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Abstract: Hydraulic fracturing is one of the main ways to increase oil and gas production. However,
with existing methods, the diameter of the nozzle cannot be easily adjusted. This therefore results in
‘sand production’ in flowback fluid, affecting the application of hydraulic fracturing. This is because
it is difficult to identify the one-dimensional series signal of fracturing fluid collected on site. In order
to avoid ‘sand production’ in the flowback fluid, the nozzle should be properly controlled. Aiming
to address this problem, a novel augmented residual deep learning neural network (AU-RES) is
proposed that can identify the characteristics of multiple one-dimensional time series signals and
effectively predict the diameter of the nozzle. The AU-RES network includes three parts: signal
conversion layer, residual and convolutional layer, fully connected layer (including regression layer).
Firstly, a spatial conversion algorithm for multiple one-dimensional time series signals is proposed,
which can transform the one-dimensional time series signals into images in high dimensional space.
Secondly, the features of the images are extracted and identified by the residual network. Thirdly,
the network hyperparameters are optimized to improve the prediction accuracy of the network.
Simulations and experiments performed on the field data samples show that the RMSE and LOSS
when training the AU-RES network are 0.131 and 0.00021, respectively, and the prediction error
of the test samples is 0.1689. In the gas field experiments, fracturing fluid sand production could
be controlled, thus demonstrating the validity and reliability of the AU-RES network. By using
the AU-RES neural network, sand particles will not be present in the flowback of fracturing fluid,
thus improving the efficiency of hydraulic fracturing and reducing the cost of hydraulic fracturing.
In addition, the AU-RES network can also be used in other similar situations.

Keywords: artificial intelligence; deep learning neural network; process control; hydraulic fracture

1. Introduction

Artificial intelligence has become a research hotspot, and will come to be widely used
in various industries [1,2], especially in the oil and gas industry [3–6]. In the process of oil
and gas recovery, hydraulic fracturing technology is widely used to increase production. In
the context of hydraulic fracturing technology, flowback control of the fracturing fluid is an
aspect belonging to process control, and is achieved by controlling the opening or closing of
the nozzle at the wellhead according to the downhole fluid parameters. This results in the
diameter of the nozzle being adjusted. In this way, no sand is produced in the fracturing
fluid. However, conventional control methods are inefficient and sand particles in the
formation can easily be discharged with the flowback of fracturing fluid, resulting in a
‘sand production’ problem. Therefore, the introduction of artificial intelligence technology
into the flowback control process of fracturing fluid is necessary, as it will be able to solve
this problem.

When considering the use of artificial intelligence in the flowback control of fracturing
fluid, research has been performed evaluating a number of different methods, including
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fuzzy control [3], shallow artificial neural network control [7], deep artificial neural network
control [8–10] (such as CNN, LetNet, VGG16, Alexnet), and so on. However, because the
flowback control of fracturing fluid is characterized by strong nonlinearity, and some of
the downhole parameters are difficult to obtain, it is necessary to use the deep learning
neural network, which can achieve good results. The conventional deep neural networks,
i.e., the CNN, LetNet, VGG16, Alexnet networks, are often used in image classification.
Although they can output a continuous value if their last layer (the activation function
Softmax) can be substituted by a regression layer, the accuracy will be low. Therefore, these
neural networks should be modified to adapt their prediction of continuous values [11]
such as the nozzle diameter. In essence, the fracturing fluid flowback control identifies
multiple one-dimensional signals in oil and gas wells using a deep learning neural network,
then performs high-level feature transformation, and outputs a continuous signal (nozzle
diameter). Therefore, its structure is similar to that of the long short-term memory (LSTM)
network [12,13] and certain kinds of temporal convolutional network (TCN) [14].

