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Abstract: In this study, an Fe3O4/Bi2MoO6/g-C3N4 magnetic composite photocatalyst was synthe-
sized for the visible-light-driven photocatalytic degradation of sulfonamide antibiotics, specifically
sulfamerazine (SM1). Characterization techniques, including X-ray diffraction (XRD), scanning
electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spec-
troscopy (FT-IR), photoluminescence spectroscopy (PL), UV-vis diffuse reflectance spectra (UV-vis),
and the use of a vibrating sample magnetometer (VSM), were employed to analyze the fabricated
samples. The composite exhibited efficient visible-light absorption and charge separation, with
optimal photocatalytic performance achieved at a pH value of 9.0. The study reveals the importance
of solution pH in the degradation process and the potential applicability of the composite for efficient
magnetic separation and recycling in photocatalytic processes. The Fe3O4/Bi2MoO6/g-C3N4 mag-
netic composite photocatalyst demonstrated exceptional stability and recyclability, maintaining a
high degradation efficiency of over 87% after five consecutive cycles. An XRD analysis conducted
after the cycling tests confirmed that the composite’s composition and chemical structure remained
unchanged, further supporting its chemical stability. This investigation offers valuable insights into
the photocatalytic degradation of sulfonamide antibiotics using magnetic composite photocatalysts
and highlights the potential of the Fe3O4/Bi2MoO6/g-C3N4 composite for practical applications in
environmental remediation.

Keywords: sulfonamide antibiotics; magnetic photocatalyst; Carbon nitride

1. Introduction

The presence of emerging contaminants, such as pharmaceuticals and personal care
products (PPCPs), in the aquatic environment has raised increasing concern in recent years
owing to their potential impact on ecosystems and human health [1–5]. As PPCPs, sulfon-
amide antibiotics have been extensively employed in both human and veterinary medicine
worldwide [6–8]. Nevertheless, their improper disposal into wastewater systems results in
their accumulation in aquatic ecosystems, leading to significant environmental and public
health concerns [9–11]. Traditional techniques, such as membrane filtration [12], biodegra-
dation [13], and adsorption [14], have been employed to address this issue. However, these
conventional methods face challenges in effectively eradicating sulfonamide antibiotics
from wastewater due to their high stability and resistance to biological treatment [15,16].
Therefore, there is an urgent need to develop innovative and efficient approaches to remov-
ing them.
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Photocatalysis, as a promising advanced oxidation process (AOP), has emerged as a
promising approach for the degradation of organic pollutants owing to its environmentally
friendly nature, high level of efficiency, and potential for utilizing solar energy [17–19].
Among the numerous photocatalytic materials, graphitic carbon nitride (g-C3N4 or g-CN)
has emerged as a metal-free, non-toxic, and environmentally friendly photocatalyst with a
suitable bandgap for visible light absorption [20,21]. Despite its potential, the photocatalytic
effectiveness of g-CN is hindered by several drawbacks: it suffers from a high rate of
charge carrier recombination, a limited absorption spectrum in the visible light range, and
lackluster electrical conductivity [22,23]. To overcome these limitations, various strategies
have been explored, including heterojunction construction, metal or non-metal doping,
defect engineering, and morphological control [24–29]. Heterostructure photocatalysts have
the potential to reduce electron–hole recombination and bolster light absorption [30,31].
Therefore, the construction of a heterojunction between g-C3N4 and other semiconductors
with well-matched band structures using a Z-scheme mechanism can significantly enhance
the separation efficiencies of photogenerated charge carriers [32–34].

