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Abstract: Geometallurgy integrates aspects of geology, metallurgy, and mine planning in order to
improve decision making in mining schedules. A geometallurgical model is a 3D space that is
typically synthesized from early-stage small-scale samples and is composed of several metallurgical
units, or domains. This work explores the synthesis of a geometallurgical model for a copper deposit
using a purely data-driven unsupervised approach. To this end, a dataset of 1112 drill samples is
used, which are clustered using different methods, namely, k-means, hierarchical clustering (AGG),
self-organizing maps (SOM), and DBSCAN. Two cluster validity indices (Silhouette and Calinski–
Harabasz) are used to select the final model. To validate the potential of the proposed approach,
a simulated economic evaluation is conducted. Results demonstrate that k-means exhibits a better
performance in terms of modeling and that using the obtained geometallurgical model for mining
scheduling increases the project’s Net Present Value (NPV) by as much as 4%. Based on these results,
the proposed methodology is an appealing alternative for generating geometallurgical models within
greenfield, brownfield and ongoing operations.

Keywords: geometallurgy; machine learning; unsupervised learning; cluster analysis; copper deposit

1. Introduction

Geometallurgy, a concept defined around 1970, incorporates geological, metallurgical,
and mine planning information to improve decision making in mining projects [1–4]. The
notion of geometallurgy has modernized lately and currently incorporates the mine-to-mill
concept and environmental variables, providing an even more complete view of the mining
value chain [5,6].

A geometallurgical model is a 3D spatial volume formed by a set of geometallurgical
units or domains. According to Rajabinasa and Asghari [7], each geometallurgical unit is
a 3D spatial section of a mine body with similar mining and metallurgical characteristics.
A block model can be established from the geometallurgical model in order to aid and
improve mine planning decisions and ore processing throughout the life of the mine.
Geometallurgical models should be created with combined information from geology,
metallurgy, mine planning, the environment, and other variables that relate to the product,
subproducts and effects on the operation’s sustainability [7–12].

The current practice for geometallurgical modeling is based on the combination of
a geological model and metallurgical data. Usually, data stem from metallurgical test-
ing involving samples from geological domains and laboratory tests. As an example,
Suazo et al. [13] defines the geometallurgical unit in two stages, firstly grouping the units
based on geological similarities, and secondly by incorporating flotation kinetics obtained
from laboratory testing. Recently, linear regression and supervised learning have been used
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to predict metallurgical variables [6,8,9,14], trying to avoid the expensive and time consum-
ing laboratory testing stage; yet, the idea that geometallurgical modeling is a combination
of geology and mineral processing remained unchanged.

A study by Baumgartnert et al. [15] on Canahuire deposits observed that a geology
model defined by lithology, alteration, and mineralization shows similar metal recovery
as the four geological domain, so sometimes the geological domain does not guarantee a
direct relationship between the geological and metallurgical response, as mentioned by
Rajabinasab et al. [7]. Furthermore, according to Lishchuk et al. [12], the integration of
geology and mineral processing is no longer sufficient since we lack the knowledge for
the optimization of the entire value chain. Instead, geometallurgy should now adopt a
holistic and interdisciplinary approach involving geology, mineralogy, mineral processing,
environmental and economic aspects of mining.

This work explores geometallurgical model synthesis using a purely data-driven
approach. Specifically, all the information available from an early-stage mining project,
including spatial, geological, processing and intrinsic variables, are used to generate a
geometallurgical model, with special consideration of the project’s value. The proposed
methodology achieves geometallurgical domain definition through clustering of drill
samples. Hence, different clustering methods are evaluated, namely hierarchical, k-means
clustering, DBSCAN, and self organizing maps, and an economic analysis is presented that
supports the advantages of using the obtained geometallurgical model. Consequently, the
contributions of this work are twofold: (i) a data-driven methodology for the synthesis of a
geometallurgical model from early-stage information is proposed; and (ii) a comprehensive
case study on a copper deposit is presented, including an economic evaluation to assess
the impact of the geometallurgical model on the project value.

The manuscript is organized as follows: Section 2 presents related work, Section 3
details the methodology for synthesizing a purely data-driven geometallurgical model,
Section 4 presents an economical analysis illustrating the potential of the obtained model,
and Section 5 states concluding remarks and future research.