To date, LSTM, TCN and other similar methods have been studied by many researchers.
Hu Xiaodong [7] proposed a shale gas production prediction model with a fitting function
neural network. The model, consisting of a fitting function, LSTM and a DNN neural
network, predicts the parameters according to time domain signals. Zhang Lei et al. [12]
proposed a time-domain convolutional neural network TCN model to solve the problem of
time-domain signal prediction. Sagheer A [13] proposed a kind of deep LSTM recurrent
network for predicting production. BAI S J et al. [14] evaluated convolutional networks and
recurrent networks for time sequence signal modeling. In addition, they proposed a com-
bination of convolutional networks with recurrent networks. Gu Jianwei [15] introduced
an LSTM network to predict oil production. Huang R J [16] used an LSTM network to
forecast the production performance of a carbonate reservoir. Wang J [17] studied a hybrid
network of CNN and LSTM to forecast the production of fractured wells, overcoming the
shortcomings of the traditional method, which relies on personal experience. In essence,
LSTM is used to predict future values according to historical data. However, for the con-
trol of the flowback of fracturing fluid (or nozzle diameter prediction), it is necessary to
determine the current value (nozzle diameter) according to multiple kinds of current signal
and the historical signal. Therefore, the above methods still present challenges in terms of
processing these unstructured data and processing multiple one-dimensional time series
signals, such as those related to the flowback of fracturing fluid. In addition, the inclusion
of a CNN layer in LSTM or TCN results in degradation when the training epoch increases.
Therefore, the accuracy of the LSTM or TCN network will decrease.

From the above discussion, it is clear that the neural networks described above cannot
be directly applied in the flowback control of fracturing fluid, due to the complexity of the
fracturing flowback process. In this case, the nozzle diameter needs to be predicted based
on multiple one-dimensional time series signals. In addition, it is necessary to consider
not only the dynamical factors affecting the nozzle diameter, but also the static factors
affecting the nozzle diameter. Therefore, an augmented residual deep learning neural
network (AU-RES) structure is proposed to control the fracturing flowback process. Firstly,
the spatial transformation of multiple one-dimensional time series signals of fracturing
flowback is carried out. Then, the conventional residual neural network structure [18]
is modified to form a new AU-RES neural network to control the flowback of fracturing
fluid. Next, the AU-RES neural network is used to identify and judge the input signal, and
outputs a nozzle diameter. Finally, the performance of the AU-RES network is verified by
simulation and experiment.
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2. Problem Description and Solution
2.1. Problem Description

The principle of fracturing flowback control is shown in Figure 1a, and includes two
steps. First step: the fracturing fluid containing sand is firstly injected underground at high
pressure from the ground surface. The high-pressure fluid creates cracks in the rock. Sand
particles in the fluid support cracking, so that oil or gas from the rock will permeate into
the well. Second step: after a crack or fracture has been formed in the rock, the fracturing
fluid needs to flow back to the surface. Fracturing fluid flows through the well via the
oil tube, and then flows out through the surface nozzle. During this process, the sand
needs to remain in the fracture, otherwise it will close again. In order to prevent sand
in the fracture from flowing out of the well, it is necessary to control the ground nozzle.
Therefore, methods for determining an optimal nozzle diameter constitute a core problem
of fracturing flowback control.
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Figure 1. Principle of hydraulic fracturing and intelligent control scheme. 1—Fluid pressure;
2—flow rate; 3—viscosity; 4—temperature; 5—sand rate; 6—pressure in reservoir; 7—permeability;
8—porosity; 9—Poisson’s ratio of rock; 10—fracture length; 11—fracture height; 12—inner diameter
of oil tube; 13—inner diameter of casing; 14—depth of gas well. (a) Principle of hydraulic fracturing.
(b) Intelligent control scheme.

In the past, the method for determining the diameter of the nozzle usually involved
analyzing the hydrodynamic formula of flowback fluid, on the basis of which an approx-
imate solution for the nozzle diameter was obtained. For example, in Figure 1a, when
the diameter of the nozzle changes, the inlet pressure (at the left side of the nozzle) pd
will also change. In addition, the fluid in the oil tube transmits the pd to the bottom well.
Therefore, the pressure pr at the bottom well will also change. pd is the inlet pressure of the
nozzle, which reflects the fluid pressure in the oil tube before the nozzle. pr is the formation
pressure, which reflects whether the fracturing particles can leave the rock fractures (cracks).
The pressure pd and pr can be written as:
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pd(t) = ϕ(d, po, t) (1)

pr(t) = f (pd, t, x1, x2, x3, . . . , xn) (2)

In Equations (1) and (2), t is time. x1, x2, x3, . . . , xn parameters related to the flowback
fluid in the oil tube. d is the nozzle diameter. Po is the outlet pressure of the nozzle
(at the right side of the nozzle). Because ϕ ( ) and f ( ) are nonlinear functions and
Equations (1) and (2) involve multiple hydrodynamic differential equations, it is diffi-
cult to obtain a precise solution. The prediction error of the nozzle diameter using the
traditional method is large. Therefore, a problem to be solved is to predict the nozzle
diameter according to the nonlinear function relationship in the variable x1~xn simulation
Equations (1) and (2).