In recent years, bismuth-based semiconductors have garnered considerable atten-
tion owing to their remarkable visible light absorption capabilities and distinct electronic
properties. Among these semiconductors, bismuth molybdate (Bi2MoO6) has emerged
as a highly promising photocatalyst due to its exceptional photocatalytic performance,
non-toxic nature, and chemical stability [35,36]. Bi2MoO6, with its unique layered structure
and strong oxidizing potential, demonstrates advantageous properties that contribute to its
effectiveness as a photocatalyst [37]. The Bi2MoO6 crystal structure comprises alternating
MoO4 and Bi2O2 layers, resulting in a highly polarized lattice that promotes the generation
of an internal electric field. This field serves to suppress the recombination of photogen-
erated charge carriers, thereby boosting the photocatalytic activity of the material [38].
The integration of graphitic carbon nitride (g-CN) with Bi2MoO6 forms a heterojunction
that can substantially enhance charge carrier separation, leading to an improvement in the
photocatalytic performance of the composite material [38,39]. The coupling of g-CN and
Bi2MoO6 also facilitates the construction of Z-scheme systems, which have proven to be
highly effective for various water remediation applications [40,41]. This heterojunction
not only benefits from the synergistic effects of g-CN’s appealing electronic structure and
responsiveness to visible light but also capitalizes on Bi2MoO6’s excellent photocatalytic
properties and chemical stability [40,42]. Addressing the challenge of conveniently and
economically retrieving catalysts from a substantial volume of water without resulting in
loss or clumping is paramount. Conventional retrieval methods, such as filtration and cen-
trifugation, despite their effectiveness, are deemed time-consuming and costly and are thus
not optimal for large-scale industrial implementations. The employment of nano-magnetite
(Fe3O4), known for its superior superparamagnetic characteristics, has been explored to
solve these retrieval issues by enabling the magnetic recovery of nanocomposites [43,44].
Fe3O4 nanoparticles offer the benefits of enhancing photocatalytic performance due to
their exceptional electrical conductivity, high surface-to-volume ratios, and notable optical
and chemical attributes [45,46]. Additionally, Fe3O4 facilitates charge separation when
integrated with other nanocomposites as it traps photogenerated electrons with its Fe3+

ions, thus further boosting the efficiency of the photocatalytic process [47].
In this study, we present the synthesis and application of a magnetic Fe3O4/Bi2MoO6/

g-C3N4 composite photocatalyst for the efficient degradation of SM under visible light
irradiation. The composite was characterized using various techniques, including X-ray
diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy
(XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence spectroscopy
(PL), UV-vis diffuse reflectance spectra (UV-vis) and the use of a vibrating sample magne-
tometer (VSM). The photocatalytic performance of the Fe3O4/Bi2MoO6/g-C3N4 composite
was evaluated for the degradation of sulfamerazine (SM1). Furthermore, the stability
and reusability of the composite photocatalyst were assessed through cyclic degradation
experiments. This research contributes to the ongoing efforts to develop highly efficient
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and environmentally friendly photocatalysts for the removal of sulfonamide antibiotics
from contaminated water sources.

2. Materials and Methods
2.1. Materials

The chemicals used in this study, including urea, Bi(NO3)3·5H2O, sodium molybdate
(Na2HPO4·12H2O), and sodium hydroxide (NaOH), were sourced from Tianjin Xintong
Fine Chemicals Company Limited, Tianjin, China. SM1 and Iron(III) chloride hexahydrate
(FeCl3·6H2O) were acquired from Shanghai McLean Biochemical Technology Co., Ltd.,
Shanghai, China, while polyethylene glycol (PEG) was obtained from Merck Chemical
Technology (Shanghai, China) Co., Ltd. All reagents employed in this study were of
analytical grade and were used without further purification. Deionized water was used for
the preparation of all solutions.

2.2. Preparation of Photocatalyst
2.2.1. Synthesis of g-C3N4

The g-C3N4 samples were synthesized according to the literature [48]. Briefly, 10 g
of urea was heated at 550 ◦C for 4 h in a covered crucible, resulting in a yellow-colored
powder. After cooling, the powder was washed with deionized water and ethanol, dried
at 60 ◦C for 12 h, and calcined at 500 ◦C for 330 min. The final product was identified
as g-C3N4.

2.2.2. Synthesis of Bi2MoO6

Bi2MoO6 was synthesized using a hydrothermal process. Initially, 0.97 g of Bi(NO3)3·5H2O
and 0.242 g of Na2MoO4·12H2O were dissolved in 38 mL of deionized water, followed by
stirring with a magnetic stirrer for 1 h and 30 min of ultrasonication to ensure homogeneous
dispersion. The pH of the mixture was adjusted to 6 using a 2.0 mol/L NaOH solution, and
the solution was stirred for another hour to achieve a uniform suspension. The mixture
was subsequently transferred to a hydrothermal reaction vessel and heated at 160 ◦C for
12 h. Upon the completion of the hydrothermal reaction, the yellow solid was collected by
filtration, washed alternatively with ethanol and deionized water several times, and then
dried at 60 ◦C for 24 h.