2. Related Work

The use of data-driven techniques in geometallurgy has seen an upward trend in recent
years. In this context, two main lines of research can be identified. First, linear regression
and supervised learning techniques have been used to predict metallurgical variables. In
this line, Johnson et al. [9] used data from hyperspectral images derived from mill samples
and multiple linear regression to predict Au-Cu recovery, grade, and throughput, giving
R-correlation values to observed data of between 0.56 and 0.71. Similarly, Rincon et al. [14]
obtained a linear model with input data from drill samples with a variable Cu grade, texture,
mineralization style and lithology to predict the Axb milling index and operating work
index for each production block, giving R-correlation indices of 0.82 and 0.8, respectively,
between experimental and predicted values. In both cases, the geometallurgical units
were already defined. Regarding the application of supervised learning, Silva et al. [8]
realised that a neural network model is used to predict the concentrate yield and the
modal mineralogy for a Nepheline Syenite deposit by magnetic separation laboratory tests,
with bulk chemical analysis as input data. The model achieved a correlation coefficient
of 0.9 for concentrate yields between the predicted and observed data, while most modal
mineralogy had Pearson correlation coefficients lower than 0.8, indicating a potential for
improvement. Similarly, Niquini et al. [6] used a neural network to predict a series of
plant output variables based on the ore grade of Zn, Pb, and two binary variables for
ore body identification in a zinc deposit. Results show a correlation coefficient between
predicted and real values for the test set higher than 0.9 for four of the output variables (Zn
concentrate mass recovery, tailings’ mass recovery, metallurgical recovery of Zn from Zn
concentrate, metallurgical recovery of Zn from tailings) and lower than 0.3 for two other
output variables (Pb concentrate mass recovery and metallurgical recovery of Zn from Pb
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concentrate). Since labels are required for any supervised learning technique, these models
could be used only for brownfield studies as an alternative to geochemical testing.

In a second line of research, the use of unsupervised learning techniques, mainly cluster
analysis, has been adopted for geometallurgical modeling. Rajabinasa and Asghari [7]
tested three clustering techniques to define the geometallurgical domains of an iron ore
deposit using five intrinsic variables (Fe, FeO, S, magnetic susceptibility, and sample
coordinates), concluding that k-means and self-organizing maps were best scored using the
Silhouette and Calinski–Harabasz indices as measures of clustering quality. Both techniques
defined three clusters identified as a poor ore cluster, a medium ore cluster and a rich ore
cluster. This study used 356 core samples, did not consider any processing variables and
did not consider mining variables. Consequently, it is not strictly a geometallurgical model.
In another study, Bhuiyan et al. [16] implemented the analysis on a gold ore deposit with
k-means clustering analysis using as variables Bond ball mill work index (BWi), point load
strength index (PLSI), rock quality designation (RQD) as geomechanical variable, magnetic
susceptibility (MAGSUSC) and twenty geochemical variables, resulting in five clusters.
Each cluster has unique characteristics dominated by a combination of higher or lower
values by BWi, PLSI, RQD and MAGSUSC. However, BWi results are similar between three
of the five clusters. Therefore, using only BWi as the clustering variable, two clusters were
redefined by k-means, and then supervised learning (random forest) was conducted with
ten-fold cross-validation taking the results as labels, obtaining a 70% accuracy for the BWi
prediction. Even though this study does include variables associated with processing, it
does not include mining aspects, spatial variables or ore.

3. Data-Driven Geometallurgical Model Synthesis
3.1. Dataset

To conduct the data-driven modeling, a dataset of 1112 drilling samples from a copper
deposit were generated, which includes 29 numerical variables (see Table 1) and three
geological categorical variables that were labeled by a geologist (see Table 2). The dataset
includes the coordinates of the sampling point (east, north, and elevation), geochemical
data in the the form of percentage of total copper (CuT), total iron (FeT), Mo, As, Zn, soluble
copper (CuS), SiO2, and Al2O3 present in the ore, size reduction energy consumption of the
sample in terms of Wi and SPI, and mineralogy (percentages of minerals or alteration in the
surface of a briquette, measured by optical microscopy). Metallurgical test were performed
in a laboratory-scale flotation cell in batch mode. In Table 1, the main statistics of the
numerical variables are presented, while in Table 2 the categorical variables are detailed.

Table 1. Statistics of numerical variables.