2.2. Solution

In order to solve the problem of the large error when predicting the nozzle diameter
using traditional methods, a new artificial intelligence method is proposed for predicting
nozzle diameter. The scheme is shown in Figure 1b. The intelligent controller in Figure 1b
is the deep learning neural network. In this paper, we introduce a novel augmented
residual deep learning neural network (AU-RES) that is able to identify time series signals
of flowback fluid on the basis of the characteristics of fracturing flowback fluid signals,
thus allowing accurate prediction of the nozzle diameter.

The principle of Figure 1b is as follows: firstly, fracturing fluid flowback parameters
are collected and fed into the AU-RES neural network. Secondly, the AU-RES neural
network extracts the features of the input data (x1~x14) and recognizes it according to the
self-learning algorithm. Thirdly, the AU-RES neural network outputs the diameter of the
nozzle. Because AU-RES neural networks can simulate the complex nonlinear functional
relationships in Equations (1) and (2), when trained with field data, the neural networks
can learn from the experience of the operator. Therefore the AU-RES neural network can
achieve good control effect.

In Figure 1b, x1~x5 change over time. Therefore, they need to be collected with sensors.
x1 is the oil pressure in the flowback fluid. x2 is the casing pressure. x3 is the flow rate. x4 is
viscosity. x5 is the temperature of the flowback fluid. The signals for x6~x14 generally do
not change with time. Therefore, they can be obtained from the database. x6 is the pressure
of the formation. x7 is permeability. x8 is porosity. x9 is crack half-length. x10 is crack height.
x11 is the Poisson’s ratio of the rock. x12 is the inner diameter of the casing. x13 is the inner
diameter of the oil tube. x14 is the depth of the oil/gas well.

Focusing on the characteristics x1~x14, the AU-RES neural network was designed as
shown in Figure 2. The input data for the AU-RES neural network are the time series signals,
and the output is the diameter of the nozzle. The network includes a signal conversion
layer, a residual connection layer, and a fully connected layer (including regression layer).
The function of the signal conversion layer is to transform the one-dimensional time series
signals into a two-dimensional image so that the neural network can identify it better.
For the first layer, x1~x14 are time series signals, as shown in Figure 1. These signals are
input into the signal conversion layer. The function of the residual connection layer is to
extract the high-level features from the inputted images to identify the different time series
signals. In order to distinguish the differences in time series signals, the sublayers Stem,
Incept-A, Incept-B, Incept-C, and Incept-D are used, which have different convolutional
nodes. The function of convolution is to extract information from the input image. The role
of pooling is to perform feature selection, thereby reducing the number of features, and
thus the number of parameters. In this paper, the residual connection layer is transferred
directly from the Res-incept-V2 neural network, which absorbs the transfer learning neural
network [19]. The fully connected layer transforms the high-level features (matrices) into
large one-dimensional vectors that can identify images and output a continuous value (i.e.,
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nozzle diameter). The regression layer must be located at the end of the AU-RES neural
network. Because the AU-RES neural network outputs a continuous value, it is a regression
problem, rather than a classification problem.
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3. Algorithm of AU-RES Neural Network
3.1. Signal Conversion in the Time Domain

The data collected in Figure 1b include x1~x14. However, in practice, these data have
different effects on nozzle diameter. x1~x5 denote real-time data collected during fracturing
fluid flowback. These data change frequently, and are the main factor affecting nozzle
diameter, while x6~x14 are data measured off-line, and are generally stored in the database.
They rarely change, and are minor factors affecting the nozzle diameter. In addition, there
are other parameters, but because these parameters have very little influence on nozzle
diameter, they are ignored, and their influence is implied in the weight of the AU-RES
neural network. Therefore, the data transformation algorithm is designed according to the
characteristics of these data.

