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Abstract: This work demonstrates for the first time the application of network topology of variance
decompositions in analyzing the connectedness of chemical plant process variable oscillations arising
from disturbances and faults. Specifically, the time-based connectedness and frequency-based con-
nectedness of variables can be used to compute the net pairwise dynamic connectedness (NPDC),
which originated as a volatility spillover index for financial markets studies in the field of econo-
metrics. This work used the anomaly-detection benchmark Tennessee-Eastman chemical process
(TEP) dataset, which consists of 41 measured variables and 11 manipulated variables subjected to
various faulty operating conditions. The data analytics was performed using key functions from
the R-package ‘ConnectednessApproach’ that implements connectedness computations based on
time and frequency. The NPDC coefficient matrices were then transformed into network adjacency
matrices for the rendering of the network topology of connectedness for TEP. The resulting network
topologies allow a comprehensive analysis of oscillation effects across all plant-measured and ma-
nipulated variables. Analyzing the directed connectedness of the system dynamics at short-range,
mid-range, and long-range frequencies showed how the oscillation effects of disturbances and faults
propagate and dissipate in the short-term, mid-term, and long-term periods.

Keywords: chemical process control; network analysis; oscillation propagation analysis

1. Introduction
1.1. Problem Setup

The complex and nonlinear behavior of many continuous chemical processing systems
poses a challenge to the stable operation and the success of control systems to maintain
smooth processes within the desired operating conditions. Specifically, the potential system-
wide effects of process changes and faults must be quantified to aid in the minimization or
elimination of adverse shocks resulting from plant shut-down and re-starts [1,2]. Several
works have been completed on the use of various computational techniques to establish
protocols and algorithms for detecting anomalies in chemical processing systems exhibiting
highly nonlinear dynamics [3]. A common benchmark system used in such efforts is the
Tennessee-Eastman chemical process (TEP) dataset originally established by Downs and
Vogel [4] and schematically shown in Figure 1. There are five major chemical processing
units in the TEP: reactor, product condenser, vapor–liquid separator, recycle compressor,
and product stripper (Figure 1). The TEP involves the production of two liquid product
components, G and H, from four gaseous reactants, A, C, D, and E, with an additional inert
B and a byproduct F as shown in the following four reaction steps [4].
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A(g) + C(g) + D(g) → G(liq) (R1)

A(g) + C(g) + E(g) → H(liq) (R2)

A(g) + E(g) → F(liq) (R3)

3D(g) → F(liq) (R4)
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Figure 1. P&ID rendering of the Tennessee-Eastman chemical process benchmark originally pro-
posed by Downs and Vogel [4]. Number annotations denote stream number. Arrowed solid lines 
indicate flow stream direction. Dashed lines indicate signals of a control loop. Letters: FC = flow 
controller, FI = flow indicator, TC = temperature controller, TI = temperature indicator, LC = level 
controller, LI = liquid indicator, PI = pressure indicator, composition symbols: xA, xB, xC, xD, xE, 
xF, xG, and xH in mole fraction for chemical components A, B, C, D, E, F, G, and H, respectively. 
Valves are manipulated variables indicated by m1, m2, m3, etc. 

1.2. Challenge of Oscillation Propagation and Root-Cause Analysis 
Oscillation propagation and root-cause analysis have always been active study topics 

in chemical processing because of their importance in minimizing variations in process 
outputs such as product stream at a certain purity, flow rate, etc. [5]. The interconnection 
of process units makes this analysis task even more challenging [1]. Previous works have 
demonstrated the adaptability of algorithms and computations in econometrics for use in 
chemical process oscillation analysis [1,6]. Such adaptations of econometrics techniques 
for chemical process dynamics analysis naturally occur due to the inherent similarities in 
the feedback loop mechanisms designed to achieve stability in both fields, as depicted in 
Figure 2. One commonly used econometrics technique applied in various fields is the 
Granger causality [5], which is a hypothesis testing-based approach to estimating cause–
effect relations of multivariate systems that originated from the study of financial markets 
[7]. Though Granger causality is effective in many econometrics analyses on causality, 
many studies have illustrated the limitations of the technique in applications outside 

Figure 1. P&ID rendering of the Tennessee-Eastman chemical process benchmark originally proposed
by Downs and Vogel [4]. Number annotations denote stream number. Arrowed solid lines indicate
flow stream direction. Dashed lines indicate signals of a control loop. Letters: FC = flow controller,
FI = flow indicator, TC = temperature controller, TI = temperature indicator, LC = level controller,
LI = liquid indicator, PI = pressure indicator, composition symbols: xA, xB, xC, xD, xE, xF, xG, and
xH in mole fraction for chemical components A, B, C, D, E, F, G, and H, respectively. Valves are
manipulated variables indicated by m1, m2, m3, etc.

1.2. Challenge of Oscillation Propagation and Root-Cause Analysis

Oscillation propagation and root-cause analysis have always been active study topics
in chemical processing because of their importance in minimizing variations in process
outputs such as product stream at a certain purity, flow rate, etc. [5]. The interconnection
of process units makes this analysis task even more challenging [1]. Previous works have
demonstrated the adaptability of algorithms and computations in econometrics for use in
chemical process oscillation analysis [1,6]. Such adaptations of econometrics techniques
for chemical process dynamics analysis naturally occur due to the inherent similarities
in the feedback loop mechanisms designed to achieve stability in both fields, as depicted
in Figure 2. One commonly used econometrics technique applied in various fields is
the Granger causality [5], which is a hypothesis testing-based approach to estimating
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cause–effect relations of multivariate systems that originated from the study of financial
markets [7]. Though Granger causality is effective in many econometrics analyses on
causality, many studies have illustrated the limitations of the technique in applications
outside econometrics, with one main issue being the impact of the vector autoregressive
(VAR) model properties on the conditional causality estimates [8,9]. This issue is solved by a
recently established econometric technique originated by Diebold and Yılmaz [10] that uses
generalized variance decomposition in which the forecast-error variance decompositions
are invariant to the variable ordering [11]. The said technique produces a “connectedness”
matrix that can eventually be treated as an adjacency matrix for network topology ren-
dering [12]. The extended form of the technique using frequency-based decomposition of
variance can capture periodic trends [13] that are inherent in oscillation propagations [1].
This work demonstrates for the first time the application of network topology of variance
decompositions in detecting the effects of oscillations arising from disturbances and faults
in a chemical process.
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Figure 2. A schematic depicting the analogy of feedback control loops (A) in chemical processing [14]
and (B) in economic systems such as price-demand-supply dynamics [15].