Family Variable Min Max Median Mean Std Dev

Spatial [m]
East 2841.0 4133.9 3294.2 3347.6 261.8

North 2204.9 6038.2 4149.6 4160.8 794.3
Elevation 1448.3 2854.6 2221.9 2223.7 238.0

Grade [%]

CuT 0.13 5.20 0.87 1.04 0.59
FeT 0.02 13.48 1.26 1.72 1.40
Mo 0.00 0.42 0.03 0.05 0.05
As 0.00 1.02 0.01 0.04 0.07
Zn 0.00 2.15 0.02 0.06 0.12

CuS 0.01 0.40 0.04 0.05 0.04
SiO2 8.60 94.20 70.90 69.85 10.09

Al2O3 4.00 76.90 14.40 14.90 7.88
CuCon 21.70 42.90 31.40 31.29 3.94

Recovery [%] Copper
recovery 53.60 97.00 88.70 87.93 4.97
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Table 1. Cont.

Family Variable Min Max Median Mean Std Dev

Process [kWh/t] Wi 10.03 19.77 14.11 14.15 1.60
SPI 0.46 8.36 3.23 3.15 1.17

Mineralogy [%]

Cc 0 97 0 3 11
Dg 0 50 3 7 10
Cv 0 62 3 8 11
Bn 0 77 2 10 15
En 0 73 0 5 10
Cp 0 100 20 29 30
Py 0 93 40 38 24

Alteration and
gangue [%]

PIR 0 57 0 3 7
QS 0 100 45 51 38

SVG 0 86 0 4 8
KSIL 0 83 0 7 14

PF 0 100 37 37 30
Clo 0 46 0 1 4
Qz 0 79 9 15 16

CuCon: Copper in concentrate, Cc: Chalcocite, Dg: Digenite, Cv: Covellite, Bn: Bornite, En: Enargite, Cp:
Chalcopyrite, Py: Pyrite, Qz: Quartz, QS: Quertz sericite, SVG: Early sericite gray green alteration, KSIL: Intense
potassium alteration, PF: Pyrophyllite alteration, Clo: Chorite, PIR: Pyritic alteration. Mineralogy (%) indicates
the amount of each mineral or alteration present in the briquette, which is studied under the microscope. Copper
grade is determined by chemical analysis with atomic absorption spectroscopy.

Table 2. Summary of categorical variables.

Variable Type

Alteration 301, 303, 305, 307, 309, 312, 318

Mineralization 206, 208, 209, 210, 211, 212, 213, 214, 215, 216,
217, 218, 219, 220

Mineral zone Weak secondary ore, Strong secondary ore,
Primary ore

3.2. Data Pre-Processing

Before modeling, a standard preconditioning is applied to the dataset, consisting of
one-hot encoding for categorical variables, as suggested by Müller et al. [17], cleaning of
dependent variables, and normalization of time series. Cleaning of dependent variables
is performed using the “Clean” algorithm from the Pybalu package, which checks the
dependency between variables by randomly choosing one variable and removing those
with a Pearson correlation coefficient exceeding 0.99. “Clean” also checks and eliminates
variables with constant values. As a result, the geological categorical variable “Strong
secondary ore” was removed. In terms of normalization, a projection of the [0, 1] interval
was implemented. According to García et al. [18], normalization is applied to avoid
suboptimal solutions because of different scales in the data.

3.3. Dimensionality Reduction

Reducing the dimensions of the dataset has several benefits, e.g., it can improve the
machine learning model performance, reduce processing time and storage requirements,
and facilitate data visualization, according to Müller et al. [17]. Two classical methods
are proposed in this case study: principal component analysis (PCA) and autoencoders.
While the former is a linear transformation that projects each datapoint onto a few principal
components, a new coordinate system of lower dimension, the latter are unsupervised
neural networks trained to reconstruct their inputs at the output layer, passing through
an intermediate layer usually of lower dimension than the inputs. Autoencoders can have
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several layers with arbitrary activation functions, where the most commonly used are
sigmoid, rectified linear unit (ReLU) and hyperbolic tangent (tanh) functions.

Dimensionality reduction is performed by a group of variables (detailed in Table 3)
which are reduced to one dimension. The rationale behind variable grouping is as follows.
“Spatial” variables indicate the 3D location of data; “Another Grade” variables are process
variables related to extra revenue or penalties; “Process” variables are parameters related to
energy consumption; and “Mineralogy” variables are those obtained by laboratory testing
that have a relation with process indicators as recovery, or acid consumption, among others.
Note that CuT, CuS, CuCon, and recovery of copper were not included in any group, as
they have stronger implications in the copper industry value chain than the other variables.
Consequently, they should have the same weight than the other groups in the input dataset
used for geometallurgical modeling.