We can define one-dimensional time series signals x1 = [x11, x12, . . . , x1M], x2 = [x21,
x22, . . . , x2M], . . . , x5 = [x51, x52, . . . , x5M], where x1~x5 are shown in Figure 1b. M is the
sample number. Therefore, they can be written as:

xI = [ xi1, xi2, . . . , xiM], i = 1~5 (3)

We can also define another one-dimensional signal, as follows:

~
xj = [xj, xj, xj] j = 6 ∼ 14 (4)

In Equation (4), we want to extend x6~x14 in Figure 1b as vectors, so that variations in
nozzle diameter can be reflected.

Definition 1. We define a multi-variant time series and non-time series signal:

X = [x1, x2, x3, x4, x5, x1, x2, x3, x4, x5,
~
x6,

~
x7, . . . ,

~
x14] (5)

where x1~x5 are time series signals, and x̃6 ∼ x̃14 is a single data point, in which x1~x5 ∈ RM,
x̃6 ∼ x̃14 ∈ R3. Therefore, X is a column vector and X ∈ R10M+27, and we merge all the data
in Figure 2 to X. When M = 28, the length of X is 307. Because the signals x1~x5 contain noise,
we need to filter the signals, as shown in Figure 3. In Figure 3, the input signals include x1~x5
and x̃6 ∼ x̃14. The process of data merging is shown in Figure 4. Since the amplitude of the
input signals are inconsistent, it needs to be normalized to convert its amplitude to [0–1]. The
normalization equation is:



Processes 2023, 11, 1773 6 of 17

X̂i = (Xi − Xmin)/(Xmax − Xmin) (6)

where Xi is the ith element of X. X̂i is the normalized result. The normalized data can meet the
requirement of neural network. In the next module, all the components of X̂i are combined to form a
column vector with dimensions of 10M + 27. Finally, a matrix, namely a two-dimensional image, is
formed by the algorithm presented as Equation (8).

Definition 2. We also define a dataset:

D = {(X1,Y1), (X2,Y2), . . . , (XN,YN)} (7)

D is taken as the training sample and testing sample for the AU-RES network. Y is the
diameter of the nozzle, which is a continuous number. Therefore, the task of the AU-RES network
is to find the map between the time series signal X and the nozzle diameter. Note that this is a
regression problem, which is different from the problem of time series classification.

Next, we create a mapping relationship, X→I, which converts X into a two-dimensional matrix
(image) using the following equation:

I =


cos(X1 + X1) cos(X1 + X2) cos(X1 + X10M+27)
cos(X2 + X1) cos(X2 + X2) cos(X2 + X10M+27)

cos(X10M+27 + X1) cos(X10M+27 + X2) cos(X10M+27 + X10M+27)

 (8)

where I ∈ R(10M+27)×(10M+27), which is similar to the GAF transformation [20–23].
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The matrix I can be drawn as an image, as shown in Figure 4. Figure 4a is a clear
image that includes many square lattices. Every lattice reflects the relationship between
xi and xj. Therefore, this image can represent the characteristics of x1~x14. The blue color
(dark color) represents low signal amplitude (the lowest value is 0), and the yellow color
(bright color) represents high signal amplitude (the highest value is 1). Therefore, the color
of the image reflects the distribution of the original signal amplitude. In order to improve
the generalization ability of the neural network, it is necessary to convert clear images into
fuzzy images. Therefore, Figure 4a is blurred, and the fuzzy image is shown at Figure 4b.

Processes 2023, 11, x FOR PEER REVIEW 7 of 18 
 

 

x1 x2 x3 x4 x5 x1 x2 x3 x4 x6~x14

X i

X i

x 1
x 2

x 3
x 4

x 5
x 1

x 2
x 3

x 4
x 6

~x
14

  

(a) (b) 

Figure 4. The image converted by the GAF transformation. (a) Clear image. (b) Blurred and fuzzy 
image. 

3.2. Residual Neural Network 
In the course of our research, we compared different networks, such as Lenet, 

Alexnet, VGG16, residual network Inception V2, etc., and we found that the residual net-
work [24–26] had the best performance, so the residual network was used to predict the 
nozzle diameter. The residual network was proposed by Kaiming HE [18,24], and consists 
of different residual modules; the basic residual module is shown in Figure 5. 

