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Abstract: Silicon is considered to have significant potential for anode materials in lithium–ion
batteries (LIBs) with a theoretical specific capacity of 4200 mAh g−1. However, the development of
commercial applications is impacted by the volume shift that happens in silicon when charging and
discharging. In this paper, a yolk–shell–structured Si@void@C anode material has been developed
to address this problem. The silicon nanoparticle yolk material is obtained by recycling kerf loss
(KL) Si waste from the process of slicing silicon block casts into wafers in the photovoltaic industry;
the carbon shell is prepared by a hydrothermal method with glucose, and the sacrificial interlayer
is Al2O3. The produced material is employed in the production of anodes, exhibiting a reversible
capacity of 836 mAh g−1 at 0.1 A g−1 after 100 cycles, accompanied by a Coulomb efficiency of 71.4%.
This study demonstrates an economical way of transforming KL Si waste into materials with an
enhanced value for LIBs.

Keywords: lithium–ion batteries; anode; kerf–loss Si waste; yolk–shell structure

1. Introduction

Due to their high energy storage capacity and fast charging rates, lithium–ion batteries
(LIBs) have become the dominant rechargeable batteries used [1–4]. However, current com-
mercial lithium–ion batteries mostly use graphite anodes and cannot satisfy the growing
demand for higher energy storage capacity [5–8]. Therefore, it is imperative to develop
enhanced anode materials for lithium–ion batteries. The theoretical specific capacity of Si is
4200 mAh g−1, which is more than 10 times the theoretical specific capacity of the carbon
electrodes currently used in LIBs [9–12]. As an inorganic non-metallic material, silicon
is extremely abundant and widely available. Most of the earth’s silicon is stored in the
form of oxides within the earth’s crust. In recent years, the rapid development of the solar
energy industry has led to an increasing use of silicon in the market. At the same time,
a lot of kerf loss (KL) Si waste from crystal silicon cutting is discarded, resulting in both
resource waste and environmental damage. It is estimated that more than 2.6 × 105 tons of
kerf loss (KL) Si waste are discarded every year [13–16]. Notably, using KL Si waste as an
anode material in LIBs not only reduces the production cost of Si-based anodes but also
reduces waste and excessive hoarding. Such resources can generate significant commercial
value if used properly. However, in the process of charging and discharging, Si undergoes
substantial volumetric expansion (~300%), leading to the fracture of Si particles, and even-
tually, the active material breaks off from the collector, deteriorating in electrochemical
performance [17–20].

Processes 2023, 11, 1764. https://doi.org/10.3390/pr11061764 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11061764
https://doi.org/10.3390/pr11061764
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-6871-8292
https://orcid.org/0000-0001-7083-5423
https://orcid.org/0000-0002-6657-5187
https://doi.org/10.3390/pr11061764
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11061764?type=check_update&version=1


Processes 2023, 11, 1764 2 of 14

Many researchers have made contributions attempting to solve this problem. Firstly,
modifying the material is the primary measure. Yang [21] used HF and NaOH to etch KL
Si waste. The Si etched by HF exhibited a porous structure, and sodium hydroxide etching
produced a sheet structure. A discharge–specific capacity of 600.7 mAh g−1 was obtained
after 200 cycles at the current density of 0.42 A g−1. However, treating the material through
acid or alkaline etching causes damage to the material itself, and the overall process and
results of treating silicon materials through acid or alkaline treatment are uncontrollable.
Therefore, researchers have proposed the carbon–coating treatment. The addition of a
carbon layer can effectively reduce the volume expansion of the silicon material during
the charge and discharge cycles. Moreover, the good conductivity of carbon material
also improves the overall conductivity of silicon material. Liu [18] proposed a simple
coprecipitation method of Si and lignin using electrostatic attraction, followed by a thermal
annealing process, to produce a high–capacity Si/C cathode material. At a current density
of 0.2 A g−1, this composite material exhibited a charging capacity of 1016.8 mAh g−1 and
maintained a capacity retention rate of 74.5% after 100 cycles.

Using carbon as a non-metallic material to coat the surface of silicon provides excellent
electrochemical properties, and the production methods for carbon material are diverse
and highly controllable, making it an excellent coating material. Many researchers have
conducted numerous experiments on this method, using various materials in the coating
process to achieve better electrochemical performance. Among them, metallic materials
are also excellent coating materials. Zhang [22] used KL Si waste to synthesize silver
nanoparticles under DC thermal plasma conditions and then combined them with Si to
obtain Si@SiOx@Ag nanocomposite anode materials. The material showed a high initial
energy efficiency of 89.9% and a large initial discharge capacity of 2919 mAh g−1 at 0.5 A g−1.