Table 3. Grouping of variables.

Type Name Variables

Grouped

Spatial East, North, Elevation
Another grade Fe, Mo, As, Zn, SiO2, Al2O3

Process Wi, SPI

Mineralogy
Cc, Dg, Cv, Bn, En, Cp, Py,
Qz,QS, SVG, KSIL, PF, Clo,

PIR

Independent

Total copper CuT
Copper recovery Rec
Soluble copper CuS

Copper in concentrate CuCon

Dimensionality reduction using PCA is an standard and well studied procedure. On
the other hand, autoencoders need to be hand-crafted, with different activation functions
and numbers of neurons defined for each group of variables depending on the nature of
the data. Figure 1 presents the architectures used in this work for each group of variables,
which were defined based on a trial-and-error procedure.

Figure 1. Autoencoder architecture used for Spatial, Process, Another grade, and Mineralogy.

To compare the performance of both dimensionality reduction methods, the mean
squared error (MSE) of the reconstructed signal with respect to the original values is
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calculated. To this end, an inverse PCA transform is required, while for the autoencoder
this metric is given by the loss function. Table 4 presents the statistical information of the
original dataset and the reconstruction using PCA. The means of the original dataset (µi)
and the recovered dataset (µ f ) are quite similar; however, the standard deviation of the
PCA inverse transform (σf ) is smaller than the original dataset (σi), indicating that some
characteristics of the original dataset are lost. Similarly, Table 5 provides the statistical
information for autoencoder-based reconstruction, which is similar to the PCA case with a
marginal difference in favor of the autoencoder in terms of standard deviation. In terms
of MSE, the autoencoder presents better performance for the groups of variables with
larger initial dimensions. Due to this fact, autoencoders are selected in this work as the
dimensionality reduction method.

Table 4. Statistical information of PCA-based reconstruction.

Group Name µi σi MSE µ f σ f

Spatial 0.484 0.205 0.0102 0.485 0.178
Another

grade 0.194 0.258 0.0056 0.194 0.246

Process 0.4 0.154 0.0045 0.4 0.139
Mineralogy 0.177 0.26 0.0184 0.177 0.222

Table 5. Statistical information of autoencoder-based reconstruction.

Group Name µi σi MSE µ f σ f

Spatial 0.484 0.205 0.0104 0.483 0.180
Another

grade 0.194 0.258 0.0044 0.197 0.257

Process 0.4 0.154 0.0046 0.4 0.138
Mineralogy 0.177 0.26 0.0157 0.169 0.243

3.4. Model Synthesis

The model synthesis is based on an unsupervised clustering process, which divides
data into different classes [19] that then conform the different metallurgical domains of
the model.

3.4.1. Clustering Methods

In this work, four clustering methods are tested, namely, k-means clustering, hierarchi-
cal clustering, self-organizing maps and DBSCAN, which has been proven successful when
clustering with irregular forms of data [17].

k-means clustering looks to find k cluster centers, or centroids, aiming to determine
the partition with a minimum within-cluster sum of squares (WCSS). The algorithm begins
with k initial centers randomly selected. Then, the distance between each datapoint and
the center is calculated, and a cluster is assigned for each point considering the nearest
center. The process continues until the WCSS does not improve anymore [20]. As a result of
using the euclidean distance to assign a datapoint to the nearest center, the concept behind
k-means is the existence of spherical-like clusters that are expected to be similar in size.

Hierarchical clustering (AGG) is a stepwise fusion process with consideration of
linkages among data. Each datapoint is initially considered as one cluster, then the two
most similar clusters are merged based on a specific linkage method, until the k requested
clusters are achieved [21]. This method has four possible types of linkages: (1) ‘ward’,
which minimizes the variance of the clusters being merged; (2) ‘average’, which uses
the average distances of each datapoint of the two clusters; (3) ‘complete’, which adopts
the maximum distances between all datapoints of the two clusters; or (4) ‘single’, which
employs the minimum of the distances between all datapoints of the two clusters [22].
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Self-organizing maps (SOM) is an unsupervised classification method based on an
artificial neural network. Training starts with a weight vector Wv(s), using the Euclidean
distance to measure the similitude with the input dataset D(t), where t indexes the dataset.
When the current iteration weight vector is similar enough the input vector, it is labeled
as best matching unit (BMU, dv(X)). Then, the weight vectors of the nodes in the neigh-
borhood of the BMU (including the BMU itself) are updated by pulling them closer to the
input vector, namely [23],