1×1 conv
32

3×3 conv
48

3×3 conv
64

1×1 conv
32

3×3 conv
32

1×1 conv
32

1×1 conv
32

ReLu activation

xl

xl+1

O1 O2 O3

O4

1×1 conv
32

3×3 conv
48

3×3 conv
64

1×1 conv
32

ReLu activation

1×1 conv
32

xl

xl+1

O1
O2

 

 

(a) (b)  

Figure 4. The image converted by the GAF transformation. (a) Clear image. (b) Blurred and fuzzy image.

3.2. Residual Neural Network

In the course of our research, we compared different networks, such as Lenet, Alexnet,
VGG16, residual network Inception V2, etc., and we found that the residual network [24–26] had
the best performance, so the residual network was used to predict the nozzle diameter. The
residual network was proposed by Kaiming HE [18,24], and consists of different residual
modules; the basic residual module is shown in Figure 5.
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In Figure 5, it can be seen that the residual neural network includes 4 kinds of residual
module, with each module having a different function. Different module combinations are
designed in the residual network to sense different visual fields in the image, that is, to
extract different features of the image. In addition, there is a phenomenon in deep learning
neural networks whereby if the number of network layers is small, the training error will
be large, but if the number of network layers is too large, a “degradation” phenomenon can
easily occur, that is, the network accuracy will decrease instead of increasing. Therefore, a
direct channel is added to the residual network, the main purpose of which is to retain the
image information (after many convolutional layers have been transformed, the original
information of the image may disappear, resulting in network degradation). By employing
this setting, the residual network can not only obtain higher precision, but the degradation
phenomenon can also be avoided.

Figure 5a shows the residual module of Incept-A, which has 4 channels to convert the
input signal. From left to right, in the first channel, the image is converted through 1 × 1,
3 × 3, and 3 × 3 convolutional layers. Where ‘1 × 1 conv 32′ means the kernel size is 1 ×
1, and the depth is 32. Every ‘conv’ includes a convolutional layer, a batch normalization
(BN) layer and an activation function (ReLu), as is shown in Figure 5e. Similarly, in the
second channel, the image is converted through 1 × 1 and 3 × 3 convolutional layers. In
the third channel, the image is converted through a 1 × 1 convolutional layer. The first
layer, the second layer and the third layer are all connected to a 1 × 1 convolutional layer.
This layer plays the role of changing the image dimensions so that the dimensions are the
same as those of the fourth channel. If the input image is 64 × 64, the output O1 is 60 × 60,
the output O2 of the second channel on the left is 62 × 62, and the output O3 of the third
channel on the left is 64 × 64, since the dimensions of the three images are inconsistent, it is
necessary to perform a transformation in the 1 × 1 convolutional layer to obtain an output
image with dimensions of 64 × 64. The fourth channel is the direct channel of the image,
which reflects the ‘identity mapping’. This channel is very important for the residual neural
network, and can reserve the information in the image during signal conversion. Therefore,
network degradation during training can be avoided, and the precision of the network can
be improved. Because of the existence of the identity mapping layer, the error of image
recognition can be reduced.

In the same way, Figure 5b shows Incept-B, which consists of three channels. Figure 5c
shows Incept-C, which consists of three channels. In addition, Figure 5d shows Incept-D,
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which consists of four channels. These modules contain different numbers of convolutional
layers. Compared with Incept-A and Incept-D, the third channel on the left of Incept-A
has only one convolutional layer, while the third channel on the left of Incept-D has two
convolutional layers. Therefore, the output O3 of Incept-A is different from that of Incept-D.

3.3. AU-RES Neural Network

Based on the structure of the residual network, we added a data feature transformation
layer and a fully connected layer to form a new AU-RES neural network. The structure
of the AU-RES neural network is shown in Figure 6. Layer 1 is the signal conversion
layer in Figure 2. It can convert multiple one-dimensional time series signals into a two-
dimensional image. Layer 2 is the residual connection layer in Figure 2, which can extract the
high-level features of the input image. In layer 2, the ‘stem’ includes 12 convolutional layers,
12 batch normalization layers, 12 activation functions (ReLu), a max-polling layer, and an
average-pooling layer. Since the structure of ‘stem’ in layer 2 is the same as that of Res-Inception-
V2, the detailed structure of the ‘stem’ is not drawn here. Layer 3 is the fully connected layer,
and the last part is the regression layer, which outpus a value for nozzle diameter.
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3.4. Loss Function

Since the AU-RES network outputs continuous values, the mean square error MSE is
used as the loss function, as follows:

Loss(Ŷt, Yt) =
1
n

n

∑
i=1

(Ŷi
t−Yi

t )
2 (9)

where Ŷt is the expected output. Yt is the actual output. n is the number of training samples.
Loss reflects the difference between the actual output and the expected output.

