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Abstract: This study investigates the Hagen–Poiseuille pipe flow of viscoplastic fluids, focusing
on analytical predictions of concrete pumping using the shear-stress-dependent parabolic model,
extending analytical studies to a nonlinear rheological model with easily accessible experimental
parameters. Research novelty and highlights encompass solving the steady laminar pipe flow
for viscoplastic fluids described by the parabolic model, presenting detailed results for the two-
fluid parabolic model, and introducing a computational app implementing theoretical findings. The
parabolic model outperforms linear models, such as the Bingham model, in accuracy by accounting for
the nonlinearity in the flow curves (i.e., shear stress and shear rate relations) of pumped concrete. The
influence of rheological parameters on these relations is analyzed, and their versatility is demonstrated
by a Wolfram Mathematica-based application program. The analytical approach developed in this
work is adaptable for other models with shear stress as the independent variable, offering valuable
insights into viscoplastic fluid flows.

Keywords: pipe flow; viscoplastic fluid; concrete pumping; lubrication layer; rheology; yield stress;
shear-thickening

1. Introduction

Viscoplastic fluids are a type of non–Newtonian fluid that exhibit yield stress. For these
fluids to flow, applied stress must exceed a critical value known as ”yield stress“ [1–6].
The yield stress is therefore characterized as the material’s resistance to the initiation of
flow. According to historical records [1], viscoplasticity was first discovered in the 1890s by
Schwedoff when he used a Couette instrument to perform experiments on colloidal gelatin
solutions. His findings revealed a nonlinear relationship between the torque and angular
velocity in this instrument, making his experiments be the first set of measurements of
non-Newtonian behavior. To describe his results, he had to include a yield stress value.
Following this, the work of Bingham and Green in the 1920s led to broad acknowledg-
ment that some fluids display yield stress behavior [1,7–9]. Many industrially important
materials, such as concentrated suspensions [10,11], red mud residues [12], pastes [13],
food products [14], emulsions [15], foams [16], waxy crude oils [17], fiber-reinforced plas-
tics [18], and other composites, are viscoplastic. Concrete is another example of viscoplastic
fluid [19–22], and is the most widely used man-made material in the world. It is indis-
pensable for numerous major infrastructure developments, from buildings, roads, bridges,
and high-speed rail facilities to renewable energy applications.

Concrete pumping is a common placement technique that makes it possible to de-
liver concrete considerably more quickly, which speeds up construction and thus reduces
costs [23–25]. At the same time, the effective application of pumping technology can offer
excellent reliability and productivity during the construction process while reducing the
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danger of failure involving human error. Therefore, there is a significant economic benefit
to understanding and precisely defining the pumping behavior of concrete [25]. However,
pumping concrete is not a simple process, and many accidents occur every year as a result
of pump or pipeline blockages, blowouts, or breaks [23,24]. Consequently, a prior predic-
tion of concrete flow rates, which influence construction process duration, is required to
apply concrete pumping to large-scale construction projects [26].

Using known rheological models, several attempts have been made to estimate con-
crete flow in pumping. The majority of approaches to concrete pumping have considered
the yield stress and the presence of the unsheared zone by presuming that concrete behaves
as a Bingham fluid or Herschel–Bulkley fluid. However, without taking into account the
fact that there is a lubricating layer at the interface between the concrete and the pipe,
these approaches nearly always failed to correctly estimate pumping flow rate on a wide
range of concrete fluidities [26]. The possible mechanisms that contribute to the formation
of the lubrication layer (LL) include the wall effect phenomenon caused by particle–wall
interactions and shear-induced particle migration (SIPM) [27–32].

Kaplan et al. [33,34] conducted a pioneering study on predicting pumping perfor-
mance, which proved that the lubricating layer is important in facilitating concrete pump-
ing because it has much lower viscosity and yield stress than concrete [30,31]. In 2013,
Kwon et al. [31,35], followed by Khatib and Khayat [36], developed analytical predictions
on concrete pumping that included the rheological properties of the lubrication layer fluid.
Prior theoretical works of Kaplan [33], Kwon et al. [35], and Khatib and Khayat [36] used
the classical Bingham model to characterize the rheological behavior of bulk concrete and
the lubrication layer fluid, which sets a linear relationship between shear stress (τ) and
shear rate (γ̇), given by τ = τ0 + µpγ̇ for τ > τ0

γ̇ = 0 for τ ≤ τ0

(1)

where τ0 ≥ 0 and µp > 0 are the two parameters of the Bingham model: yield stress and
plastic viscosity, respectively.