Coating silicon material with other materials that have smaller volume changes can
alleviate the problem of silicon material breaking due to excessive volume expansion, to
some extent. However, a single coating can only partially address this issue. Researchers
have found that, in addition to coating, designing a hollow layer between the silicon layer
and the carbon coating layer can reserve some space for the volume expansion of silicon,
and the outer coating layer can also suppress its volume expansion. Therefore, a special
structure, the yolk–shell structure, is used in silicon-based anode materials. Gao [23] suc-
cessfully used spray drying, carbonization, and etching to create nitrogen–doped yolk–shell
Si@void@C/CNTs microspheres. Si@void@C/CNTs anode material has a discharge capac-
ity of 1034 mAh g−1 after 500 cycles at 200 mA g−1, a reversible capacity of 680 mAh g−1

after 500 cycles at 500 mA g−1, and an exceptional rate capacity of 204 mAh g−1 at 4 A g−1;
this material demonstrates remarkable electrochemical performance.

Overall, the basic treatment methods for KL Si waste include carbon recombination,
metal recombination, and structural improvement, which have been employed to mitigate
the large volumetric change of Si during charging and discharging.

In this paper, diamond–wire–cut multicrystalline Si waste is selected as the Si source;
glucose is used as the carbon source; the intermediate sacrificial layer is prepared by
metathesis reaction; the carbon layer is formed by hydrothermal reaction, and the yolk–
shell structure is formed by etching. The structure has silicon nanoparticles as the inner
core and graphite carbon as the outer yolk–shell layer. The hollow structure in the shell
can effectively reduce the volume expansion effect of silicon particles. This material design
approach for making high-capacity, stable anodes for lithium–ion batteries converts KL
silicon waste into useful materials.

2. Materials and Methods
2.1. Pretreatment of KL Si Waste

The KL multicrystalline Si waste was supplied by Jinko Power Technology Co., Ltd.
(Shanghai, China) from a diamond–wire sawing (DWS) process. It was cleaned with
anhydrous ethanol 3 times and subsequently calcined for 1 h at 800 ◦C in an Ar atmosphere
to remove the organic impurities. Then, the powder was pickled with 10 wt% hydrochloric
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acid for 30 min and then rinsed 3 times with deionized water to eliminate any residual
metal ions in the powder. After centrifugation, the powder was dried in an Ar atmosphere
at 50 ◦C to obtain microscale Si powder. Then, nanoscale Si powder (200–500 nm) was
obtained after wet grinding at 600 rpm for 4 h, followed by centrifugal drying. Agate beads
with diameters of 3.5 mm and 1.0 mm were used as the abrasive grinding material, with a
weight ratio of beads/Si of 20:1.

2.2. Synthesis of Si@void@C

The preparation process of the yolk–shell Si@void@C composite was illustrated as
Figure 1. Firstly, a certain amount of AlCl3 was weighted and dissolved into 10 mL of
deionized water in a beaker. Then, 10 mL of ammonia and 0.4 g of pretreated Si powder
were added into the solution. After magnetic stirring with ultrasonication for 2 h, the
mixture was collected by centrifugal drying. The dried mixture was calcined at 700 ◦C for
2 h with a horizontal tube furnace in an Ar atmosphere. Samples with an AlCl3/Si weight
ratio of 2:1, 1:1, and 1:2 were named as SA−21, SA−11, and SA−12, respectively.
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Secondly, 0.4 g of SA−21, SA−11, or SA−12 were weighted into a beaker containing
25 mL of deionized water. Then, 1.2 g of glucose monohydrate were added to the above
solution, followed by magnetic stirring with ultrasonication for 30 min. The precipitate
was transferred into a Teflon–lined stainless steel autoclave and heated to 180 ◦C for 8 h.
The resulting product was subsequently washed with deionized water, dried at 80 ◦C, and
calcined for 2 h at 800 ◦C in an argon atmosphere. The obtained samples were named as
SAC−21, SAC−11, and SAC−12, respectively.

Finally, SAC samples were pickled with a 4 mol/L hydrochloric acid solution for 24 h
and then cleaned with deionized water 3 times. The obtained samples were named as
SVC−21, SVC−11, and SVC−12, respectively.

