, Y.T. A novel personalized diagnosis methodology using numerical simulation and an intelligent method to
detect faults in a shaft. Appl. Sci. 2016, 6, 414. [CrossRef]

22. Gao, Y.; Liu, X.Y.; Xiang, J.W. FEM Simulation-Based Generative Adversarial Networks to Detect Bearing Faults. IEEE Trans. Ind.
Inform. 2020, 16, 4961–4971. [CrossRef]

https://doi.org/10.1007/s10845-020-01663-1
https://doi.org/10.1504/IJHM.2022.125090
https://doi.org/10.1007/s12541-020-00434-5
https://doi.org/10.17531/ein/165926
https://doi.org/10.3390/pr10122529
https://doi.org/10.1007/s00170-017-1460-1
https://doi.org/10.1504/IJHM.2023.130510
https://doi.org/10.1016/j.measurement.2022.111997
https://doi.org/10.3390/app7040346
https://doi.org/10.1016/j.compind.2018.12.018
https://doi.org/10.1007/s00170-019-04090-6
https://doi.org/10.1016/j.jmrt.2019.10.031
https://doi.org/10.1016/j.measurement.2021.110622
https://doi.org/10.1016/j.apacoust.2023.109225
https://doi.org/10.17531/ein.2021.1.4
https://doi.org/10.1109/TIM.2021.3077995
https://doi.org/10.3390/app6120414
https://doi.org/10.1109/TII.2020.2968370


Processes 2023, 11, 1785 11 of 11

23. Zakaria, A.M.T.; Thien, D.; Agnes, M.S.; Songmene, V. Numerical Prediction of the Performance of Chamfered and Sharp Cutting
Tools during Orthogonal Cutting of AISI 1045 Steel. Processes 2022, 10, 2171.

24. Reda, A.A.; Abdulrahman, A. Finite Element and Neural Network Models to Forecast Gas Well Inflow Performance of Shale
Reservoirs. Processes 2022, 10, 2602.

25. Shrot, A.; Bäker, M. Determination of Johnson–Cook parameters from machining simulations. Comput. Mater. Sci. 2012, 52,
298–304. [CrossRef]

26. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

27. Zheng, M.; Wang, F.; Hu, X.W.; Miao, Y.H.; Cao, H.; Tang, M.J. A Method for Analyzing the Performance Impact of Imbalanced
Binary Data on Machine Learning Models. Axioms 2022, 11, 607. [CrossRef]

28. Lei, Z.; Zhu, Q.S.; Zhou, Y.Q.; Sun, B.T.; Sun, W.F.; Pan, X.M. A GAPSO-Enhanced Extreme Learning Machine Method for Tool
Wear Estimation in Milling Processes Based on Vibration Signals. Int. J. Precis. Eng. Manuf. Green Technol. 2021, 8, 745–759.
[CrossRef]

29. Duan, C.Z.; Dou, T.; Cai, Y.J.; Li, Y.Y. Finite Element Simulation and Experiment of Chip Formation Process during High Speed
Machining of AISI 1045 Hardened Steel. Int. J. Recent Trends Eng. 2009, 1, 46–50.

30. Tamizharasan, T.; Kumar, S. Optimization of cutting insert geometry using DEFORM-3 D: Numerical simulation and experimental
validation. Int. J. Simul. Model. 2012, 11, 65–76. [CrossRef]

31. Iqbal, S.A.; Mativenga, P.T.; Sheikh, M.A. Characterization of machining of AISI 1045 steel over a wide range of cutting speeds.
Part 1: Investigation of contact phenomena. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2007, 221, 909–916. [CrossRef]

32. Ying, Z.; Keong, K.C. Fast Leave-One-Out Evaluation and Improvement on Inference for LS-SVM’s. Proc. ICPR 2004, 3, 494–497.
33. Gu, J.X.; Albarbar, A.; Sun, X.; Ahmaida, A.M.; Gu, F.; Ball, A.D. Monitoring and diagnosing the natural deterioration of

multi-stage helical gearboxes based on modulation signal bispectrum analysis of vibrations. Int. J. Hydromech. 2021, 4, 309–330.
[CrossRef]

34. Govind, V.; Kumar, R. An effective health indicator for the Pelton wheel using a Levy flight mutated genetic algorithm. Meas. Sci.
Technol. 2021, 32, 094003.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.commatsci.2011.07.035
https://doi.org/10.1613/jair.953
https://doi.org/10.3390/axioms11110607
https://doi.org/10.1007/s40684-021-00353-4
https://doi.org/10.2507/IJSIMM11(2)1.200
https://doi.org/10.1243/09544054JEM796
https://doi.org/10.1504/IJHM.2021.120609

	Introduction 
	Proposed Method 
	Method’s Framework 
	Finite-Element Method 
	Synthetic Minority Oversampling Technique 
	Support Vector Machine 

	Experimental Research 
	Experimental Setup 
	FEM Construction 
	Verification of Simulation Results 
	Supplement of Missing Sample 

	Discussion 
	Conclusions 
	References