Although the Bingham model is frequently used for cement-based materials, it has
been extensively reported that the relationship between shear stress and shear rate for
fresh concrete, mortar, and cement paste is not exactly linear [20,37–40]. Because the
Bingham model does not account for this non-linearity, two commonly used rheological
models to describe the shear-thickening behavior of fresh self-compacting concrete are the
Herschel–Bulkley and the modified Bingham models [37,38,40]. Recently, Zhaidarbek et al. [41]
developed a flow rate–pressure drop relation for both dual-fluid Herschel–Bulkley and
the dual-fluid modified Bingham models, where the two fluids are bulk concrete and the
lubrication layer fluid. The constitutive equation for the Herschel–Bulkley model is given
by [41] τ = τ0 + Kγ̇n for τ > τ0

γ̇ = 0 for τ ≤ τ0

(2)

which has three parameters: yield stress, τ0 ≥ 0, flow consistency index, K > 0, and flow
behavior index (dimensionless), n > 0. For n < 1, the fluid is shear-thinning, and for n > 1,
the fluid is shear-thickening. If n = 1, the Herschel–Bulkley fluid model reduces to the
Bingham model with plastic viscosity µp = K.

The constitutive equation of the modified Bingham model is given by [41]τ = τ0 + µpγ̇ + A2γ̇2 for τ > τ0

γ̇ = 0 for τ ≤ τ0

(3)

which also has three parameters: yield stress, τ0 ≥ 0, plastic viscosity, µp > 0, and a
second-order coefficient, A2, that describes the deviations from the linear relation between
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shear stress and shear rate as described by the Bingham model in Equation (1). For A2 > 0,
the modified Bingham model shows a shear-thickening behavior, and for A2 < 0, the model
displays a shear-thinning behavior. Similarly, for A2 = 0, the modified Bingham model
reduces to the Bingham model in Equation (1).

Although there seems to be a sufficient study on the pumping behavior of concrete
and lubrication layer properties based on nonlinear rheological models, the proposed
models can be difficult to employ in rheological experiments. As shown by Li et al. [42],
by solving the Couette inverse program, the resulting relationships between torque and
rotational speed in a coaxial cylinder rheometer for the Herschel–Bulkley model and
the modified Bingham model are rather bulky and are difficult to apply in regression
analysis of experimental data. In comparison, the shear-stress-dependent Parabolic model,
which contains a nonlinear term between shear stress and shear rate, has a resulting
torque–angular frequency relation described by a simple quadratic function with easy-to-
access parameters. Therefore, according to Li et al. [42], among all the commonly used
three-parameter rheological models for yield-stress fluids, the parabolic model is the most
suitable for the analysis of the torque–angular frequency data from a rotational rheometer.

The parabolic model was first introduced in 1985 by Atzeni et al. [43] as a parabolic-
type empirical law that relates the shear rate to the stress as

γ̇ = a + bτ + cτ2 (4)

It was noted that the parabolic model offered a good fit with the experimental data along
with the Herschel–Bulkley and Eyring models, and important rheological parameters such
as yield stress (τ0) and viscosity (µp) can easily be derived with this model. Li et al. [42]
emphasized that the parabolic model’s introduction as an inverse function makes it easier
to solve the Couette inverse problem based on this model, which deals with the rela-
tionship between rotational speed and torque. In a more recent study [44], the modified
Bingham model and the parabolic model were compared, and the results showed that the
parabolic model provided a more precise characterization of the paste’s flowing perfor-
mance. The rheological parameters for pastes obtained based on the modified Bingham
model lacked credibility in comparison to the parabolic model.

Traditionally, most of the constitutive models use shear rate as the independent
variable and are expressed in the form of τ = f (γ̇). However, such constitutive models
may also be expressed in the form of γ̇ = γ̇(τ) = f−1(τ) by finding their inverse functions.
There are models, such as the Ellis model [45], the Meter model [46], and the Parabolic
model [43], that are commonly expressed in the form of γ̇ = γ̇(τ) using the shear stress
as the independent variable. Among them, the parabolic model has yield stress and can
describe viscoplastic fluids such as cement pastes [42–44,47].