2.3. Materials Characterization

The elemental content of KL Si waste before and after pretreatment is determined by an
X-ray fluorescence spectrometer (XRF, ARL ADVANT’X IntelliPowerTM, Santa Clara, CA,
USA). The morphologies of the samples were examined using scanning electron microscopy
(SEM, JEOL JSM–7800F, Tokyo, Japan) and transmission electron microscopy (TEM, FEI
Talos F200x G2, Waltham, MA, USA). Energy dispersive X-ray spectroscopy (EDS) analyzed
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the elemental distribution within the samples. X-ray diffraction (XRD, Bruker D8, Billerica,
MA, USA) with Cu Kα radiation determined the crystalline structures of the products.
X-ray photoelectron spectroscopy (XPS, Thermo Fisher K–Alpha Nexsa, USA) assessed the
surface composition of the samples. The Raman system (DXR, Thermo Fisher, Waltham,
MA, USA) with a 532 nm laser was used to prove the existence of Si and C and examine the
structure of carbon. The carbon content is measured using the thermogravimetric analyzer
(TG, NETZSCH STA449F3, Selb, Germany).

2.4. Electrochemical Measurements

The electrochemical performance of the Si@void@C material was assessed through
the utilization of CR2032 half cells, wherein lithium foil served as both the counter and
reference electrodes. The active material, the carbon black conductive agent, and the
polyvinylidene fluoride binder were mixed and dissolved in N-methylpyrrolidone at a
ratio of 8:1:1. The slurry was coated on the carbon–coated copper foil, followed by vacuum
drying at 100 ◦C for 12 h. The mass loading of the electrodes was approximately 1.0 mg
cm−2. The tested half–cells were then assembled in an argon–filled glovebox. Celgard
2400 was used as the separator, with 1.2 M LiPF6 in EC/DEC/EMC(1:1:1) + 10% FEC as
the electrolyte.

Cyclic voltammetry (CV) was conducted at various scan rates; galvanostatic charge–
discharge (GCD) cycling was performed at various current densities, and electrochemical
impedance spectroscopy (EIS) was measured over a frequency range of 100 kHz to 0.01 Hz
using an Ivium–n–Stat Electrochemical Workstation. Charge/discharge tests were per-
formed on a Neware BTS–5V10 mA battery test system under different current densities
between 0.01–1.2 V.

3. Results
3.1. Material Morphology, Structure, and Chemical Composition

Table 1 presents the elemental compositions of KL Si waste and pretreated Si powder
determined by XRF. The KL Si waste contains a significant amount of impurities due to
the inevitable introduction of impurities during the cutting process, mainly from damaged
diamond–wire, such as Fe, Cr, Zr, and Ni. After the pretreatment process, the content of
impurities in Si powder has been significantly reduced, a result attributed to acid pickling.

Table 1. The elemental compositions of KL Si waste and pretreated Si powder, wt%.

Element Si Fe Cr Zr Ni Ca Mg Cu

KL Si 89.94 5.33 1.28 1.21 0.66 0.048 0.042 0.032
pretreated Si 98.56 0.0096 / 0.024 0.020 0.0090 / /

The SEM images of SVC−21, SVC−11, and SVC−12 are shown in Figure 2a–c, re-
spectively. All three samples contain sheet–like structures mixed with uneven spheres.
The spherical structures are due to the decomposition of glucose into soluble molecules
such as aromatic compounds, organic acids, and oligosaccharides in the hydrothermal
reaction. After polymerization and aromatization, these molecules will diffuse around
with a particle as the core to grow carbon spheres [24]. The addition of metal ions (Al3+)
in the hydrothermal process will accelerate the polymerization process and promote the
formation of spherical structures [25]. EDS mapping results of SAC−21, SAC−11, and
SAC−12, shown in Figure 3a–c, respectively, indicate that the sheet–like structure mainly
contains C and Si, and the spherical structures mainly contain C. The uniformly distributed
Al and O indicate that a layer of Al2O3 was synthesized, which is also proved by the TEM
image of SAC−11, shown in Figure 4. The amorphous layer without lattice fringes in the
HRTEM image was believed to be a carbon shell, as carbon is in the amorphous phase,
proven by XRD patterns in Figure 5 and previous studies [7,8]. The crystalline layer with a
lattice fringe spacing of 0.31 nm corresponds to the (111) plane of Si, while the intermediate
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crystalline layer with a lattice fringe distance of 0.14 nm corresponds to the (440) plane
of Al2O3.
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Figure 2d–f presents the TEM images of SVC−21, SVC−11, and SVC−12, respectively.
In all samples, Si particles are enveloped by an amorphous carbon shell with a void space
between the Si core and the carbon shell. This structural arrangement facilitates excellent
dispersion and effectively prevents the aggregation of Si particles.