Wv(s + 1) = Wv(s) + θ(u, v, s) ∗ a(s) ∗ (D(t)−Wv(s)), (1)

where a is the learning rate, θ(u, v, s) is the neighborhood function, u is the index in the
BMU map and s is the current iteration. This process finishes when new movements do not
increase the similarity to the input [23]. In this algorithm, the main hyperparameters are
the learning rate and neighborhood function.

Density-based spatial clustering of applications with noise (DBSCAN) is an algorithm
that creates groups of datapoints that are closely packed together (datapoints with many
neighboring datapoints), marking as outliers those points belonging to a low-density region
(datapoints with neighboring points too far away). DBSCAN has two hyperparameters: the
maximum distance between two datapoints to be considered neighbors, and the minimum
number of points required to form a dense region. The algorithm randomly begins on
a datapoint, searches neighborhoods within the maximum distance, and becomes a new
cluster if they have the minimum number of points required. Finally, DBSCAN forms
clusters and a group of outliers.

3.4.2. Cluster Validity Indices

To evaluate the optimality of a given clustering result, Silhouette and Calinski–
Harabasz indices are used. As demonstrated by Liu et al. [24] and Arbelaitz et al. [25], these
indices have good performance in assessing the validity of clusters, hence determining the
optimal number of clusters. The Silhouette index (SI) measures the cohesion based on the
distance between all the datapoints in the same cluster, and the separation is based on the
nearest neighbor distance [26].

Given a dataset X := {x1, x2, ..., xN} and a partition or clustering of X as a set of K
disjoint clusters C = {c1, c2, ..., cK}. The SI index is calculated as [26]

SI =
∑cI∈C ∑xi∈cI

SI(xi)

N
(2)

with

SI(xi) =
b(xi)− a(xi)

max{a(xi), b(xi)}
(3)

and
b(xi) = min

cJ∈C\cI

1
NJ

∑
xi∈cI ,xj∈cJ

de(xi, xj), (4)

a(xi) =
1

NI
∑

xi 6=xj∈cI

de(xi, xj), (5)

where de(xi, xj) indicates the euclidean distance between datapoint i and datapoint j, a(xi)
represents the average distance between datapoint xi and all other datapoints in the same
cluster, b(xi) indicates the lowest average distance of datapoint xi from every other cluster
to which xi does not belong, N is the number of datapoints in the dataset, and NI and NJ
refer to the number of datapoints in clusters I and J.

In this formulation, a(xi) represents cohesion of the datapoint xi in the cluster cI , b(xi)
represents separation of the datapoint xi with other clusters, and the SI value ranges from
−1 to 1. A value of SI closer to 1 indicates good classification, while a SI near to−1 suggests
misclassification, as mentioned by Rousseeuw [26].
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On the other hand, the Calinski–Harabasz index (CH) measures cohesion based on
the distance from all the datapoints to centroids. It simultaneously assesses separation
based on the distance from each centroid to the global centroid. The CH index is calculated
as [27]

CH =
N − K
K− 1

∑cJ∈C mJ ∗ de(cJ , X)

∑cJ∈C ∑xi∈cJ
de(xi, cJ)

, (6)

where N is the number of datapoints in the dataset, K is the number of clusters, M is
a tuple containing the number of datapoints per cluster, i.e., M = {m1, m2, . . . , mK}, X
represents the centroid of the entire dataset, cJ indicates the center of cluster J, xi represents
the datapoint i, and de denotes the euclidean distance between two datapoints. From this
definition, it can be seen that the CH index ranges from 0 to positive infinity, and that a
good classification maximizes the CH index.

Both indices are suitable for the evaluation of a geometallurgical model as the modeling re-
quires cohesion within a geometallurgical domain and separation between different domains.

3.4.3. Modeling

For model evaluation purposes, several models are synthesized depending on the
clustering method and the dataset used as input. Figure 2 demonstrates, schematically,
the routes used for forming the input datasets, considering both “clean” data and data
after normalization. There are two methods of generating input datasets: directly using the
data after preprocessing and using dimensionality reduction based on autoencoders. The
datasets are then used for clustering and results are compared using the SI and CH indices.