1.3. Objectives of the Work

This work aims to show how key concepts and techniques on the analysis of volatility
spillover in financial systems developed in the field of econometrics can be adopted as anal-
ysis tools in improving the understanding of the dynamic behavior of chemical processing
systems. The study dataset is the TEP benchmark dataset [4,16], with sample renderings in
Figures 3 and A3. The specific objectives of the paper are:

1. To explain how the dynamics of a chemical process such as the TEP can be modeled
to compute measures of multivariate connectedness,

2. To show how the measures of variable connectedness are represented as network
graphs for visual analysis of system volatility,

3. To perform the computations and network rendering of connectedness using two con-
nectedness dimensions: time connectedness and frequency connectedness

4. To discuss how the findings on the use of network topology of variance decompo-
sitions for volatility spillover analysis in a chemical process may complement and
perhaps advance chemical process design and control.
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Figure 3. Sample time-series dynamics of TEP with “Fault 1”, which is a negative step change of (x4)
feed ratio of mol A/mol C in stream 4. The valve opening m3 compensated for increasing the feed
flow of A (x1). The levels of the measured variables (x1 to x41) and the manipulated variables (m1 to
m11) were sampled every 3 min.



Processes 2023, 11, 1747 5 of 26

2. Methodology
2.1. Theory: A Solution—Multivariate Time-Series Variance Decompositions and
Their Connectedness

The analysis of volatility spillover effects and variable connectedness is integral to
the study of financial systems and the practice of risk measurement and management;
hence, the field of econometrics has developed and advanced numerous data analytics tech-
niques and algorithms on the subject [17]. One recently developed technique that provides
numerical and visual metrics for estimating spillover effects is the technique of network
topology of variance decompositions. To put the solution approach into the framework
of chemical process dynamics and control, the two concepts (1) variance decompositions
and (2) network topology will now be presented in brief, along with citations of relevant
pioneering papers that provide more details on the theories and computational mechanics
of such concepts and techniques [10,12,13].

2.1.1. Variance Decomposition—Estimating Multivariate Connectedness

Consider a N-variate dynamical system evolving in time with N dynamical vari-
ables x = [x1, . . . xN ]

′. Denote a vector time series of the x variables as x�,t taken at time
t = 1, . . . , T (Equation (1)), which is the vector representation of the TEP dynamics graphi-
cally shown in Figure 3:

x�,t = [x1,t, . . . xN,t]
′ (1)

The variance decomposition starts by de-noising the data. This is conducted by using
a time-series model that can capture trends, and a common effective model is the vector
autoregressive (VAR) model of order p [10,12]. Therefore,

x�,t = Φ1xt−1 + . . . + Φpxt−p + εt (2)

where Φ1 . . . Φp are the coefficients of the regressed VAR model in which the regression
is calculated such that each variable is regressed on its own p lags and the p lags of each
of the other variables. The εt is white noise with covariance matrix Σ. For simplicity of
succeeding derivations, the VAR model can be concisely written as an N × N matrix of
lag-polynomials L and the identity matrix IN [10]:

Φ(L) =
[
IN −Φ1L− . . .−ΦpLp] (3)

This Φ(L) represents the optimized VAR model capturing the trends in the data
such that the residuals are the white noise εt. Therefore, the VAR model can be written
concisely as [13]:

Φ(L)xt = εt (4)

The VAR coefficients Φ1 . . . Φp in matrix Φ(L) that represent de-noised time-series
trends can be used to compute the moving average (MA) matrix coefficients Ψ(L), i.e.,
Φ(L) = [Ψ(L)]−1, such MA is a good approximation of x�,t at varying MA horizons
h = 1, . . . , H, with coefficients Ψh [13]:

x�,t ≈ Ψhεt (5)

The MA coefficients Ψh can then be transformed to calculate the matrix of generalized
variance decompositions using the following formula according to Diebold and Yılmaz [10,13],
where σkk = Σk,k:

(θH)j,k =
σ−1

kk ∑H
h=0

(
(ΨhΣ)j,k

)2

∑H
h=0
(
ΨhΣΨ′h

)
j,j

(6)

The matrix coefficient (θH)j,k is the “connectedness” measure and denotes the contri-
bution of the k-th variable to the variance of forecast error of the j-th variable at horizon
h [10]. To finalize the connectedness metric CH , the coefficients in matrix θH must be
normalized by the row sum [13] as shown in Equation (7), and the connectedness metrics
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must be defined as the forecast contributed by errors other than own errors [10] as shown
in Equation (8): (

θ̃H

)
j,k

=
(θH)j,k

∑N
k=1(θH)j,k

(7)

CH = 100 •
∑j 6=k

(
θ̃H

)
j,k

∑
(

θ̃H

)
j,k

(8)

The matrix CH consists of the variance decompositions of the N-variate dynamical
system with variable measurements x�,t. Table 1 below symbolically shows the elements
of the matrix CH , where each cH

jk is a connectedness coefficient from variable xj to variable
xk. Transforming the data shown in the matrix CH to a network graph is presented in the
next section.

Table 1. Connectedness table schematic for CH of the variables x = [x1, . . . xN ]′.

x1 x2 . . . xN

x1 cH
11 cH

12 . . . cH
1N

x2 cH
21 cH

22 . . . cH
2N

...
...

...
. . .

...
xN cH

N1 cH
N2 . . . cH

NN

2.1.2. Network Topology—Graphs of Connectedness

The network graph of the variable connectedness measures in a multivariate system
such as TEP is a valuable tool in analyzing the influences of variables and volatility spillover
effects in the system. After computing the connectedness coefficients matrix CH (Table 1),
the network representation of the coefficients can now be carried out by treating the CH
matrix as an adjacency matrix [12]. Among the various centrality measures in a network,
the directed centralities of in-degree, out-degree, and net directed degree are the most
relevant in the task of estimating volatility spillover [10]. Below is an illustration of how an
adjacency matrix is rendered as a network graph.

For simplicity, consider as a toy example the small adjacency matrix R of four variables
r = [r1, r2, r3, r4]

′, as shown in Figure 4.
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Figure 4. Sample rendering of a toy example-directed network graph R from its corresponding
adjacency matrix: (A) network weighted adjacency matrix and (B) network graph.