The SAC samples exhibit the (111), (220), (311), (400), and (331) crystal planes of
silicon at 28◦, 47◦, 56◦, 69◦, and 76◦ positions [26], respectively. Additionally, the SAC
samples show the (111), (311), and (400) crystal planes of Al2O3 at 19.6◦, 37.6◦, and 66.7◦

positions [27]. SAC samples exhibit a mixture phase of Si and Al2O3, which is consistent
with the EDS mapping results shown in Figure 3. Of note is that Al2O3 peaks increased
significantly with the increase of the AlCl3/Si weight ratio during the synthesis of SAC.
In contrast, only the crystal planes of silicon are apparent in the XRD pattern of the SVC
sample, and the phase of Al2O3 is not clearly displayed, indicating that the etching process
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effectively removes the Al2O3. This is also illustrated by the EDS mapping result of SVC−11
as shown in Figure 6. Compared with the EDS mapping result of the SAC material, the
content of the Al element in the SVC material is significantly decreased, thus proving that
the etching process effectively removes aluminum. As the carbon in the SVC sample is in
the amorphous phase, no carbon peak is detected [28].
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X-ray photoelectron spectroscopy (XPS) was performed to examine the elemental
composition of SVC−11, as depicted in Figure 7. The obtained XPS spectrum exhibits
prominent peaks corresponding to C 1s, Si 2p, Si 2s, O 1s, and Al 2p (Figure 7a), confirming
the presence of Si, C, O, and Al [29,30]. The presence of Al can be attributed to the
residual Al2O3 resulting from the acid pickling process of SAC−11. Moreover, the C 1s
XPS spectrum provides insights into the binding configurations of oxygen and carbon in
SVC−11 (Figure 7b). The deconvolution of the C 1s XPS spectrum reveals three distinct
peaks representing the C–C bond (284.8 eV), the C–O bond (286.2 eV), and the C=O
bond (288.8 eV) [31]. The Si 2p XPS spectra of SVC−11 is shown in Figure 7c, which is
deconvoluted to three different peaks: the Si–Si bond (99.6eV), the Si–C bond (100.2 eV),
and the Si–O bond (103.5 eV) [32]. The presence of C–C bonds indicates the existence of free
carbon in the material, which is caused by the carbon layer generated during hydrothermal
processes. The presence of Si–Si bonds confirms the existence of elemental silicon in
the material. The appearance of Si–O bonds is due to the slight oxidation of the silicon
surface during hydrothermal processes, while the Si–C bonds are produced during the
hydrothermal process. The Si–C bond can provide a smooth transmission channel during
ion desertion, ensuring the electroneutrality between the electrodes and enhancing the
overall conductivity of the material. The Si–O bond indicates the slight oxidation of the
silicon material surface, and this layer of oxide film can also alleviate the volume change in
silicon to some extent, thereby enhancing its stability. Figure 7d presents the Raman spectra
of SVC−11. Apart from the prominent Si peak observed at approximately 518 cm−1, the
spectral analysis also reveals two distinctive peaks at 1350 cm−1 and 1590 cm−1, which
correspond to the characteristic carbon vibrations. The former can be attributed to the
presence of amorphous carbon materials, while the latter is associated with the vibration of
sp2-bonded carbon atoms in graphite [33,34]. The ID/IG ratio of SVC−11 is approximately
0.88, suggesting a relatively elevated level of graphitization. This enhanced graphitization
is advantageous as it contributes to the improvement of electrical conductivity within the
carbon shell [35].