Despite the listed advantages of the parabolic model over other commonly used three-
parameter rheological models, studies on the shear-stress-dependent parabolic model [42–44,47]
are scarce. In particular, there is a lack of detailed analysis of the parabolic model, and,
to the best of our knowledge, the pipe flow problem of the parabolic fluid has not been
solved so far either for the single- or the dual-fluid case. The main nolvety and research
objectives of this paper are to: (i) Develop a theoretical framework suitable for solving the
Hagen–Poiseuille pipe flow problem for viscoplastic fluids with shear-stress-dependent
constitutive models; (ii) Advance the state-of-the-art in rheology-based analytical models
for predicting flow rate vs. pressure drop relationships in concrete pumping; and (iii) Using
the parabolic model as a representative case, solve the associated Hagen–Poiseuille pipe
flow problem and develop analytical models for concrete pumping predictions.

2. Theoretical Framework and Derivations
2.1. Analysis of the Parabolic Model

Generally speaking, constitutive models for incompressible viscoplastic fluids can be
classified as those using the shear rate as the independent variable, i.e., τ = τ(γ̇), and those
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using the shear stress as the independent variable, i.e., γ̇ = γ̇(τ). While it is a common
practice to introduce the viscosity function (SI unit: Pa · s) as

η(γ̇) = τ(γ̇)/γ̇ (5)

for the former class of constitutive models, it is more convenient to introduce the fluidity
function (SI unit: Pa−1 · s−1) [1,48] as

ζ(τ) = γ̇(τ)/τ (6)

for the latter class of constitutive models.
The term in Equation (4) with coefficient c brings in nonlinear dependence of the shear

rate on the shear stress when c 6= 0. A careful analysis of the model shows that the fluid
is a Bingham plastic if c = 0, yield-pseudoplastic (i.e., shear thinning) if c > 0, and is
yield-dilatant (also referred to as shear-thickening) if c < 0, as shown in Figure 1.
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Figure 1. Graphical representation of the different scenarios described by the parabolic model given
in Equation (7).

From Figure 1, the correct form of the parabolic model should be expressed as

γ̇ =

0 for τ ≤ τ0

a + bτ + cτ2 for τ0 < τ < τmax

(7)

where τ0 is the yield stress and is obtained by requiring the shear rate given by Equation (7)
to be a continuous function. We have

τ0 =


(
−b +

√
b2 − 4ac

)
/(2c) for c 6= 0

−a/b for c = 0
(8)

The above expression requires b2 − 4ac ≥ 0. The term τmax in Equation (7) corresponds to
an upper limit in the shear stress required by the model for the case of c < 0, and

τmax =

+∞ for c ≥ 0

−b/(2c) for c < 0
(9)
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Note that τmax = +∞ is equivalent to saying that there is no restriction on the upper limit
of shear stress in the model. Moreover, note that at a = 0, we have τ0 = 0, i.e., the fluid
does not have a yield stress.

Table 1 presents the SI units and dimensions in terms of the MLT (i.e., Mass, Length,
and Time) system associated with the variables and parameters of the parabolic model.
The parabolic model, given in Equation (7), belongs to the class of constitutive models that
use the shear stress as the independent variable, and its fluidity function is given by

ζ(τ) =

0 for τ ≤ τ0

aτ−1 + b + cτ for τ0 < τ < τmax

(10)

In the case of c = 0, the parabolic model reduces to the classical Bingham model with
yield stress τB

0 and plastic viscosity µB
p , where

τB
0 = −a/b , µB

p = 1/b (11)

Thus, it is required that b > 0 and a ≤ 0 for the model to be of practical use.

Table 1. The SI units and dimensions in terms of the MLT (i.e., Mass, Length, and Time) system
associated with the variables and parameters of the parabolic model .

Physical Quality Symbol SI Unit Dimension

Shear rate γ̇ s−1 T−1

Shear stress τ Pa M · L−1 · T−2

Yield stress τ0 Pa M · L−1 · T−2

a-parameter a s−1 T−1

b-parameter b Pa−1 · s−1 M−1 · L · T
c-parameter c Pa−2 · s−1 M−2 · L2 · T3

Presented here is the ratio between the true yield stress of the parabolic model, τ0,
and τB

0 :
τ0

τB
0
=
−1 +

√
1 + 4α

2α
(12)

where α is a dimensionless number defined as

α = (−a)c/b2 (13)

In the case of c→ 0, we have α→ 0 and τ0/τB
0 → 1. The relationship between τ0/τB

0 vs. α
for α ∈ [−1/4, 2] is shown in Figure 2.
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Figure 2. Relationship between the true yield stress of the parabolic model
(
τ0/τB

0
)

and the dimen-
sionless number, α.

2.2. Hagen–Poiseuille Equation for Non-Newtonian Pipe Flow: Single Fluid

The Hagen–Poiseuille equation is a physical law that gives the pressure drop in
an incompressible Newtonian fluid in laminar flow flowing through a long cylindrical
pipe of a constant cross-section [49]. This section will introduce the general method for
obtaining the Hagen–Poiseuille equation for constitutive models that use shear stress as
the independent variable.