In the network graph (Figure 4), the variables r1, r2, r3, and r4 become nodes, and the
connection between two nodes is an edge. The coefficient on the R matrix (Figure 4A) is
the weight of an edge connecting two nodes in the “row-to-column” direction. Hence,
a weight of zero (0) means no connection between variables in a particular direction. In
order to model the direction of influence, the network must be transformed into a directed
graph, as shown above. Note that there is a self-directed edge “r1 to r1” in the graph for
network R (Figure 4B), but this kind of self-connectedness is excluded in the CH matrix as
the definition of connectedness to “itself” does not add relevant information [10].
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2.2. Computations: On TEP Benchmark Dataset Using the R-Package “ConnectednessApproach”
2.2.1. Data Analytics Workflow

A schematic of the data analytics workflow is shown in Figure 5. The steps were
implemented via the R-codes [18] and R-Studio [19] written for the work and provided
through an online GitHub repository Fortela and Mikolajczyk [20] (https://github.com/
dhanfort/TEP_connectedness.git (accessed on 16 April 2023)). The R codes were built
around the main analysis R-package “ConnectednessApproach” (version 1.0.1) created
by Gabauer [21] and implemented the computations discussed in the theory section (see
Section 2.1 of this paper).
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2.2.2. Benchmark Dataset: Tennessee-Eastman Chemical Process (TEP)

The dataset used in this work is that of the TEP process, which has been used as a
benchmark process [4,16]. The particular TEP dataset used in this work is the recently
expanded version created by Rieth et al. [3,16] with the aim of providing more variations
of TEP for anomaly detection applications. There are 41 measured variables (coded as x1
to x41) and 11 manipulated variables (coded as m1 to m11), which are defined in Table 2
based on the original definitions and data of Downs and Vogel [4]. Note that the vector of
process variables consists of both of the variables x1, x2, . . . , x41 and of the variables m1,
m2 . . . , m11, as summarized in Table 2. That is, x = [x1, x2, . . . , x41, m1, m2, . . . , m11]

′. More
details about the TEP dataset and how to download it are available on the dataset webpage
by Rieth et al. [16]. A sample rendering of the TEP dynamics in a normal operation is
shown in Figure 3 for the data subset with “Fault 1” setting. As shown in Figure 1, the TEP
benchmark process includes feedback controllers with valve openings as the manipulated
variable at various key locations to control specific process variables.

https://github.com/dhanfort/TEP_connectedness.git
https://github.com/dhanfort/TEP_connectedness.git
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Table 2. Definition of process variables and symbols in the TEP benchmark dataset based on Downs
and Vogel [4].

Current
Symbol Variable Definition Original

Symbol [4] Units

x1 A feed (stream 1) XMEAS (1) kscmh
x2 D feed (stream 2) XMEAS (2) kg/h
x3 E feed (stream 3) XMEAS (3) kg/h
x4 A and C feed (stream 4) XMEAS (4) kscmh
x5 Recycle flow (stream 8) XMEAS (5) kscmh
x6 Reactor feed rate (stream 6) XMEAS (6) kscmh
x7 Reactor pressure XMEAS (7) kPa gauge
x8 Reactor level XMEAS (8) %
x9 Reactor temperature XMEAS (9) ◦C

x10 Purge rate (stream 9) XMEAS (10) kscmh
x11 Product separator temperature XMEAS (11) ◦C
x12 Product separator level XMEAS (12) %
x13 Product separator pressure XMEAS (13) kPa gauge
x14 Product separator underflow (stream 10) XMEAS (14) m3/h
x15 Stripper level XMEAS (15) %
x16 Stripper pressure XMEAS (16) kPa gauge
x17 Stripper underflow (stream 11) XMEAS (17) m3/h
x18 Stripper temperature XMEAS (18) ◦C
x19 Stripper steam flow XMEAS (19) kg/h
x20 Compressor work XMEAS (20) kW
x21 Reactor cooling water outlet temperature XMEAS (21) ◦C
x22 Separator cooling water outlet temperature XMEAS (22) ◦C
x23 A mole % reactor feed (stream 6) XMEAS (23) mol%
x24 B mole % reactor feed (stream 6) XMEAS (24) mol%
x25 C mole % reactor feed (stream 6) XMEAS (25) mol%
x26 D mole % reactor feed (stream 6) XMEAS (26) mol%
x27 E mole % reactor feed (stream 6) XMEAS (27) mol%
x28 F mole % reactor feed (stream 6) XMEAS (28) mol%
x29 A mole % purge gas (stream 9) XMEAS (29) mol%
x30 B mole % purge gas (stream 9) XMEAS (30) mol%
x31 C mole % purge gas (stream 9) XMEAS (31) mol%
x32 D mole % purge gas (stream 9) XMEAS (32) mol%
x33 E mole % purge gas (stream 9) XMEAS (33) mol%
x34 F mole % purge gas (stream 9) XMEAS (34) mol%
x45 G mole % purge gas (stream 9) XMEAS (35) mol%
x36 H mole % purge gas (stream 9) XMEAS (36) mol%
x37 D mole % product (stream 11) XMEAS (37) mol%
x38 E mole % product (stream 11) XMEAS (38) mol%
x39 F mole % product (stream 11) XMEAS (39) mol%
x40 G mole % product (stream 11) XMEAS (40) mol%
x41 H mole % product (stream 11) XMEAS (41) mol%
m1 D feed flow valve opening (stream 2) XMV (1) % open
m2 E feed flow valve opening (stream 3) XMV (2) % open
m3 A feed flow valve opening (stream 1) XMV (3) % open
m4 A and C feed flow valve opening (stream 4) XMV (4) % open
m5 Compressor recycle valve opening XMV (5) % open
m6 Purge valve opening (stream 9) XMV (6) % open
m7 Separator pot liquid flow valve opening (stream 10) XMV (7) % open
m8 Stripper liquid product flow valve opening (stream 11) XMV (8) % open
m9 Stripper steam valve opening XMV (9) % open

m10 Reactor cooling water flow valve opening XMV (10) % open
m11 Condenser cooling water flow valve opening XMV (11) % open

Note that the vector of process variables consists of both of the variables x1, x2, . . . , x41 and of the variables m1,
m2, . . . , m11, as summarized in Table 2.
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The various TEP process faults are summarized in Table 3. Note that there are 20 sub-
routines to create settings of faults; hence, there are 20 faults in the TEP benchmark dataset
(Fault 1 to Fault 20) originally run via Fortran by Downs and Vogel [4], but only Fault
1 to Fault 15 have known process dynamics fault settings in the sub-routine code. The
remaining sub-routines can be programmed by the user [4], but this current work did not
need to run the other fault subroutines because the original dataset fault settings Fault 1 to
Fault 12 were determined to be enough for the analysis in this current work.

Table 3. Faults and distrubances in the TEP benchmark dataset based on Downs and Vogel [4].

Fault No. Fault Description Type

1 A/C feed ratio, B composition constant (stream 4) Step Change
2 B composition, A/C ratio constant (stream 4) Step Change
3 D feed temperature (stream 2) Step Change
4 Reactor cooling water inlet temperature Step Change
5 Condenser cooling water inlet temperature Step Change
6 A feed loss (stream 1) Step Change
7 C heater pressure loss—reduced availability (stream 4) Step Change
8 A, B, C feed composition (stream 4) Random Variation
9 D feed temperature (stream 2) Random Variation
10 C feed temperature (stream 4) Random Variation
11 Reactor cooling water inlet temperature Random Variation
12 Condenser cooling water inlet temperature Random Variation

Overall, the TEP dataset used consists of 52 process variables (x1 . . . x41 plus m1
. . . m11), 960 time steps with a time step interval of 3 min (total process dynamics pe-
riod of 2880 min), and 12 fault settings. Figure 3 is a sample rendering for the “Fault 1”
setting. Hence, x = [x1, x2, . . . , x41, m1, m2, . . . , m11]

′, N = 52, and T = 960. The resulting
connectedness matrix for each fault setting has a dimension N × N, which is 52× 52.