2.2.3. Synthesis of Fe3O4

Magnetic Fe3O4 nanoparticles were synthesized using a solvothermal method. Initially,
40 mL of ethylene glycol was mixed with 1.35 g of FeCl3·6H2O, and the solution was stirred
until a clear yellow color was achieved. Subsequently, 3.6 g of anhydrous sodium acetate
and 1.0 g of polyethylene glycol were added, and the mixture was stirred for 30 min. The
resulting solution was transferred to a 100 mL hydrothermal reaction kettle and heated at
200 ◦C in a convection-drying oven for 8 h. After cooling the kettle to room temperature,
the black Fe3O4 precipitated particles were collected, washed alternately with anhydrous
ethanol and deionized water three times, and dried in a convection-drying oven at 60 ◦C
for 24 h to obtain the magnetic Fe3O4 nanoparticles.

2.2.4. Synthesis of Fe3O4/Bi2MoO6/g-C3N4

The Bi2MoO6/g-C3N4 composite was prepared using a wet-impregnation method.
Briefly, 0.3 g of g-C3N4 was dispersed in methanol, combined with Bi2MoO6, and sonicated
for 1h. The composite was collected, washed, and dried at 60 ◦C for 24 h. The Fe3O4 was
first dispersed in a mixture of deionized water and anhydrous ethanol by ultrasonication.
The prepared Bi2MoO6/g-C3N4 was added and mixed for 2 h, followed by further ultrason-
ication. The mixture was transferred to a hydrothermal reaction kettle and heated at 180 ◦C
for 8 h. The resulting black solution was washed with anhydrous ethanol and deionized
water and dried at 60 ◦C for 24 h to obtain the Fe3O4/Bi2MoO6/g-C3N4 composite. The
ratio of Bi2MoO6 to g-C3N4 is 1:32, and the ratio of Fe3O4 to the Bi2MoO6/g-C3N4 is 1:8.
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2.3. Characterization

An XRD analysis was conducted utilizing a Rigaku Ultima IV diffractometer with
Cu Kα radiation, scanning the 2θ range between 10 and 90◦. SEM images were acquired
using a FEI Quanta-PEG 450 microscope. The XPS measurements were carried out using
a Thermo VG ESCALAB-250 under A1Kα (1486.6 eV) radiation. PL measurements were
performed with an F-98 system (Shanghai, China), and FT-IR spectroscopy was carried
out using a PerkinElmer Spectrum Two spectrometer. UV-vis spectroscopy measurements
were obtained using a TU-1901 spectrophotometer (Beijing, China), covering a wavelength
range of 200–800 nm. The magnetic properties were determined using a VSM (Lake Shore).

2.4. Photocatalytic Experiments

The photocatalytic degradation of SM1 by the Fe3O4/Bi2MoO6/g-C3N4 samples was
examined under irradiation using a 500 W xenon lamp equipped with a 420 nm cut-off
filter. An SM1 solution (3 mg/L) was prepared, to which 800 mg of the synthesized pho-
tocatalysts was added, followed by dilution to a final volume of 50 mL. To establish an
adsorption/desorption equilibrium between SM1 and the photocatalysts, the suspensions
were magnetically stirred in the dark for 30 min before irradiation commenced. At reg-
ular intervals, 1.5 mL aliquots of the suspension were extracted and filtered through a
0.22 µm filter (Millipore) to determine the residual SM1 concentration. The concentration
of SM1 was quantified via HPLC (Agilent Technologies 1200-Series). To assess the stability
and reusability of the photocatalyst, cyclic experiments of SM1 photodegradation were
conducted. The catalyst stability was determined after many reaction cycles in which
the catalysts were collected magnetically and washed with deionized water before the
next cycle.