Let G be the pressure drop per unit length of the pipe, i.e.,

G = (P0 −PL)/L (14)

where P0 − PL > 0 is the pressure drop; P0 and PL are, respectively, the “modified”
pressures [50] at z = 0 and z = L. From the basics of pipe flow, the distribution of shear
stress is obtained as [50]

τrz(r) =
1
2

∆P
L

r =
1
2

Gr (15)

Here, G ≡ ∆P/L is the pressure drop per unit length of the pipe given by Equation (14).
From Equation (15) the shear stress at the pipe wall (where r = R) is obtained as

τwall ≡ τrz(r = R) =
1
2

GR (16)

For the parabolic model, the wall shear rate is given as

γ̇wall = a + bτwall + cτ2
wall (17)

The yield radius, also called “plug” radius, can be determined by solving the equation of
τrz(r) = τ0 for r, as follows:

rplug =
2τ0

G
=

τ0

τwall
R ≥ 0 (18)

In the region of r ≤ rplug, the fluid exhibits a constant velocity across the cross-section that is
perpendicular to the pipe’s axis, thus, corresponding to the plug flow zone.
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According to its definition, the volumetric flow rate can be obtained from the velocity
distribution uz as

Q =
∫ R

0
2πruz(r)dr (19)

Carrying out the integration by parts yields

Q/π =
(

r2uz

)∣∣∣r=R

r=0
+
∫ R

0
r2
(
−duz

dr

)
dr (20)

Assuming the no-slip velocity at the wall of the tube, i.e., uz(r = R) = 0, the first term on
the right-hand side of Equation (20) is zero at both limits of the integration. Thus, we have

Q/π =
∫ R

0
r2
(
−duz

dr

)
dr (21)

In the plug-flow region, r ∈ [0, rplug], we have −duz/dr = 0. In the shear-flow region,
r ∈ [rplug, R], we have −duz/dr ≡ γ̇, which, for the parabolic model, can be expressed as a
function of the shear stress, τrz. For the Hagen–Poiseuille flow in a pipe, we have a linear
shear stress distribution of the form:

τrz/τwall = r/R (22)

Thus, we have r = τrzRτ−1
wall and dr = Rτ−1

walldτrz. Substituting the expression for r and dr
into Equation (21), the volumetric flow rate is now given by

Q/π =
∫ τwall

τ0

(
τrzRτ−1

wall

)2
γ̇
(

Rτ−1
walldτrz

)
(23)

After simplification, we have

Q =
πR3

τ3
wall

∫ τwall

τ0

τ2
rzγ̇dτrz =

πR3

τ3
wall

∫ τwall

τ0

τ3
rzζ(τrz)dτrz (24)

where the variable of integration is the shear stress, τrz, and the shear rate, expressed as a
function of the shear stress, depends on the rheological properties of the fluid; ζ(τrz) is the
fluidity function, as introduced in Equation (6).

Introducing the dimensionless variables given in Table 2 to simplify the expressions,
the shear rate and integral in Equation (24) can be rewritten as

s =
γ̇

γ̇wall
= ã + b̃τ̃ + c̃τ̃2 (25)

ũavg =
∫ 1

r̃plug

τ̃2s(τ̃)dτ̃ (26)

where dimensionless plug radius is found using the definitions of yield and wall
shear stresses:

r̃plug =
τ0

τwall
=

GR/2
Grplug/2

=
rplug

R
(27)

The Hagen-Poiseulle equation for the single fluid case using the parabolic model in
terms of dimensionless variables summarized in Table 2 is thus calculated from

QHP = πR3γ̇wallũavg (28)

where γ̇wall is given by Equation (17) and ũavg is given by Equation (26).
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Table 2. Nondimensionalization used in this work, following the same approach as that used in our
recent work [51].