2.2.3. Type of Connectedness

1. Time Connectedness

The current econometrics literature on the subject of variance decomposition shows
various ways of modeling the connectedness metric. Connectedness in time is estimated by
the CH matrix derived in Section 2.1 theory section. This is because the forecasting step at
varying time horizons h = 1, . . . , H computes the effect of one variable to another at h steps
ahead in time [10,17]. In the R-package “ConnectednessApproach”, the core function that
implements this computation in the time domain is the “TimeConnectedness()” that is
accessed by other functions such as the “ConnectednessApproach()” function.

2. Frequency Connectedness

Building on the work of Diebold and Yılmaz [10], Baruník and Křehlík [13] expanded
the variance decomposition to use Fourier transforms in decomposing time-series dynamics
according to frequencies. In the R-package, frequency connectedness is implemented by
the core function “FrequencyConnectedness()” that is accessed by other functions, such as
the “ConnectednessApproach()” function.

For the “frequency connectedness” CF, connectedness in short-term, mid-term, and
long-term periods can be modeled by specifying the partitioning of the domain of the
Fourier transforms defined in the interval [−π, π] based on Baruník and Křehlík [13]. More
partitions mean higher frequencies, equivalently modeling short-term effects; on the other
hand, fewer partitions (including no partition) mean low frequencies, equivalently model-
ing long-term effects [13]. This work used the following three levels of partitions to model
short-term, mid-term, and long-term effects, respectively:

[
π, π

2 , 0
]
, which are the default

partition levels in the R-package function for frequency connectedness analysis [13,21].
When converted to the common way of reporting frequencies, considering that the TEP
dataset is for a process dynamics duration of 2880 min, these partitions correspond to the



Processes 2023, 11, 1747 10 of 26

partition intervals of [917.2 min, 1834.4 min, and 2880 min], respectively; hence resulting to
the following sampling frequencies: [1/55,032 Hz, 1/110,063 Hz, and 1/172,800 Hz] for
short-, mid-, and long-term effects.

2.2.4. Process Variables Connectedness Reporting Using Volatility Spillover Index

Aggregating the values of the connectedness matrix CH or CF can be conducted in
various ways for econometrics applications, but the index that measures how shocks are
transmitted across financial markets is the net pairwise dynamic connectedness (NPDC)
that is computed from the connectedness matrix [22]. Hence, this work uses NPDC as
a measure of the volatility index in a chemical process such as TEP. The computation of
NPDC can be conveniently specified in the “ConnectednessApproach()” function [21].
Depending on the tolerance of risk, only a certain range of NPDC values are considered for
network topology rendering. It is typical for financial analysis to use a threshold of 25% (or
threshold of 0.25) of the bivariate NPDC as the minimum level of NPDC used for spillover
analysis [21]. This work evaluates how this threshold on volatility index NPDC affects the
network topology of TEP.

The network graph renderings were completed using the “igraph” R-package [23]
with the circle layout in such a way that the node positions are fixed, allowing easy
trends tracking of network connectedness. The weight of the NPDC between variables is
graphically represented as the thickness of the directed edges. That is, a thick, directed
edge means a large bivariate NPDC index. Arrows on the edges represent the direction of
the volatility spillover effect [21].

3. Results and Discussion

First, the vector autoregressive (VAR) model residuals from the dataset are evaluated
using hypothesis testing against the null hypothesis that the mean of the residuals is not
different from zero (Table 4). This is a fundamental assumption about white noise, εt as
detailed in Section 2.2.1, which is left after the VAR model captures the trends in the data.
Then, the network topology of oscillation propagation measured by the NPDC index for
Fault 1 to Fault 12 is presented for time-based connectedness (Figures 6 and 7). Afterward,
the effect of varying the minimum threshold bivariate NPDC index in network topology
is evaluated for time-based connectedness on Fault 12, as shown in Figure 8. Finally, the
volatility spillover network topology based on frequency connectedness is presented using
Figure 9 for Fault 1 and Figure 10 for Fault 12. For reference to the type of data used to
create network graphs, a sample NPDC matrix for time-connectedness and frequency-
connectedness is shown in Appendix A for TEP setting Fault 12 (Figures A1 and A2).

Table 4. Hypothesis testing on the standardized residuals as a measure of white noise εt from the
VAR model of each TEP fault dataset using a two-sided t-test.

Fault No.
Mean of

Standardized
Residuals

Degrees of
Freedom

t-Statistic
p-Value

Two-Sided
t-test

Decision at Significance Level α

α=0.05 α=0.01

1 28.66 2703 1.8129 0.06995 Fail to Reject H0 Fail to Reject H0
2 30.92 2703 1.9395 0.05254 Fail to Reject H0 Fail to Reject H0
3 30.84 2703 1.9615 0.05000 Reject H0 Fail to Reject H0
4 28.45 2703 1.8305 0.06728 Fail to Reject H0 Fail to Reject H0
5 28.59 2703 1.7647 0.07773 Fail to Reject H0 Fail to Reject H0
6 10.20 2703 1.8913 0.05870 Fail to Reject H0 Fail to Reject H0
7 31.66 2703 1.9764 0.04821 Reject H0 Fail to Reject H0
8 25.75 2703 1.5543 0.12020 Fail to Reject H0 Fail to Reject H0
9 30.76 2703 1.9507 0.05120 Fail to Reject H0 Fail to Reject H0
10 31.19 2703 1.9776 0.04808 Reject H0 Fail to Reject H0
11 30.86 2703 1.9541 0.05079 Fail to Reject H0 Fail to Reject H0
12 31.48 2703 1.7588 0.07872 Fail to Reject H0 Fail to Reject H0
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Figure 6. Network topology of volatility spillover index net pairwise dynamic connectedness 
(NPDC) based on time-connectedness on Fault 1 to Fault 6 of the TEP. The NPDC threshold is 0.25. 
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tive overall NPDC. The arrowed edges indicate the direction of volatility spillover. 