3. Results and Discussion
3.1. Characterization

The results of the XRD analysis of the g-C3N4, Bi2MoO, Fe3O4 and Fe3O4/Bi2MoO6/
g-C3N4 prepared in this study are depicted in Figure 1. The XRD patterns of g-C3N4
exhibit well-defined diffraction peaks at 2θ values of approximately 13.0◦ and 27.4◦. The
diffraction peak located near 13.0◦ corresponds to the (100) plane of g-C3N4, while the peak
observed around 27.4◦ is attributed to the (002) plane of g-C3N4. These peak positions are
in good agreement with the characteristic XRD patterns of g-C3N4 (JCPDS 87-1526) [49].
For the Bi2MoO6 sample, distinct characteristic peaks are observed at 2θ values of 27.361◦,
31.705◦, 32.562◦, 45.481◦, 53.905◦, 56.441◦, and 66.429◦. These peaks correspond to the
(131), (200), (151), (202), (331), (262), and (004) planes of the orthorhombic Bi2MoO6 phase,
as referenced in the standard card (JCPDS 76-2388) [50]. In the case of the Fe3O4 sample,
well-defined characteristic peaks are observed at 2θ values of 30.206◦, 35.501◦, 43.190◦,
53.717◦, 57.221◦, and 62.738◦. These peaks correspond to the (220), (311), (400), (422), (511),
and (440) planes of Fe3O4, as indicated in the standard card (JCPDS 19-0629) [51]. The
Fe3O4/Bi2MoO6/g-C3N4 diffraction pattern clearly reveals the presence of the g-C3N4
(002) plane, the Bi2MoO6 (131), (200), (151), and (202) planes, and the Fe3O4 (220), (311),
(400), (422), (511), and (440) planes. Moreover, the diffraction peaks of Bi2MoO6 and
Fe3O4 remain unshifted, suggesting that the loading of Bi2MoO6 and Fe3O4 onto the
g-C3N4 surface does not modify their respective crystal structures. The diffraction pattern
is devoid of any additional impurity peaks, implying that the reaction did not produce
new impurities and that the synthesized magnetic photocatalyst composite exhibits a
high level of purity. Furthermore, the intensities of the Fe3O4 diffraction peaks in the
Fe3O4/Bi2MoO6/g-C3N4 sample are marginally lower compared to those of the pure
Fe3O4 diffraction peaks, indicating the presence of interactions between Fe3O4 and the
Bi2MoO6/g-C3N4 composite.
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Figure 1. XRD patterns of g-C3N4, Bi2MoO6, Fe3O4, and Fe3O4/Bi2MoO6/g-C3N4. 

As depicted in Figure 2a, the g-C3N4 synthesized using the thermal oxidation exfoli-
ation method with urea as a precursor resulted in a profusion of irregularly stacked la-
mellar structures. These layered architectures play a critical role in facilitating shorter elec-
tron transfer pathways, thereby promoting the efficient migration of photogenerated 
charge carriers. Moreover, the enhanced specific surface area and pore volume offer a 
greater number of active sites for photocatalytic reactions, which could lead to improved 
photocatalytic performance. Figure 2b illustrates the Bi2MoO6 synthesized via the hydro-
thermal method. The sample exhibits a stacked, block-like morphology with an estimated 
block size ranging from approximately 200 to 400 nm. Notably, the presence of significant 
agglomeration within the sample is observed, which could impact the photocatalytic effi-
ciency due to the increased surface area for reactions to occur on. In Figure 2c, Fe3O4 nan-
ospheres are presented, which have been synthesized using the solvothermal technique. 
These nanospheres display favorable dispersibility, which can be attributed to their rela-
tively small dimensions. This characteristic may contribute to a more uniform distribution 
of active sites and improved accessibility for reactants, leading to enhanced photocatalytic 
performance. Figure 2d demonstrates that the Fe3O4 nanospheres are well-dispersed 
across the surface of the Bi2MoO6/g-C3N4 composite. The integration of Fe3O4 into the com-
posite not only enables rapid photocatalyst recovery due to its magnetic properties but 
also contributes to improved electron migration rates owing to its exceptional electronic 
conductivity. Furthermore, the presence of Fe3O4 may reduce the recombination of pho-
togenerated electron–hole pairs, thereby increasing the photocatalytic efficiency of the 
composite material. Overall, the enhanced material properties and morphological charac-
teristics of the Fe3O4/Bi2MoO6/g-C3N4 composite are expected to result in good photocata-
lytic performance. 

Figure 1. XRD patterns of g-C3N4, Bi2MoO6, Fe3O4, and Fe3O4/Bi2MoO6/g-C3N4.