To further investigate and determine the content of fixed carbon in the SVC composite
material, SVC−11 was subjected to TG testing, as shown in Figure 8. The test conditions
consisted of heating the material in an air atmosphere from 25 ◦C to 800 ◦C at a rate of
10 ◦C/min. Figure 8 shows the thermogravimetric results of the material. It can be observed
from the figure that the mass fraction of the SVC−11 sample decreased by 6.98% when the
temperature reached 460 ◦C, which is caused by the volatilization of bound water and the
oxidation of a small amount of carbon. After 460 ◦C, there was a significant decrease in the
mass fraction of the material, indicating that the fixed carbon composition in the material
had essentially diffused and disappeared in the form of CO2. The fixed carbon content
of SVC−11 is approx. 24.3%, which is suitable for a Si-based anode; refer to previous
literature [7,9].
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3.2. Electrochemical Performance of Si@void@C

The electrochemical performance of Si@void@C samples was evaluated in half–cell
configurations. Figure 9a–c illustrates the cyclic voltammetry (CV) results obtained at a scan
rate of 0.1 mV s−1 across a voltage range of 0.01–1.1 V. The CV curves of all three samples
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are similar. In the first discharge, the broad reduction peak at around 0.7 V corresponds to
the irreversible reaction between Li+ ions and Si surface functional groups, as well as the
solid electrolyte mesophase, which disappeared in subsequent cycles [36]. The reduction
peak at 0.20 V corresponds to the formation of LixSi, while the oxidation peaks at 0.31 V
and 0.49 V arise from LixSi and Si de-alloying, respectively [37,38]. SEI was generated after
the discharge process and charging process in the first cycle, and more silicon was involved
in the intercalation/deintercalation of the lithium–ion process, resulting in a decrease of the
discharge current in subsequent cycles. In subsequent cycles, the current values of the two
oxidation peaks increase notably, attributed to the activation of additional Si atoms in the
material. Most notably, the CV curves nearly overlap after the second cycle, demonstrating
that the anode material exhibits high reversibility.
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Electrochemical impedance spectroscopy (EIS) was performed to investigate the varia-
tions in electrical conductivity and ion diffusion of the fresh electrode. The EIS diagram of
the three materials was fitted into the standard equivalent circuit inside the diagram, which
was composed of the solution resistor Rs from the reference electrode to the working elec-
trode, the Constant Phase Angle Element Cpe in parallel with the charge transfer resistor
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Rct, and the Warburg resistor Wop for solid phase diffusion in series. The EIS test conditions
for the three materials were tested in the frequency range of 100 kHz to 0.01 Hz, and the
AC perturbation amplitude was 10 mV. The Nyquist plots of fresh SVC−21, SVC−11,
and SVC−12 electrodes are presented in Figure 9d–f, respectively. A single semicircle
was evident in the high–frequency region of all three Nyquist plots, attributed to charge
transfer resistance (Rct) at the interface between the active materials and the electrolyte.
A linear response appeared in the low–frequency region, indicative of Warburg diffusion
impedance [39]. The electrode material tends to be a capacitor with the slope of a straight
line close to 90◦. The Bode plots of the three materials are provided in Figure 10. It can be
seen from the Bode plot that the material presents a curve close to the X-axis at a frequency
between 1–1000 Hz. According to the theoretical impedance module, there is a line with a
slope of 1 in the Bode plot [40], but the slope of the tested material is much higher than 1,
which also indicates that the material is controlled by the capacitor’s behavior. The charge
transfer resistance (Rct) of SVC−21, SVC−11, and SVC−12 is 176, 65, and 87 Ω, respectively.
The Rct value of SVC−11 is obviously lower than that of SVC−21 and SVC−12, which
indicates the enhanced charge transfer kinetics of SVC−11 [41].
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Galvanostatic charge–discharge (GCD) measurements were conducted on Si@void@C
electrodes under a consistent current density of 0.1 A g−1 across a voltage range span-
ning from 0.01 V to 1.2 V, specifically for the initial three cycles. For comparison, an
electrode using nanoscale waste Si (WSi) after pretreatment was also prepared and evalu-
ated under the same conditions as described above. As shown in Figure 11a–c, the initial
charge/discharge capacities of SVC−21, SVC−11, and SVC−12 are 4097/2718, 1962/1400,
and 1609/712 mAh g−1, giving the initial Coulomb efficiency of 66.3%, 71.4%, and 44.3%,
respectively. According to the previous literature, the yolk–shell structure has a drawback
that cannot be ignored, i.e., the central hollow layer reduces the contact point between the
silicon core and the outer carbon layer. Experimental results show that SVC−11 has good
electrochemical performance and low transfer resistance. This result is due to the suitable
hollow layer thickness generated at an AlCl3/Si weight ratio of 1:1, which can effectively
inhibit volume change and meanwhile also supplies sufficient contact sites between the
silicon core and the outer carbon layer. Furthermore, the exceptional electrochemical re-
versibility of Si@void@C is further supported by the overlapping charge/discharge curves
observed during the second and third cycles. In contrast, the charge/discharge curves
of WSi exhibit noticeable capacity loss and an increase in voltage hysteresis (Figure 11d).
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These results suggest that the amount of “dead lithium” can be effectively reduced, and the
volumetric expansion of Si can be suppressed by forming the appropriate proportion of
hollow layers and carbon layers.
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Figure 12 presents the results of the long–term cycling performance of Si@void@C
and WSi electrodes at different current densities (0.1, 0.25, 0.5, and 1 A g−1). During the
testing, the SVC−11 electrode outperforms all other samples, demonstrating superior cycle
performance by maintaining a discharge capacity of 836 mAh g−1 even after 100 cycles.
SVC−21 and SVC−12 show relatively poor cycle performance with a discharge capacity
of 345 and 446 mAh g−1 after 100 cycles, respectively, but still much higher than that
of WSi (33.75 mAh g−1). These results suggest that the amount of “dead lithium” can
be effectively reduced; the electronic conductivity can be increased; and the volumetric
expansion of silicon can be suppressed by forming the appropriate proportion of hollow
layers and carbon layers. The enhanced cycling performance of Si@void@C is attributable
to its robust yolk–carbon shell architecture, which provides a void space to accommodate
the considerable volume changes of Si during continuous lithiation and de-lithiation. This
structure facilitates electron transfer and sustains the integrity of the solid electrolyte
interface.