Figure 2. Process flowchart for data analysis.

A total of six datasets are generated, using different combinations of reduced groups of
variables and variables without dimensionality reduction, as detailed in Table 6. To include
spatial variables, three alternatives exist for each dataset previously defined: considering
all spatial coordinates, with dimensionality reduction, and no spatial variables. Therefore,
eighteen datasets are finally obtained for modeling purposes, and, consequently, four
models per dataset are synthesized.

Table 7 presents the two best results in terms of the Silhouette index (SI) for each
clustering method, identifying the dataset used in each case. The results reveal that the
k-means method outperforms its competitors in terms of clustering quality as measured by
the SI.
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Table 6. Datasets used for model synthesis.

Dataset
Name

Independent
Variables

Grouped
Variables

CuT, CuS,
CuCon,

Copper Recovery
Geological Variables Another Grade Process Mineralogy

Complete Complete Complete Reduced Complete Wi Only Reduced Complete Reduced

Original • • • • •
Original/

no geology • • • •

Original/
no geology/

no SPI
• • • •

Partially reduced/
no geology/

no SPI
• • • •

Partially reduced/
no geology • • • •

Fully reduced • • • •
• Each bullet represents the type of data included in each data set.

Table 7. Results in terms of the Sillhouette index.

Clustering
Algorithm

Dataset Input to
Cluster Analysis Spatial Variables SI

k-means Original/no
geology/no SPI None 0.264

k-means Original/no geology None 0.263
AGG-Ward Original/no geology None 0.249

AGG-Ward Original/no
geology/no SPI

With dimensionali-
tyreduction 0.249

SOM Original/no geology/
no SPI

All spatial
coordinates 0.242

SOM Original/no geology With dimensionality
reduction 0.227

DBSCAN Original/no geology None 0.205

DBSCAN Original/no
geology/no SPI

All spatial
coordinates 0.205

Similarly, Table 8 presents the two best results in terms of the Calinski–Harabasz index
(CH) for each clustering method. A similar trend can be seen, with k-means giving the best
results. It is interesting to note that, in terms of datasets, the best performers presented
in Tables 7 and 8 do not use dimensionality reduction nor include geological categorical
variables or spatial variables. This suggests that is feasible to synthesize a geometallurgical
model from numerical variables.

To further explore the performance differences throughout the different datasets, the
results from the k-means method applied to all the datasets are shown in Table 9. It can be
seen that the first six rows present similar performance with a variation lower than 1%. For
the rest of this study, the best performer is selected as the nominal model. Figure 3 presents
the final geometallurgical model, where each cluster is identified as a geometallurgical unit
(UGM). The ore body is a convex form, which in the upper center has no drilling sample
information. As a result, unit 1 is located south-east and deeper, unit 3 in the south-west
and upper, and unit 2 in the north of the ore body.
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Table 8. Results in terms of the Calinski–Harabasz index.

Clustering
Algorithm

Dataset Input to
Cluster Analysis Spatial Variables CH

k-means Original/no geology/
no SPI None 485.21

k-means Original/no geology None 482.46

AGG-Ward Original/no geology All spatial
coordinates 455.42

AGG-Ward Original/no geology/
no SPI

All spatial
coordinates 452.46

SOM Original/no geology None 416.89

SOM Original/no geology With dimensionality
reduction 415.83

DBSCAN Original/no geology All spatial
coordinates 288.40

DBSCAN Original/no
geology/no SPI None 263.55

It can be observed that each geometallurgical domain is clearly separated and has
continuity within the domain, even though the input dataset did not include any spatial
variable. Nonetheless, it is deemed reasonable that every point in a domain has similar
characteristics because the ore body’s characteristics were the result of geological evolution.

Figure 3. Spatial visualization of the clusters.

To illustrate the behavior of relevant variables among the UGMs, Figures 4–7 present
box plots of BWi, SPI, CuCon and As. It can be seen that in terms of BWi, the geometal-
lurgical units are significantly different, while for CuCon the difference between units 1
and 2 is minimal and the same minimal difference is observed for units 2 and 3 in terms of
both SPI and As. The results in Figures 4–7 highlight that geometallurgical modeling is a
multivariable exercise that can be conducted with the aid of learning-based methods.
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Table 9. Results for k-means.