As depicted in Figure 2a, the g-C3N4 synthesized using the thermal oxidation exfolia-
tion method with urea as a precursor resulted in a profusion of irregularly stacked lamellar
structures. These layered architectures play a critical role in facilitating shorter electron
transfer pathways, thereby promoting the efficient migration of photogenerated charge car-
riers. Moreover, the enhanced specific surface area and pore volume offer a greater number
of active sites for photocatalytic reactions, which could lead to improved photocatalytic
performance. Figure 2b illustrates the Bi2MoO6 synthesized via the hydrothermal method.
The sample exhibits a stacked, block-like morphology with an estimated block size ranging
from approximately 200 to 400 nm. Notably, the presence of significant agglomeration
within the sample is observed, which could impact the photocatalytic efficiency due to
the increased surface area for reactions to occur on. In Figure 2c, Fe3O4 nanospheres
are presented, which have been synthesized using the solvothermal technique. These
nanospheres display favorable dispersibility, which can be attributed to their relatively
small dimensions. This characteristic may contribute to a more uniform distribution of
active sites and improved accessibility for reactants, leading to enhanced photocatalytic
performance. Figure 2d demonstrates that the Fe3O4 nanospheres are well-dispersed
across the surface of the Bi2MoO6/g-C3N4 composite. The integration of Fe3O4 into the
composite not only enables rapid photocatalyst recovery due to its magnetic properties
but also contributes to improved electron migration rates owing to its exceptional elec-
tronic conductivity. Furthermore, the presence of Fe3O4 may reduce the recombination
of photogenerated electron–hole pairs, thereby increasing the photocatalytic efficiency
of the composite material. Overall, the enhanced material properties and morphological
characteristics of the Fe3O4/Bi2MoO6/g-C3N4 composite are expected to result in good
photocatalytic performance.

As illustrated in Figure 3, the Fe3O4/Bi2MoO6/g-C3N4 composites with varying ratios
display pronounced absorption peaks in the regions of 810 cm−1, 1200–1700 cm−1, and
3200–3400 cm−1, which are in line with the absorption peaks observed for the pure g-C3N4.
The distinct absorption peak situated around 810 cm−1 can be attributed to the bending
vibrations associated with the 3-s-triazine ring [52]. The multiple absorption peaks that
emerge between 1200 and 1700 cm−1 are likely a result of stretching vibrations pertaining to
C-N and C=N heterocyclic rings [53]. Furthermore, the broad absorption peak in the range
of 3200–3400 cm−1 may arise due to the stretching vibrations of the NH and NH2 functional
groups or the O-H stretching vibrations present in H2O molecules [54]. These observations
suggest that the g-C3N4 structure remains intact during the composite formation process,
corroborating the findings from the XRD characterization. Significant variations in the FT-IR
spectrum of Bi2MoO6 are mainly observed between 400 and 900 cm−1. The absorption
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peaks detected between 732 and 841 cm−1 primarily stem from the stretching vibrations of
Mo-O bonds. In contrast, the absorption peaks between 450 and 565 cm−1 result from the
stretching and deformation vibrations related to Bi-O bonds [55]. The absorption peak near
3400 cm−1, which is induced by O-H vibrations, coincides with the corresponding peak for
g-C3N4. The Fe3O4/Bi2MoO6/g-C3N4 composite reveals a characteristic Fe-O stretching
vibration of Fe3O4 around 589 cm−1 [56]. This observation suggests an enhancement in the
absorption peak of surface-adsorbed O-H groups and an increase in the density of hydroxyl
on the Fe3O4/Bi2MoO6/g-C3N4 composite surface. Consequently, these factors contribute
to the improvement of the adsorption performance for the photocatalyst. This evidence
implies that the photocatalyst formation is not a mere aggregation of components; instead,
it involves interactions mediated by intermolecular forces.
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To further verify the chemical compositions of the magnetic composite photocata-
lysts and investigate the interplay between the -C3N4 nanosheets, Bi2MoO6, and Fe3O4
nanospheres, XPS was utilized to analyze their chemical compositions, chemical bonds, and
chemical binding states. Figure 4 presents the XPS survey spectra for g-C3N4, Bi2MoO6, the
Fe3O4 nanospheres, and the Fe3O4/Bi2MoO6/g-C3N4 composite. The g-C3N4 nanosheets
are primarily composed of carbon and nitrogen elements, with oxygen originating from
oxygen-containing compounds adsorbed on the sample surface. Bi2MoO6 consists of car-
bon, oxygen, bismuth, and molybdenum elements. In contrast, Fe3O4 is formed from car-
bon, oxygen, and iron elements. The Fe3O4/Bi2MoO6/g-C3N4 magnetic composite photo-
catalyst encompasses carbon, nitrogen, oxygen, bismuth, molybdenum, and iron elements,
signifying the presence of all three constituents: g-C3N4 nanosheets, Bi2MoO6, and Fe3O4
nanospheres. This finding corroborates the results obtained from the FT-IR characterization.
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Figure 4. XPS survey spectra of (a) g-C3N4, (b) Bi2MoO6, (c) Fe3O4, and (d) Fe3O4/Bi2MoO6/g-C3N4.