3.5. Training Algorithm

The training algorithm is shown in Figure 7, and can be described as follows:

Step 1: Data are collected on site. Then, unreasonable data are filtered out and deleted.
Finally, samples are made using the processed data. The input to the residual model in
the AU-RES neural network is the two-dimensional image of the data transformation,
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including flow, pressure, and temperature. In addition, the output of the AU-RES neural
network is the label (Y in Equation (6)).
Step 2: The finite element difference method is used to calculate the downhole fluid
dynamics model, supplementing the simulated sample.
Step 3: The neural network hyperparameters and initial values are set.
Step 4: 80% of samples are selected as the training set to train the neural network.
Step 5: Whether the AU-RES neural network training process converges is observed.
Step 6: 20% of the sample set is used as the test set to study the influence of different
hyperparameters on the prediction accuracy and optimize the AU-RES neural network
structure. Here, we introduce an index of prediction error E for AU-RES.

E =
√
‖ye − ya‖2 (10)

where ‖ ‖2 represents the norm of Euclidean space vectors.
Step 7: Training process finished.
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4. Simulation and Experiment
4.1. Training Sample

Training samples for the AU-RES network come in two types: samples collected on
site, and simulated samples calculated using the finite element difference method. The flow
rate, fluid pressure, fluid temperature, fluid viscosity, and sand content in the fluid are collected
at 1 min intervals at the gas well site. When the AU-RES neural network is trained, the training
sample is input to the AU-RES neural network, and the label is added to the output end of the
neural network. Here, the label is nozzle diameter (Yi in Equation (6)).

These samples (one-dimensional time series signals) are transformed into images
in the signal conversion layer. Images are shown in Figure 8 that correspond to nozzle
diameters from 3 mm to 13 mm. In Figure 8, the blue color (dark color) represents low
signal amplitude (the lowest value is 0), and the yellow color (bright color) represents high
signal amplitude (the highest value is 1). Different color distributions in the image represent
changes in the amplitude of the input one-dimensional time series signals. Therefore, the overall
color of the image reflects the nozzle diameter corresponding to the time series signal.
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4.2. Training Process

The training samples are input into the AU-RES neural network to train the AU-RES
neural network. The parameters corresponding to node number and convolutional kernels
in the convolutional layer and the pooling layer in the AU-RES network are the same as
those of Res-Inception-V2. The initial bias value of each node in the convolutional layer
is set as [0.001, 0.001, . . . , 0.001], the weight as [0, 0, . . . , 0], and the initial learning rate
is 0.0001. The parameter update method for the AU-RES neural network is Adam. When
training the neural network, the computer configuration was as follows: the CPU was an
AMD Ryzon 3 3100, and the memory (RAM) size was 24 GB. The computer graphics card
was an NVIDIA GeForce GTX 1050Ti. It took 26 h to train the AU-RES neural network.
However, the testing time was only 0.20 s. Therefore, the AU-RES neural network can
be used in engineering applications. The AU-RES neural network was trained for 150
epochs, and its convergence was observed, as shown in Figure 9. Figure 9a represents
the training RMSE, which reflects the Root Mean Square Error between the actual output
and the expected output of the training sample. Figure 9b represents the training loss,
which reflects the loss function in Equation (8) between the actual output and the expected
output of the training sample. When training the AU-RES neural network, loss can often
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be used to calculate the gradient and update the weight value of each node. As can be
seen from Figure 9, after 150 epochs of training, the RMSE value converges stably to 0.131,
and the loss value converges to 0.00021, which indicates that the AU-RES neural network
parameters have reached their optimal values. The AU-RES neural network training
process is concluded.
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Figure 9. AU-RES neural network training process. (a) Training RMSE. (b) Training Loss.