Table 2 provides a comparison between different anode materials and structures and
this present work. Currently, the existing research mostly focuses on the doping of carbon
surface elements and the improvement of the preparation method for yolk–shell structures.
It is true that the doped carbon layer with surface elements has significant improvement
in capacity. However, the materials that can be used for element doping are expansive,
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and the synthesis method is not economical. This present work did not use an element
doping treatment on the carbon surface. A hydrothermal carbonization method was used
to stabilize the carbon coating layer at a low cost. Moreover, the synthesized Si@void@C
anode materials in the present work also present good electrochemical performance with a
cheap Si source from industrial waste and simple processes. The intermediate sacrificial
layer was prepared through a high–temperature dehydration process after the reaction
of ammonia water and aluminum chloride, while the carbon layer was synthesized via
the hydrothermal method, with the advantage of simplicity and controllability in the
fabrication process. The proposed approach effectively utilizes the Si resources; it also
helps to reduce environmental pollution caused by abandoned Si waste.
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Table 2. Comparison of the specific capacity of silicon carbon anode materials.

No. Material Method Specific Capacitance Reference

1 Si–CNF2 freeze drying 640 mAh g−1 at 0.5 A g−1 after 100 cycles [42]
2 Si/C magnesiothermic reduction reaction 662 mAh g−1 at 0.5 A g−1 after 200 cycles [43]
3 Si@HC one–pot sol–gel approach 999.5 mAh g−1 at 0.1 A g−1 after 100 cycles [44]
4 Si@void@C hydrothermal method 1038.5 mAh g−1 at 0.42 A g−1 after 200 cycles [31]
5 Si@void@NC solution coating and calcination process 697.7 mAh g−1 at 0.2 A g−1 after 200 cycles [45]
6 SVC−11 metathesis reaction 836 mAh g−1 at 0.1 A g−1 after 100 cycles present work

4. Conclusions

The yolk–shell Si@void@C with an intermediate hollow layer is fabricated using KL
Si waste as the Si source. The intermediate sacrificial layer is generated by a metathesis
reaction from AlCl3 and ammonia, and the outer carbon shell is generated by a hydrother-
mal process with glucose. Finally, the hollow layer is obtained by etching the intermediate
sacrificial layer. After testing, SVC−11 showed significantly enhanced reversible capacity
and cyclic stability (~836 mAh g−1 after 100 cycles at 0.1 A g−1). This scheme uses KL sili-
con waste as a silicon source. On the one hand, it makes full use of this part of abandoned
resources to enhance the value of materials. On the other hand, such effective resource
utilization avoids environmental pollution. An aluminum layer is prepared by the double
decomposition reaction of aluminum chloride and ammonia water. The method is simple
and controllable. Carbon coating uses cheap glucose and uses a hydrothermal method
for operation; the hydrothermal method is relatively simple, and carbon coating is also
relatively stable. Overall, the method provides a preparation solution for the yolk–shell
structure. The fabrication process involves simple methods and low cost raw materials, pro-
duces an anode suitable for practical applications, and also contributes to recover Si waste
from the photovoltaic industry and reduce potentially negative environmental impacts.
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