Dataset Input to
Cluster Analysis Spatial Variables SI CH

Original/no
geology/no SPI None 0.264 485.21

Original/no geology None 0.263 483.46

Original/no geology All spatial
coordinates 0.263 481.68

Original/no geology/
no SPI

All spatial
coordinates 0.263 481.57

Original/no geology With dimensionality
reduction 0.263 483.59

Original/no
geology/no SPI

With dimensionality
reduction 0.262 484.55

Partial reduced/no
geology/no SPI

All spatial
coordinates 0.243 431.68

Partial reduced/no
geology/ no SPI

With dimensionality
reduction 0.241 431.53

Partial reduced/no
geology

All spatial
coordinates 0.237 422.90

Fully reduced All spatial
coordinates 0.235 417.52

Partial reduced/no
geology

With dimensionality
reduction 0.230 414.20

Fully reduced With dimensionality
reduction 0.226 410.01

Partial reduced/no
geology/ no SPI None 0.148 300.81

Fully reduced None 0.147 307.46
Partial reduced /no

geology None 0.147 307.46

Original With dimensionality
reduction 0.142 322.25

Original All spatial
coordinates 0.142 321.54

Original None 0.142 320.61

Figure 4. Box plot of relevant variables for the different resulting geometallurgical units (Case Wi).
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Figure 5. Box plot of relevant variables for the different resulting geometallurgical units (Case SPI).

Figure 6. Box plot of relevant variables for the different resulting geometallurgical units (Case
CuCon).

Figure 7. Box plot of relevant variables for the different resulting geometallurgical units (Case As).

4. Economic Evaluation

To illustrate the advantages of having a proper geometallurgical model, a simplified
economic evaluation is conducted comparing two scenarios. The first one, which is the
base case, considers an average cost and plant throughput for all the deposit. The second
scenario considers variable cost and plant throughput depending on the geometallurgical
model and the extraction sequence. Evaluation is performed through the estimation of the
Net Present Value (NPV) of the project without considering capital investment.

To define the extraction sequence, several steps must be completed, namely, correcting
outlier points, creating a block model, and performing interpolations.
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4.1. Filtering Outliers

As observed in Figure 3, when spatial consistency is considered, some datapoints
belonging to one cluster can be situated within a different cluster, hence behaving as outliers
in terms of spatial continuity. To avoid this situation, the data are filtered using the spatial
variables (east, north, and elevation) and cluster domain, checking the seven closest points
to each datapoint. Seven was found to be the optimal number of points that can effectively
correct those outliers and do not change the border points’ labels unnecessarily. If six or
more points are classified into the same cluster as the reviewed point, the cluster domain
of the majority of the points is assigned to the point under analysis. If less than six points
are in the same class, these points are considered border points and the cluster domain
is maintained.

4.2. Block Model

A cubic block size of 45 m per side is used. Each block is assigned with information
from the geometallurgical model. If there is only one point inside the block, the information
of this point will be assigned to the block. If there are two points inside the block, an
average of the numerical data for the variables and a randomly selected cluster of the data
are assigned. If there are more than two points, an average of the numerical data will be
adopted for the variables, and the major occurrence of cluster code is selected.

4.3. Interpolation

As there might be blocks without information between two datapoints, interpolation
is used. First, blocks needing interpolation are identified by using Alpha shape [28], a com-
putational geometric technique that identifies all blocks within the area with information in
the border. In a second step, Gradient Boosting, a machine-learning-supervised regression
method, with the drill sample as a training set, is used to predict the information associated
with the blocks identified in the first step.

4.4. Final Block Model and Economic Analysis

Figure 3 shows that the deposit has a convex shape with a gangue body in its center,
surrounded by the ore body. This means that, conventionally, the mine exploitation would
start in a point with less gangue in order to continue towards a singular direction. Hence,
to enable using the extraction sequence as an independent variable, an adjustment is made
in which only a continuous subset of the original ore body is considered in the block model
for economic evaluation.

The selected limits for this model are between 2800 and 3800 east, between 2500 and
5200 north, and between 2000 and 2300 elevation. The adjusted block model is shown in
Figure 8.