Figure 6. Network topology of volatility spillover index net pairwise dynamic connectedness (NPDC)
based on time-connectedness on Fault 1 to Fault 6 of the TEP. The NPDC threshold is 0.25. Nodes
filled with green color have zero overall NPDC, while nodes filled with red color have positive overall
NPDC. The arrowed edges indicate the direction of volatility spillover.
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Figure 7. Network topology of volatility spillover index net pairwise dynamic connectedness (NPDC)
based on time-connectedness on Fault 7 to Fault 12 of the TEP. The NPDC threshold is 0.25. Nodes
filled with green color have zero overall NPDC, while nodes filled with red color have positive overall
NPDC. The arrowed edges indicate the direction of volatility spillover.
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Figure 8. Network topology of volatility spillover index net pairwise dynamic connectedness 
(NPDC) based on time-connectedness on Fault 12 at a varying minimum threshold of the NPDC. 
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Figure 8. Network topology of volatility spillover index net pairwise dynamic connectedness (NPDC)
based on time-connectedness on Fault 12 at a varying minimum threshold of the NPDC. Nodes filled
with green color have zero overall NPDC, while nodes filled with red color have positive overall
NPDC. The arrowed edges indicate the direction of volatility spillover.
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Figure 9. Network topology of volatility spillover index net pairwise dynamic connectedness 
(NPDC) based on frequency-connectedness on Fault 1 at a varying minimum threshold of the 
NPDC. Nodes filled with green color have zero overall NPDC, while nodes filled with red color 
have positive overall NPDC. The arrowed edges indicate the direction of volatility spillover. 

Figure 9. Network topology of volatility spillover index net pairwise dynamic connectedness (NPDC)
based on frequency-connectedness on Fault 1 at a varying minimum threshold of the NPDC. Nodes
filled with green color have zero overall NPDC, while nodes filled with red color have positive overall
NPDC. The arrowed edges indicate the direction of volatility spillover.

3.1. VAR Model Residuals Analysis

Hypothesis testing on the white noise εt (Equation (2)) must be conducted to make
sure that the VAR model captures the trends in the time-series data. The time-series
residuals were embedded into one-dimensional representation according to established
computations from previous works on time-series embedding. That is, the time-series
residuals of one variable were embedded into one dimension representation. Since one fault
dataset has 52 variables, a VAR model embedded residuals of 52× 52 matrix was created,
resulting in a total of 52 × 52 = 2704 one-dimension VAR residuals. Hence, the VAR
model residuals for each variable were normalized by the standard deviation of each corre-
sponding variable. This was followed by a two-sided t-test, with degrees-of-freedom = no.
samples −1 = 2704 −1 = 2703, on the standardized residuals with the null hypothesis that
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the mean is equal to zero, i.e., H0 : µε = 0, and the alternative hypothesis that the mean
is not equal to zero, i.e., HA : µε 6= 0. The analysis was conducted for all the TEP fault
datasets (Fault 1 to Fault 12), as summarized in Table 4. The R-code for this analysis is
included in the online GitHub repository for the project [20].
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Figure 10. Network topology of volatility spillover index net pairwise dynamic connectedness
(NPDC) based on frequency-connectedness on Fault 12 at a varying minimum threshold of the NPDC.
Nodes filled with green color have zero overall NPDC, while nodes filled with red color have positive
overall NPDC. The arrowed edges indicate the direction of volatility spillover.

These hypothesis testing results show that the residuals are not different from zero
at a significance level of 1% (α = 0.01) in all fault settings (Fault 1 to Fault 12). If the
significance level is increased to 5% (α = 0.05), then a few datasets, i.e., Fault 3, Fault 7,
and Fault 10, result in rejecting the null hypothesis that the residuals are equal to zero for
these fault settings (Table 4). The level of significance to be used can vary depending on the
strictness of the hypothesis testing because α is a measure of the strength of the evidence
that must be present in the dataset before rejecting the null hypothesis. However, with
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a large degrees-of-freedom of 2703 (with 2704 samples per fault dataset), the use of the
VAR model in denoising the TEP datasets and capturing the trends at a significance level
α = 0.01 is warranted.

3.2. Oscillation Propagation Effects from TEP Faults Based on Time Connectedness

Depending on the dynamics of the fault, the network topology based on the NPDC
index varies from Fault 1 to Fault 12 (Figures 6 and 7). The fault that has the most volatility
connectedness is Fault 12 (Figure 7F), when the condenser cooling water inlet temperature
randomly fluctuated (Table 3). The fault that has the least volatility, as indicated by few node
connections and thin directed edges, is Fault 10 (Figure 7D), when the reactor cooling water
inlet temperature randomly fluctuated.

The main task of this work is to discuss how consistent the trends of NPDC networks
are with the mechanistic relations of the variables in the TEP process to be able to assess the
potential of the network topology of variance decompositions in capturing the volatility
effects in the TEP. This will now be addressed by focusing on the key trends of network
topologies (Figures 6 and 7) and the fault settings summarized in Table 3.

Question: Are the network trends consistent with the TEP model?
The largest connectedness in Fault 1 (Figure 6A) is that of node x38 (stream 11) to m9,

which means the concentration of the target product E in the product (x38 in stream 11)
is dictating the valve % opening of the steam supply to the heater of the stripper (m9)
(see Figure 1). This is expected from the first principles of stage (equilibrium) operations
and the model of the control loop for x38 and m9 [4,16]. The second largest connection is
from x38 (stream 11) to x19, which is the stripper steam flow rate (Figure 6A). This is also
expected because m9 is the % opening of the valve for the stripper steam flow rate x19. The
third largest connection is from x20 (compressor work) to m5 (compressor recycle valve %
opening) (Figure 1A). This is also consistent with the TEP model, as the power added to
the compressor leads to a downstream PV-work effect on the vapor stream 8, forcing the
recycle valve (m5) to react according to its control setting (Figure 1).

An interesting trend in Fault 1 (Figure 6A) is that node x4, which is the variable for
the flowrate of the A/C feed (with B inert) in stream 4, did not connect with any process
variable (Figure 1A) even though this stream 4 is where the step change of Fault 1 occurred
—a step change in A/C ratio in stream 4 at constant inert B composition (Table 3). So, the
change in the ratio of A and C in stream 4 does necessarily result in having the flow rate of
stream 4 be a significant source of oscillation in the system. Other variables downstream,
such as x38 and x20, as discussed above, are the sources of significant oscillation in the
system. The connection between x4 and other process variables does not show up here in
the time-based connectedness analysis, but it becomes evident when the Fault 1 dynamics
are analyzed using the frequency-based connectedness (Figure 9C). That is, the connection
of x4 to m4 (stream 4 valve % opening) is detected using frequency-connectedness in the
long term. Note that the absence of connection does not mean that the variables are not
affecting each other. It simply means the fluctuations of one variable do not dictate the
fluctuations of another variable at the NPDC threshold of 0.25 (Figure 6).