4.3. The Influence of Hyperparameters on AU-RES Network Performance

AU-RES neural network hyperparameters include internal node number, convolution
kernel size, learning rate, and gradient update method. In this paper, since the number of
nodes and the convolutional kernel of the convolutional layer are the same as those of the
residual network Res-Inception-V2, these parameters are fixed. When training the AU-RES
network, the change in network performance was observed when changing the learning
rate, gradient update method, and the number of nodes in the fully connected layer.

After changing the learning rate of the AU-RES neural network, we observed the
change in the performance of the network, with results as shown in Table 1. As can be seen
from Table 1, the AU-RES neural network performance was best when the learning rate
was 0.0001.

Table 1. The effect of using different learning rates on the performance of the neural network.

Number Learning Rate Loss E

1 0.001 0.0512 0.4601
2 0.0001 0.00021 0.1689
3 0.00001 0.0020 0.2015

The gradient update method is changed, with Sgdm, Adam and RMSprop being
employed, respectively. The test error of the different methods after network training was
observed, with results as shown in Table 2. It can be seen that when the Adam method was
adopted, the test sample prediction error E was the lowest, which means that the accuracy
of the network was the highest.

Table 2. The effect of update method of hyperparameters on the performance of the neural network.

Number Gradient Updating Methods Loss E

1 Adam 0.00021 0.1689
2 RMSprop 0.00137 0.3358
3 Sgdm divergence divergence
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4.4. The Influence of the Fully Connected Layer on AU-RES Network Performance

The number of nodes in the fully connected layer can be changed, and the correspond-
ing changes in AU-RES network performance can be observed, as shown in Figure 10. The
fully connected layer of the AU-RES network is divided into three layers, among which the
number of nodes in the third layer must be consistent with the dimensions of the output
signal. Since the output of the AU-RES network is a one-dimensional continuous value,
the number of nodes in the third layer (i.e., the regression layer) network can only be 1.
However, we can change the number of nodes in layer 1 and layer 2 to find the best fully
connected layer structure. Here, the number of nodes is adjusted from 16 to 64. If the
number of nodes is too great, the computing speed will decrease, and overfitting will occur.
As can be seen from Figure 10, the RMSE reaches its lowest value of 0.1605 when fc1 = 24
and fc2 = 32. Therefore, the performance of the AU-RES neural network is the best.
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4.5. Comparison of AU-RES Network with Other Networks

The AU-RES neural network was compared with other deep learning neural networks,
and the simulation results are shown in Figure 11. In the past, the experience control method
has often been used for fracturing flowback control, but there were no artificial intelligence
methods available. Therefore, there are no articles comparing their results. In this paper,
we only compared the results of the AU-RES neural network with those of other deep
learning neural networks. The selected deep learning neural networks include LetNet5,
AlexNet, VGG16, etc. When training the networks, the learning rate of the networks was
0.0001, and the hyperparameter update method was Adam. The number of epochs for
neural network training was 150. Then, the same test sample was input into different neural
networks, and the output of each neural network was observed, as shown in Figure 11 and
Table 3. As these deep learning neural networks are often used for image recognition, the
RegressionLayer for the final layer needs to be changed to ClassficationLayer, so that the
networks can output continuous values.

In Figure 11, the blue line ‘TestLabel’ is the output label of the neural network, which
is equivalent to the expected output of the neural network. The orange line ‘LeNet5′

represents the actual output of LeNet5 neural network. The green line ‘AlexNet’ represents
the actual output of the AlexNet neural network, the black line ‘VGG16′ represents the
actual output of the VGG16 neural network, and the purple line ‘AU-RES’ represents the
actual output of the AU-RES neural network proposed in this paper. The values of these
curves range from 3 to 13. If a curve is far from the blue line, it has a large error. As can
be seen from Figure 11, the LeNet5 network exhibited the largest error. The reason for
this is that the network has a simple structure and can only recognize the characters 0–9,
so it has difficulty recognizing complex continuous one-dimensional time series signals.
AlexNet is a mature transfer learning neural network with increased network depth, so its
recognition accuracy is higher than LeNet5 network. VGG16 is a deeper neural network, so
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its recognition accuracy is further improved. The AU-RES network studied in this paper is
an augmented residual neural network. Because the data transformation layer is added
and the residual layer and the fully connected layer are improved, the prediction accuracy
is the highest. The total error of the output signal of the AU-RES neural network is 0.1689,
which indicates the superiority of the AU-RES neural network.
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Figure 11. Comparison of the AU-RES network with other networks.