Figure 5 presents the XPS spectra for C 1s, N 1s, O 1s, Bi 4f, Mo 3d, and Fe 2p. Each
sample’s binding energy is calibrated using the C 1s standard binding energy (284.8 eV). In
Figure 5a, the C 1s spectra of the Fe3O4/Bi2MoO6/g-C3N4 sample exhibit characteristic
peaks at 284.8 eV, 286.3 eV, and 288.3 eV, corresponding to the C-C, C-O, and N=C-N
chemical bonds [57,58],. Figure 5b displays the N 1s spectra with three distinct peaks
at 398.8 eV (C–N–C), 400.1 eV (N-(C)3), and 401.2 eV (N–H groups) [59], with no sig-
nificant alterations compared to the g-C3N4 sample. In Figure 5c, the O 1s spectra of
the Fe3O4/Bi2MoO6/g-C3N4 sample present three characteristic peaks at 529.6 eV (OL),
532.0 eV (C-O), and 533.6 eV (C=O) [60]. The intensity at 532.3 eV reduces to 532.0 eV,
while the intensity at 533.6 eV remains constant. This change suggests interactions between
g-C3N4 and the other components (Fe3O4 and Bi2MoO6) in the composite, causing a shift in
the binding energy of the oxygen atoms associated with the C-O bond. Figure 5d,e depict
the Bi 4f and Mo 3d high-resolution spectra for the Bi2MoO6 and Fe3O4/Bi2MoO6/g-C3N4
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samples, revealing slight decreases in peak intensities, indicating consistent binding ener-
gies and the occurrence of chemical bonding or strong electrostatic interactions between
the photocatalysts [61]. In Figure 5f, the Fe 2p spectra of the Fe3O4 sample exhibit two char-
acteristic peaks at 710.3 eV and 723.4 eV, corresponding to Fe 2p3/2 and Fe 2p1/2 orbitals of
Fe+ [62]. The Fe3O4/Bi2MoO6/g-C3N4 sample shows reduced peak intensities at 709.6 eV
and 722.8 eV, confirming the successful interaction and combination of Fe3O4, Bi2MoO6,
and g-C3N4 in the photocatalyst.
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in Figure 6, the fluorescence intensities can be arranged in descending order as follows: g-
C3N4 > Fe3O4 > Bi2MoO6 > Fe3O4/Bi2MoO6/g-C3N4. The observed fluorescence intensities for 
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and (f) Fe 2p.
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The use of PL emission spectra is a widely adopted technique for evaluating the effi-
ciency of photogenerated electron–hole pair separation in various materials. As depicted
in Figure 6, the fluorescence intensities can be arranged in descending order as follows:
g-C3N4 > Fe3O4 > Bi2MoO6 > Fe3O4/Bi2MoO6/g-C3N4. The observed fluorescence inten-
sities for the Fe3O4/Bi2MoO6/g-C3N4 composites are lower than those of their individual
constituents, g-C3N4, Fe3O4, and Bi2MoO6. This finding implies that the formation of
composite photocatalysts leads to a significant reduction in the recombination rate of the
photogenerated electron–hole pairs. Additionally, the spectral data suggest that Fe3O4
inherently possesses favorable electronic conductivity, which facilitates the migration of
photogenerated charge carriers. Consequently, the improved charge separation and migra-
tion contribute to the enhanced photocatalytic performance of the composite materials.
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Figure 6. PL spectra of g-C3N4, Bi2MoO6, Fe3O4, and Fe3O4/Bi2MoO6/g-C3N4.