Another trend that becomes apparent when seen on the network of NPDC is the
dynamics from Fault 12, which is the case when the condenser cooling water inlet tempera-
ture randomly fluctuates (Figure 7F). See Appendix A Figure A3 for the time-series graph
of Fault 12. Even though it is a single unit of a heat exchanger, the condenser volatility
propagates to almost all TEP process variables. This is consistent with the time-series trends
shown in Figure A3. The complexity of the Fault 12 volatility graph will be handled in the
next section on varying the threshold of NPDC. The network trends of Fault 12, however,
can be compared with that of Fault 5 (Figure 6E) because the latter is the step-change
version of the fault (Table 3). Fault 5 has fewer significant oscillation effects (Figure 6E)
compared to that of Fault 12 (Figure 7F). This implies that the nature of the disturbance
can significantly affect the propagation of oscillations. A step-change disturbance results
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in few oscillation propagations, while a random variation results in numerous connected
oscillation propagations in the TEP.

Question: Are there network trends shown that are not obvious in the time-
series dynamics?

There are trends shown in the network graphs that cannot be easily seen on the time-
series dataset and even on the TEP P&ID (Figure 1). One such trend is when the network for
Fault 1 (Figure 6A) and Fault 2 (Figure 6B) are compared. Between these networks, the effect
of variable x30 (B mole % in purge gas stream 9) on variable m6 (purge valve % opening
stream 9) and variable x20 (purge rate stream 9) becomes large from Fault 1 to Fault 2. These
faults are comparable because they both pertain to stream 4 disturbance—Fault 1 is on a
step change of A/C ratio with constant B, while Fault 2 is on a step change in B composition
with constant A/C ratio. The process flow diagram (Figure 1) shows that stream 4 is not
directly connected to stream 9 and that there are several chemical process units in between
stream 4 and stream 9. However, the disturbance in the composition of the inert component
B (Fault 2) x30 in stream 4 significantly propagates to the downstream variables x10 and m6
according to the network trends (Figure 6A,B). This volatility effect becomes apparent only
through network analysis. Does this trend make sense? Yes. Based on the first principles of
mass balance, since component B is an inert chemical and the control loop for stream 9 is
meant to handle the concentration of component B, the purge stream 9 is manipulated to
discharge B, and the only gaseous outlet stream is the purge stream 9.

By looking at the network topology of Fault 3 (Figure 6C), Fault 4 (Figure 6D), and
Fault 9 (Figure 7C), these three faults seem to have almost the same oscillation effects except
for a few variable pairs: x13 to m5 appears in Fault 4, x11 to m9 appears in Fault 3, m10 to
x9 appears in Fault 4. Note that Fault 9 is the same as Fault 3 except for the type of variation
where Fault 9 has random variation while Fault 3 has s step-change in D feed temperature
(Table 3). Hence, Fault 3, which is a step-change in the D feed temperature, Fault 9, which
is a random variation in the D feed temperature, and Fault 4, which is the step-change in
the reactor cooling water temperature, have almost the same oscillation propagation effect
in the whole system. These oscillation propagation effect similarities become apparent only
from the perspective of the network topologies of connectedness.

3.3. Network Topology at Varying Connectedness Thresholds

A question that naturally follows from the complicated network topology of Fault 12,
as shown in Figure 7F, is the question of whether there is a way to segment the network
topology based on the strength of the oscillation propagation effects (volatility index
NPDC). The answer to the question is yes, and the sample solution for Fault 12 is shown
in Figure 8. The solution is the set level of the minimum threshold of the volatility index
NPDC to be considered for network rendering. That is, the NPDC index values greater
than the set threshold fraction level will be the only NPDC index values to be considered
for network topology rendering. For example, the maximum absolute value of the NPDC
index in Fault 12 is 20.9 (see Figure A1 in Appendix A) and setting the threshold to
0.80 results in 20.9× 0.80 = 16.72 as the minimum NPDC value for network rendering
resulting in Figure 8F, which has very few node connections but of high NPDC index
values. These are the TEP process variables with high oscillation propagation effects in
the system. If it is decided to add more node connections of lower NPDC values, i.e., in
addition to the high NPDC node pairs, to expand the network analysis of oscillation, then
the threshold can be set lower. This minimum threshold level then affects the number
of visible node connections: the higher the minimum threshold, the higher the NPDC
value cut-off resulting in fewer node connections that have high values of NPDC (Figure 8).
There is no set rule about the level of the NPDC threshold, but the flexibility in varying
this value as a means to add or remove the connections in the NPDC network allows for
the possibility of prioritizing the process variables for further analysis of the oscillation
propagation effects.
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3.4. Connectedness Based on Frequency

Connectedness based on frequency may be a better model of connectedness when the
time-series dynamics have a dominant periodic pattern [13]. Oscillations due to control
loops is a challenging dynamics to detect and address in large-scale chemical processes [2].
Such periodic dynamics are apparent in the TEP dynamics, as shown in Figures 1 and A1.
Figures 9 and 10 below show the network topology on the NPDC index based on frequency-
connectedness CF at varying minimum threshold of the coefficients.

Apparent in both Fault 1 (Figure 9) and Fault 12 (Figure 10) are the differences in the
network topology on the NPDC index between the short-term, mid-term, and long-term
frequencies. In general, fewer oscillations are significant in long-term frequencies compared
to short-term frequencies. This is expected in a system that has a control loop like the
TEP, and it is an indication that the control loops are working to mitigate the disturbances
arising from the faults.

For Fault 1 (Figure 9), the oscillation effects with high NPDC at a threshold of 0.8
at short-term are the following: the effect of x20 on x29 and m5; and the effect of x38 on
x19 and m9 (Figure 9G). In the long-term, the following have high oscillation effects at
the NPDC threshold of 0.8: x22 affected by x13, x11, and x7, and the effect of 5m to x5
(Figure 9I).

For Fault 12 (Figure 10), the oscillation effects with high NPDC at a threshold of 0.8 at
short-term are the following: effect of x22 on x2, x4, x8, x9, x35, x36, and m10 (Figure 10G).
In the long-term, the following have high oscillation effects at the NPDC threshold of
0.8: x26 on x2 and m1; and m5 on x5 (Figure 10I).

The connectedness index NPDC is significant in the short-term capture of the shock
effects that occur and dissipate in short-term cyclical dynamics [13,24,25]. Hence, the
oscillation connectedness at short-term measures the dynamics that rapidly manifest after
a disturbance. On the other hand, the significant connectedness in the long-term capture
the cyclical dynamics transmitted for long periods after a shock or disturbance [13,24,25].
Hence, the oscillation connectedness in the long term measure the dynamics that persist for
a long time.