Figure 8. Adjusted block model used in the economic evaluation.
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To determine the value of the block model, we use a simulation model developed
by Anani et al. [29] to obtain an extraction sequence that uses the economic parameters
presented in Table 10 and defined as follows. The long-term copper price used is the
average price reported in three mining projects in Chile [30–32]. Mining cost represents
the cost variation induced by increasing depth in meters applied to the current deposit,
derived from a benchmarking study in Chile [33]. A discount rate of 10% is reasonable for
this type of mine project [32,34]. Finally, the GAP is a parameter from the solver Gurobi that
indicates the difference between an objective bound and an incumbent solution objective.
This value can be determined according to each project. Afum et al. [35] mentioned that
a GAP value of less than 5% is tolerable, while Ben-Awuah et al. [36] also suggests that a
GAP value of less than 1% is sufficient for a mining project. In our case, a GAP value of
0.4% is used.

Table 10. Parameters used in the economic evaluation.

Parameter Value

Copper price [US$/lb] 3
Mining cost [US$/t] 3–3.95

Discount rate [%] 10
GAP [%] 0.4

Table 11 presents the different production parameters for the base case and each cluster
or geometallurgical unit. The geometallurgical case considers the average value in each ge-
ometallurgical domain, while the base case considers the average of the whole dataset. The
installed production capacity is defined as 50 kt/d and 40,300 MW of available power. The
energy consumption is estimated by the work index of Bond. The energy cost is calculated
by energy consumption and local electricity pricing, which is 0.094 US$/kWh [33]. The
total processing cost is estimated assuming the energy cost represents 26% of the total cost,
as reported in a benchmark study from Chilean copper mine projects [33]. The production
ratio is defined as the ratio of the production capacity at each case and the production
capacity of the base case.

Table 11. Cost parameters for economic evaluation.

UGM W i [kWh/t]
Energy
[kWh/t]

Energy Cost
[US$/t]

Processing
Cost [US$/t]

Production
Ratio

1 13.31 17.73 1.67 6.41 1.09
2 14.22 18.48 1.74 6.68 0.97
3 15.66 19.66 1.85 7.11 0.88

Base case 14.15 18.42 1.73 6.67 1

Table 12 shows the result of the simulation using the parameters mentioned in Table 11.
An NPV of USD 3746 million is obtained for the base case, while the geometallurgical case
has an NPV equal to USD 3903 million, 4% higher, demonstrating the relative impact of
using the geometallurgical model generated by a machine-learning algorithm.

Table 12. Case NPV.

Case NPV [MMUS$]

Base 3746
Geometallurgical 3903

5. Conclusions

The generation of a geometallurgical model is an essential part of block modeling
and mine planning in any mining project. Since mineral deposits are complex systems, a
large database is required to identify relationships between the initial data and the final
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extraction sequence and production plan. In this context, we propose a purely data-driven
methodology for geometallurgical modeling, based on clustering of drilling samples from
an ore body.

Our main conclusions are as follows:

1. The evaluation of different clustering methods indicates that k-means outperforms
its competitors in terms of the Silhouette and Calinski–Harabasz indices. For the
ore deposit under analysis, the optimal number of clusters, hence the number of
metallurgical units, is three.

2. In terms of dimensionality reduction, it was found that autoencoders perform better
than PCA in the tested dataset; yet, there is no evidence that such a reduction improves
the clustering results. It remains to be determined if dimensionality reduction brings
any advantage when using larger databases.

3. Additionally, it was found that spatial variables are not determinant in the definition
of the clusters or for their spatial continuity.

4. It was also found that geological categorical variables do not contribute to better clus-
tering results, which suggests that it might be possible to synthesize a geometallurgical
model from numerical variables.

5. As a measure of the impact that a geometallurgical model can have in the value
of a mining project, an economic evaluation comparing the value generated with a
mine plan based on average values and on differentiated geometallurgical values
was conducted using a block model generated with drilling data and using filtering,
block modeling and interpolation techniques. The result indicates that using the
geometallurgical model increases the NPV of the project by about 4%. It must be
noted, however, that the economic evaluation is performed using cost data for the
copper industry in Chile, which might not be applicable to other mining regions.

6. This work has demonstrated that it is feasible to generate a geometallurgical model
using a purely data-driven methodology. It is found that using k-means, with encod-
ing for dimensionality reduction, provides a reasonable methodology for clustering
data, maintaining spatial continuity.

7. It is envisioned that the proposed methodology for generating geometallurgical
models can be further developed, for example, performing cross validation with
existing geometallurgical models, or applying it to brownfield projects or ongoing
operations, where operational data can be included in the model to improve the
clustering analysis and to increase the impact on mining business decisions.
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