The photocatalytic activity of a material is predominantly influenced by its capac-
ity to absorb and exploit incident light. In order to investigate the optical absorption
characteristics of the magnetic composite photocatalyst Fe3O4/Bi2MoO6/g-C3N4, UV-vis
diffuse reflectance spectroscopy was employed. As depicted in Figure 7, all samples
exhibit a degree of light absorption capacity within the ultraviolet range, as well as a
discernable response within the visible light range. This behavior is primarily governed
by the samples’ bandgap width. The as-synthesized g-C3N4 demonstrates an absorption
edge at approximately 438 nm, while the Bi2MoO6 sample exhibits an absorption edge
at approximately 460 nm. According to the prior literature [63], the primary absorption
wavelength of Fe3O4 resides within the ultraviolet light region. Upon the incorporation
of Fe3O4, the absorption edge for the Fe3O4/Bi2MoO6/g-C3N4 composite is observed at
approximately 710 nm, which further expands the response range within the visible light
domain. According to the Kubelka–Munk function, the bandgaps of the g-C3N4, Bi2MoO6,
Fe3O4, and Fe3O4/Bi2MoO6/g-C3N4 are 2.96 eV, 3.03 eV, 1.16 eV, and 2.80 eV, respectively.
The bandgap energy of a material is closely associated with its absorption properties and
therefore its photocatalytic performance. When the aforementioned materials are combined
to form Fe3O4/Bi2MoO6/g-C3N4, the composite material presents a bandgap of 2.80 eV,
slightly smaller than those of g-C3N4 and Bi2MoO6 yet significantly larger than the bandgap
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of Fe3O4. This composite behavior results in an enhanced absorption of light, especially
in the visible region, as is evident from the absorption edge observed at approximately
710 nm. The results highlight the synergistic effect of the three components in which Fe3O4
effectively extends the light absorption to the visible range, while the wide bandgap mate-
rials (g-C3N4 and Bi2MoO6) contribute to the overall photocatalytic performance under
UV light. Consequently, the composite photocatalyst exhibits an enhanced capability to
generate active species under identical illumination conditions, which ultimately leads to
its improved photocatalytic performance.
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As depicted in Figure 8, the magnetic hysteresis loops for Fe3O4 and Fe3O4/Bi2MoO6/
g-C3N4 are illustrated. Employing the solvothermal method, the synthesized Fe3O4
nanospheres possess dimensions exceeding the critical size threshold for superparam-
agnetism, thereby conferring ferromagnetic characteristics to the Fe3O4/Bi2MoO6/g-C3N4
composite material. The saturation magnetization and coercivity values for the Fe3O4 are
determined to be 74.32 emu/g and 50.74 Oe, respectively. In contrast, the Fe3O4/Bi2MoO6/
g-C3N4 composite exhibits a saturation magnetization of 7.24 emu/g and a coercivity of
5.49 Oe. Owing to the relatively smaller proportion of Fe3O4 in the magnetic composite
photocatalyst, the magnetization strength decreases in comparison to that of the pristine
Fe3O4 nanoparticles. Nevertheless, the Fe3O4/Bi2MoO6/g-C3N4 composite demonstrates
favorable ferromagnetic and magnetic recovery properties, indicating its potential appli-
cability for efficient magnetic separation and recycling in photocatalytic processes. This
finding emphasizes the necessity of optimizing the compositions of magnetic composite
photocatalysts to achieve a balance between desirable magnetic properties and overall
photocatalytic performance.
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3.2. Photocatalyst Performance Analysis

Due to the inherent stability of SM1, its degradation under visible light without a pho-
tocatalyst presents a significant challenge. Following 120 min of visible light irradiation, the
photocatalysts in the dark condition demonstrated a minimal removal efficiency for SM1 at
less than 5%. This observation suggests that the adsorption by the photocatalysts can be
largely disregarded in the overall process. To investigate the influence of solution pH on
the degradation of SM1 under visible light using Fe3O4/Bi2MoO6/g-C3N4, photocatalytic
experiments were conducted with initial pH values adjusted to 5.0, 6.0, 7.0, 8.0, and 9.0.
Figure 9a demonstrates that when the initial pH of the sulfonamide antibiotic solution
ranged from 5.0 to 8.0, no significant changes were observed in the photodegradation effi-
ciency of SM1. However, at a pH of 9.0, the photodegradation efficiency of SM1 markedly
increased. At pH values of 5.0, 6.0, 7.0, 8.0, and 9.0, the degradation efficiencies of SM1 by
Fe3O4/Bi2MoO6/g-C3N4 within 120 min were 63.23%, 74.22%, 73.68%, 81.91%, and 95.58%,
respectively. As depicted in Figure 9b, the degradation kinetic constants at pH values of
5.0, 6.0, 7.0, 8.0, and 9.0 were 0.00839, 0.01082, 0.01032, 0.01358, and 0.02574 min− 1, respec-
tively. Within the pH range of 5.0 to 8.0, the observed stability could be attributed to the
different species of SM1 present at various pH values having similar reactivities with the
generated OH· radicals. However, a significant increase in degradation efficiency at a pH
of 9.0 suggests that the interaction between the generated OH· radicals and the dominant
anionic species of SM1 at this pH value may result in a more effective degradation process.
Moreover, the increased concentrations of OH- ions (or the availability of H2O molecules)
at higher pH values could contribute to the enhanced generation of active species, leading
to improvements in the photodegradation performance.