3.5. Significance of the Current Work

Chemical processes in small-scale or large-scale operations involve several control
loops, and the corrective action of these control loops when a disturbance or fault occurs
can result in oscillations propagating to many units through control loops and physical
connections between units [2,26]. Hence, the disturbances may propagate to a plant-wide
oscillation that can compromise product quality, increase the cost of operation, and increase
the risk of accidents [1,4]. A recent review of literature conducted by Jiang and Yan [27] has
identified that one of the key challenges in the plant-wide dynamics of the chemical process
is the task of cause-effect and oscillation propagation path analysis. Capturing causality
and connectivity has been a challenge for complex industrial-scale processes [28]. The
demonstration in this work on the use of generalized variance decomposition to determine
oscillation connectedness and the rendering of the NPDC volatility index as network graphs
are aimed at introducing the said approach as an additional tool detecting and handling
plant-wide oscillations caused by disturbances and faults.

Though the motivation of the work is to demonstrate a computational tool to detect
oscillation propagation effects in a chemical process plant, the findings of the work may be
of use in broader key areas of the field. We conducted a comprehensive literature review
and bibliometric analysis to examine the state-of-art of the field of chemical process control
and to show the significance of the current work. The results are summarized in Figure 11.

Figure 11A summarizes the results of bibliometric analysis on publications in Web of
Science (WoS) on the search key phrase “chemical process plant control” for publication
years 1973 to 2023. The top 1002 publications “by relevance” were collected and used in bib-
liometric analysis using the R-package “Bibliometrix” [29]. The three-field association plot
in the form of a Sankey diagram for the top 20 authors, top 20 references, and top 20 topics
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depict the prominent research areas and researchers on the topic. The bibliographic dataset
collected and the R-code for the analysis are provided in the online GitHub repository of
the project [20]. It can be observed that the topic is averaging a publication of 13 documents
per year from 352 sources (journals, books, etc.), and the average citation per document is
27.97. The topic of model-predictive control (MPC) is at the top of the list of topics, together
with the topic area of neural networks (Figure 11A). These two topic areas fit well into the
broader application of the results of this current work (Figure 11B,C).

3.5.1. Model-Predictive Control (MPC)—System Identification

The topic of MPC is a top research area where some of the prominent researchers in the
field have conducted studies (Figure 11A) [31,32,37,65–70]. This is due to the potential of
MPC to determine the optimal actions to take for large multi-input, multi-output (MIMO)
systems [71]. Inherent in the implementation of MPC in a chemical plant, however, is
the challenge of system identification (Figure 11B). System identification is the task of
developing from process data the empirical models that become the “predictor” component
of the MPC [72]. The MPC model must be efficient in capturing the relevant dynamics
for a given objective [73]. The results of the connectedness measures from the generalized
variance decomposition completed in this work can be used in identifying sets of predictor
variables for specific target process output variables.

The interconnectedness of dynamics of various process variables depending on the
fault (Figures 6 and 7) elucidates whether the designated manipulated variables (m1, m2,
. . . m11) are affecting the intended controlled variables (x1, x2, . . . x41) for that particular
control loop. They also allow the detection of the spillover effects of manipulated variables
onto controlled variables that are far downstream in the process. Such detection is difficult
to do using only knowledge of first principles of mass balance, energy balance, kinetics
and transfer phenomena because of the system-wide interconnectedness of the effects.

Another challenge that can be addressed by using the network topology of volatility
spillover is the stratification of the spillover effects based on their levels. This is evident in
the network topologies of NPDC at varying minimum thresholds (Figure 8). This allows
for detecting which process variables must be prioritized for further analysis, as the high
NPDC bivariate pairs represent the connections that transmit the greatest volatilities.

Analyzing oscillation propagation at short-term, mid-term, and long-term frequencies
(Figures 9 and 10) allows for the analysis of effects that manifest immediately (short-term)
and those that persist for a longer period (long-term). An evident trend in Figures 9 and 10
is that the oscillations propagation connectedness dissipates when going from short-term
to long-term periods. This trend is consistent with the TEP process, which has various PID
control loops designed to handle process faults and disturbances [4].

3.5.2. Graph Neural Network—Network Embedding of Time-Series

With the advent of machine learning techniques from shallow learning to deep learn-
ing, many studies developed anomaly-detection algorithms and architectures based on
the training of machine learning models on large datasets [3,74,75]. This work does not
attempt to provide an alternative computation approach. Rather, this work highlights an-
other possible approach to representing the effects of faults and disturbances in a chemical
process plant in a graph-based manner (Figure 11C). With the recognition of the capabilities
of graph-based machine learning (geometric machine learning), there is an ongoing effort
to discover ways of embedding time-series dynamics into network graphs where various
attributes of the original time-series data can be represented as node attributes or edge
attributes [76]. A recent review of the literature on the topic by Tjøstheim and Jullum [76]
found that the common embedding approach is by using functional principal components
analysis (PCA) [77], independent component analysis (ICA) [78], autoencoding [79], and
self-organizing maps (SOM) [80]. A relatively new area of topological dynamics analysis
(TDA) inspired by ideas from the pure mathematics of topology is being studied in terms
of statical properties, and more work has to be carried out with TDA [76].
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Figure 11. Potential applications of the results of the network topology of oscillation propagation
effects of disturbances and faults in a chemical process plant: (A) A comprehensive literature review
and bibliometric analysis on the search key phrase “chemical process plant control” in the database
Web of Science (WoS) for publication years 1973 to 2023. The top 1002 publications “by relevance”
were collected and used in bibliometric analysis using the R-package “Bibliometrix”. A Sankey
diagram of the Top 20 Author, Top 20 References, and Top 20 Topics represent a three-field summary
of the top bibliometric entries in the 1002 publications. A frequency plot of keywords also provides a
distribution of the prominent research terms. Top 20 authors: Ricardez-Sandoval [30], Skogestad [31],
Alonso [32], Banga [33], Bao [34], Yu [35], Thornhill [36], Christofides [37], Baldea [38], Engell [39],
Lee [40], Durand [41], Zhang [42], El-Farra [43], Basualdo [44], Gernaey [45], Chen [46], Wang [47],
Wu [48], and Lee [49]. Top 20 references: Mayne [50], Qin [51], Luyben [52], Bristol [53], Skoges-
tad [54], Douglas [55], Buckley [56], Luyben [57], Morari [58], Venkatasubramanian [59], Larsson [60],
Morari [61], Downs [4], Ricker [62], McAvoy [63], and Ricker [64]. (B) Model-predictive control is an
active research area particularly focused on the problem of system identification. (C) Graph-based
machine learning of time-series datasets is also an active research area that can benefit from the
network topology embedding of the time-series parameters.

The network topologies graphically rendered in Figures 6–10 are the kind of graphs
that can be directly used as inputs into graph neural network (GNN) tensors and be
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processed via geometric machine learning. The attributes of the nodes and edges in the
network topologies computed via time-based and frequency-based connectedness can all
be embedded as network properties and be used in the machine learning computations
allowing for more attributes captured from the original time-series dataset. These can be
the next paths of research in this topic area. GNN has been a recent active area of research
in systems involving connected data [81], and its extensive application in chemical process
control merits consideration.