Table 3. Performance of the different neural networks.

Number Network RMSE Loss E

1 LeNet5 0.183 0.0065 2.1032
2 AlexNet 0.162 0.0013 0.8875
3 VGG16 0.157 0.0010 0.8023
4 AU-RES 0.131 0.00021 0.1689

4.6. Experiment

On the basis of the AU-RES neural network algorithm studied in this paper, control
software was developed. We installed the software on an intelligent controller, so as to
produce a prototype of the intelligent control device for fracturing fluid flowback. The
prototype of the intelligent control device is shown in Figure 12.
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The prototype was applied to a gas field experiment. During the experiment, the
main parameters of the fracturing fluid in the oil tube were collected once an hour, and the
results are shown in Table 4. In Table 4, the data in the first column represent time, and the
data in the second to fourth columns correspond to the main fracturing fluid parameters
in the oil tube, and the data in the seventh column indicate the nozzle diameter predicted
by the AU-RES neural network. Through the experiment, it was found that there was no
sand present in the fracturing fluid, indicating that the AU-RES neural network was able to
correctly predict the diameter of the nozzle, and the experiment was successful.

Table 4. The main data collected during the experiment.

Time Oil Pressure Casing Pressure Flow Rate Viscosity Temperature Nozzle Diameter
Hour:Minute MPa MPa m3/h mPas ◦C mm

6:00 3.5 4.1 4.50 1 39 6
7:00 3.5 4.1 4.50 1 39 6
8:00 3.5 4.1 4.50 1 39 6
9:00 3.5 4.1 4.50 1 39 6
10:00 3.0 3.8 3.85 1 39 6
11:00 3.0 3.8 3.85 1 39 6
12:00 3.0 3.8 3.85 1 39 6
13:00 3.0 3.4 3.85 1 38 6
14:00 2.6 3.4 3.18 1 38 6
15:00 2.6 3.4 3.18 1 38 6
16:00 2.6 3.4 3.18 1 38 6
17:00 2.6 3.4 3.18 1 38 6

When training the AU-RES neural network, it is necessary to collect a lot of data from
the oil and gas field. This is a potential limitation or challenges for the application of the
AU-RES neural network. Sometimes, these data are difficult to obtain due to data privacy.
However, the AU-RES neural network is often used in industrial enterprises. Because they
have a lot of data, they are able to easily train the AU-RES neural network.

5. Conclusions

Through the research of this paper, the following conclusions can be drawn:
In the process of hydraulic fracturing flowback control, it is difficult for traditional

methods to achieve good results due to a variety of nonlinear and uncertain factors, leading
to the problem of ‘sand production’. An artificial intelligence method consisting of the
AU-RES neural network can solve this problem well, and the field experiment results
were good.

The AU-RES neural network was based on an existing residual network, adding a sig-
nal conversion layer to transform one-dimensional time series signals into two-dimensional
images that can better adapt to the characteristics of the residual network, thus improving
the prediction accuracy.

In the AU-RES neural network, the performance of the neural network can be im-
proved by optimizing the hyperparameters (learning rate, gradient update method, number
of nodes in the fully connected layer, etc.) After optimization, the learning rate was 0.0001.
The gradient update method used was ‘Adam’. The fully connected layer had 3 sublayers,
i.e., Fc_1, Fc_2 and Fc_3, among which Fc_1 had 24 nodes and had Fc_2 32 nodes. The
RMSE and loss of AU-RES network training were 0.131 and 0.00021, respectively, and the
prediction error of the test samples was 0.1689.

The AU-RES neural network can effectively predict multiple one-dimensional time
series signals and explore their signal features. It can be applied not only to tight gas frac-
turing fluid flowback control, but also to other industries, where one-dimensional timing
signals need to be identified and predicted. Therefore, this study provides a theoretical
basis for the application of artificial intelligence technology in various industries.
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With the development of new materials and new processes, hydraulic fracturing flowback
technology has developed rapidly. The use of new nanomaterials, new proppants, new hydraulic
fracturing flowback design models, and artificial intelligence to control the flowback process
have greatly improved the efficiency and quality of hydraulic fracturing flowback.
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