The photochemical stability of a photocatalyst is a critical factor in determining its suit-
ability for practical applications. To evaluate the stability of the Fe3O4/Bi2MoO6/g-C3N4
magnetic composite photocatalyst, five consecutive photocatalytic degradation cycles of
SM1 were performed under identical experimental conditions. As shown in Figure 10a, the
solution pH was adjusted to 9. The visible light degradation rate of SM1 was monitored
within a 120 min time frame. In the five degradation cycles, the degradation rates were
95.58%, 93.70%, 91.77%, 89.82%, and 87.86%, respectively. With the increasing number
of recovery cycles of the Fe3O4/Bi2MoO6/g-C3N4 magnetic composite photocatalyst, the
degradation rate of SM1 decreased slightly. However, the rate tended to stabilize as the
number of recovery cycles increased. After five cycles, the degradation rate remained
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above 87%, indicating no significant decrease in performance. This demonstrates that the
Fe3O4/Bi2MoO6/g-C3N4 magnetic composite photocatalyst retains its effective photocat-
alytic degradation capabilities and recyclability after multiple cycles, confirming its stable
photocatalytic performance. Following the five consecutive cycles, the catalyst sample was
filtered, dried, and analyzed using XRD. Figure 10b reveals no apparent changes in the
composition or chemical structure of the Fe3O4/Bi2MoO6/g-C3N4 magnetic composite
photocatalyst, providing evidence of its chemical stability.
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It is worth noting that the consistent photocatalytic performance can be attributed
to several factors, including the robustness of the composite material, effective charge
separation and transfer, and the resistance to photocorrosion. The incorporation of Fe3O4 in
the composite not only enhances the magnetic properties but also contributes to the stability
of the material by improving electron conductivity. In future studies, a more comprehensive
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investigation could be performed to examine the possible degradation of the catalyst’s
surface and structural alterations and potential changes in the active sites after extended
usage. Such assessments would further contribute to our understanding of the catalyst’s
long-term stability and its potential for practical applications in environmental remediation.
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4. Conclusions

In summary, this study presents a comprehensive investigation into the synthesis,
characterization, and application of a Fe3O4/Bi2MoO6/g-C3N4 magnetic composite photo-
catalyst for the visible-light-driven photocatalytic degradation of sulfonamide antibiotics,
with a particular focus on SM1. The findings highlight the importance of solution pH in
the degradation process, which influences not only the speciation of sulfonamides, transi-
tioning between cationic, molecular, and anionic forms, but also the generation of reactive
species such as hydroxyl radicals that are crucial for effective degradation. Through a series
of carefully designed experiments, the study revealed that optimal photocatalytic perfor-
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mance was achieved at a pH value of 9.0. Moreover, the Fe3O4/Bi2MoO6/g-C3N4 magnetic
composite photocatalyst exhibited exceptional stability and recyclability, maintaining a
high degradation efficiency of over 87% after five consecutive cycles. An XRD analysis
conducted after the cycling tests confirmed that the composite’s composition and chemical
structure remained unchanged, further supporting its chemical stability. This comprehen-
sive investigation not only contributes valuable insights into the photocatalytic degradation
of sulfonamide antibiotics using magnetic composite photocatalysts but also underscores
the potential of the Fe3O4/Bi2MoO6/g-C3N4 magnetic composite for practical applications
in environmental remediation. To further advance this research and its potential impact,
future studies could explore the long-term stability and performance of the catalyst un-
der a broader range of operational conditions. Additionally, in-depth investigations into
potential degradation pathways and mechanisms could provide a deeper understanding
of the catalyst’s applicability and its effectiveness in addressing complex water pollution
challenges. Overall, the findings of this study pave the way for the development of more
efficient and sustainable strategies for water treatment and pollution control.
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