4. Conclusions

The method of generalized variance decomposition can estimate the connectedness of
variables in a chemical processing system such as the Tennessee-Eastman process (TEP)
based on time and based on dynamics frequency. Treating the time-based and frequency-
based connectedness matrices as adjacency matrices and rendering the resulting net pair-
wise dynamic connectedness (NPDC) index of volatility results into network graphs that
aid in the analysis of cause–effect relations of oscillations resulting from faults in a chemical
process. The network topology of oscillations can be analyzed depending on the level of
the NPDC volatility index. The frequency-based NPDC index network allows for the detec-
tion of short-term, mid-term, and long-term oscillation effects. The results of the current
work may be applicable in broader areas of application, such as system identification in
model-predictive control and graph-based machine learning of time-series dynamics.
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Appendix A

Below (Figures A1 and A2) are samples of the net pairwise dynamic connectedness
(NPDC) index values that estimate volatility spillover effects for TEP setting “Fault 12”.
These are examples of the NPDC index matrix computed from the connectedness matrix
CH and CF data, that eventually were rendered as network graphs presented in the Results
section. We also include the time-series graph for Fault 12 (Figure A3), which was referred
to several times in the Results and Discussion sections.

Note that the NPDC matrix (Figure A1) contains both the positive signed and negative
signed values of the NPDC index of the same magnitude. For example, “x9−to−x22“ edge
has a weight (+)18.7 NPDC and “x22−to−x9“ edge has a weight (−)18.7. This indicates
the direction of the edge between the nodes created when the NPDC matrix is used as an
adjacency matrix for network topology rendering. This also applies to the data in Figure A2.

https://github.com/dhanfort/TEP_connectedness
https://github.com/dhanfort/TEP_connectedness


Processes 2023, 11, 1747 22 of 26
Processes 2023, 11, x FOR PEER REVIEW 23 of 28 
 

 

 
Figure A1. Example volatility spillover NPDC index matrix computed using time-connectedness 
matrix 𝐶𝐻 for TEP setting “Fault 12”. 

Note that the NPDC matrix (Figure A1) contains both the positive signed and nega-
tive signed values of the NPDC index of the same magnitude. For example, “𝑥 −to−𝑥 “ 
edge has a weight (+)18.7 NPDC and “𝑥 −to−𝑥 “ edge has a weight (−)18.7. This indicates 
the direction of the edge between the nodes created when the NPDC matrix is used as an 
adjacency matrix for network topology rendering. This also applies to the data in Figure 
A2. 

Figure A1. Example volatility spillover NPDC index matrix computed using time-connectedness
matrix CH for TEP setting “Fault 12”.

Processes 2023, 11, x FOR PEER REVIEW 24 of 28 
 

 

 
Figure A2. Example volatility spillover NPDC index matrix computed using the short-term fre-
quency-connectedness matrix 𝐶𝐹 for TEP setting “Fault 12”. Figure A2. Example volatility spillover NPDC index matrix computed using the short-term frequency-

connectedness matrix CF for TEP setting “Fault 12”.



Processes 2023, 11, 1747 23 of 26
Processes 2023, 11, x FOR PEER REVIEW 25 of 28 
 

 

 
Figure A3. Sample time-series dynamics of TEP with “Fault 12” when the condenser cooling water 
temperature randomly fluctuated. The levels of the measured variables (x1 to x41) and the manipu-
lated variables (m1 to m11) were sampled every 3 min. 

Figure A3. Sample time-series dynamics of TEP with “Fault 12” when the condenser cooling wa-
ter temperature randomly fluctuated. The levels of the measured variables (x1 to x41) and the
manipulated variables (m1 to m11) were sampled every 3 min.



Processes 2023, 11, 1747 24 of 26

References
1. Duan, P.; Chen, T.; Shah, S.L.; Yang, F. Methods for root cause diagnosis of plant-wide oscillations. AIChE J. 2014, 60, 2019–2034.

[CrossRef]
2. Wang, Y.; Hu, X.; Zhou, S.; Ji, G. Oscillation Source Detection for Large-Scale Chemical Process with Interpretative Structural

Model. In Information Technology and Intelligent Transportation Systems, Proceedings of the 2015 International Conference on Information
Technology and Intelligent Transportation Systems ITITS 2015, Xi’an, China, 12–13 December 2015; Springer: Cham, Switzerland, 2017;
pp. 441–451.

3. Rieth, C.A.; Amsel, B.D.; Tran, R.; Cook, M.B. Issues and Advances in Anomaly Detection Evaluation for Joint Human-Automated
Systems. In Advances in Human Factors in Robots and Unmanned Systems, Proceedings of the AHFE 2017 International Conference on
Human Factors in Robots and Unmanned Systems, Los Angeles, CA, USA, 17–21 July 2017; Springer International Publishing: Cham,
Switzerland, 2018; Volume 8, pp. 52–63.

4. Downs, J.J.; Vogel, E.F. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17, 245–255. [CrossRef]
5. Cao, J.; Zhang, L.; Zheng, J.; Xia, C. An Integrated Approach to Oscillation Propagation Identification and Source Locating in

Process Multi-loop Systems. Chin. J. Chem. Eng. 2011, 19, 999–1008. [CrossRef]
6. Bounoua, W.; Aftab, M.F.; Omlin, C.W.P. Controller Performance Monitoring: A Survey of Problems and a Review of Approaches

from a Data-Driven Perspective with a Focus on Oscillations Detection and Diagnosis. Ind. Eng. Chem. Res. 2022, 61, 17735–17765.
[CrossRef]

7. Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 1969, 37,
424–438. [CrossRef]

8. Stokes, P.A.; Purdon, P.L. A study of problems encountered in Granger causality analysis from a neuroscience perspective. Proc.
Natl. Acad. Sci. USA 2017, 114, E7063–E7072. [CrossRef] [PubMed]

9. Shojaie, A.; Fox, E.B. Granger Causality: A Review and Recent Advances. arXiv 2021. [CrossRef]
10. Diebold, F.X.; Yılmaz, K. On the network topology of variance decompositions: Measuring the connectedness of financial firms.

J. Econom. 2014, 182, 119–134. [CrossRef]
11. Jiang, W.; Gao, R.; Lu, C. The Analysis of Causality and Risk Spillover between Crude Oil and China’s Agricultural Futures. Int. J.

Environ. Res. Public Health 2022, 19, 10593. [CrossRef]
12. Diebold, F.X.; Yilmaz, K. Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring; Oxford

University Press: Oxford, UK, 2015. [CrossRef]
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