Quality Symbol Unit Dimensionless Variable

Radial distance r R r̃ = r/R ∈ [0, 1]
Shear stress τrz τwall τ̃ = τrz(r)/τwall = r̃
Shear rate γ̇ γ̇wall s = γ̇/γ̇wall ∈ [0, 1]

a-parameter a γ̇wall ã = a/γ̇wall
b-parameter b τ−1

wallγ̇wall b̃ = b/
(

τ−1
wallγ̇wall

)
c-parameter c τ−2

wallγ̇wall c̃ = c/
(

τ−2
wallγ̇wall

)
Plug radius rplug R r̃plug = rplug/R
Velocity u Rγ̇wall ũ = u/(Rγ̇wall)

From Equation (26), the dimensionless average velocity for the parabolic model is
found to be

ũavg =
ã
3

(
1− r̃3

plug

)
+

b̃
4

(
1− r̃4

plug

)
+

c̃
5

(
1− r̃5

plug

)
(29)

By subsititing the a, b parameters from Table 2 and setting c = 0, Equation (28) reduces to
the Hagen–Poiseuille equation for the Bingham model as

QB
HP =

πR4G
8/b

[
1 +

4
3

a/b
τwall

+
1
3

(
a/b
τwall

)4
]

(30)

By substituting τB
0 and µB

p Bingham model parameters given in Equation (11), Equation (30)
can be rewritten as

QB
HP =

πR4G
8µB

p

[
1− 4

3
τB

0

τwall
+

1
3

(
τB

0

τwall

)4]
(31)

where τwall = GR/2 as given in Equation (16). Equation (31) is known as the Buckingham–
Reiner Equation [50,52].

The same flow rate–pressure drop relation can be obtained using a more traditional
approach, namely, by integrating the velocity distribution. For the parabolic model, the gov-
erning ordinary differential equations (ODEs) for bulk concrete in shearing flow region,
where rplug ≤ r ≤ R, and plug flow region, where r ≤ rplug, are given by

γ̇ = −duz(r)
dr

=

a + bτ + cτ2 for rplug ≤ r ≤ R

0 for r ≤ rplug

(32)

Introducing r̃ = r/R and ũ = u/(Rγ̇wall) (see Table 2), Equation (32) may be rewritten as

−dũ
dr̃

=

ã + b̃r̃ + c̃r̃2 for r̃plug ≤ r̃ ≤ 1

0 for r̃ ≤ r̃plug

(33)

By solving Equation (32) with the no-slip boundary condition at the wall, i.e., ũ(r̃ = 1) = 0,
and at plug flow/shearing flow interface, the velocity profile at shearing and plug flow regions
is obtained as

ũ(r̃) =

ã(1− r̃) + b̃
2
(
1− r̃2)+ c̃

3
(
1− r̃3) for r̃plug ≤ r̃ ≤ 1

ã(1− r̃plug) +
b̃
2
(
1− r̃2

plug

)
+ c̃

3
(
1− r̃3

plug

)
for r̃ ≤ r̃plug

(34)
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For laminar flow in a pipe, once the steady velocity profile is known, uz(r), the volu-
metric flow rate, Q, is obtained as

Q =
∫ R

0
uz(r)2πrdr = πR3γ̇wallũavg (35)

where the dimensionless average flow velocity is given by

ũavg =
∫ 1

0
ũ(r̃)2r̃dr̃ = ũplugr̃2

plug +
∫ R

r̃plug

ũ(r̃)2πr̃dr̃ = Ṽplug + Ṽshear (36)

Here, the contributions from the shearing flow region and the plug-flow region are given by

Ṽshear =
∫ R

r̃plug

ũ(r̃)2πr̃dr̃

=
ã
3
+

b̃
4
+

c̃
5
−
(

ã +
b̃
2
+

c̃
3

)
r̃2

plug +

(
2ã
3

+
b̃
4
+

2c̃
15

)
r̃3

plug (37)

and

Ṽplug = ũplugr̃2
plug

= r̃2
plug

[
ã
(

1− r̃plug

)
+

b̃
2

(
1− r̃2

plug

)
+

c̃
3

(
1− r̃3

plug

)]
(38)

Substituting the results in Equations (37) and (38) back to Equation (36) leads to the same
expression as that given in Equation (29), which also verifies the result.

The Fanning friction factor, fF, for the pipe flow of a Bingham plastic is characterized
by the Bingham Reynolds number (ReB) and the Bingham number (Bi) [53], where

fF =
2τwall

ρV2 , ReB =
ρVD

µB
p

, Bi =
τB

0
µB

pV/D
(39)

and

fF =
16

ReB

[
1 +

Bi
6
− 1

3
Bi4

( f ReB)
3

]
(40)

In line with the above approach, it can be shown by dimensional analysis that the Fanning
friction factor for the pipe flow of a parabolic model fluid is characterized by three dimen-
sionless numbers, the Bingham Reynolds number (ReB), the Bingham number (Bi), and an
extra dimensionless number. We define

ReB =
ρVD

µB
p

= bρVD (41)

Bi =
τB

0
µB

pV/D
= (−a)D/V (42)

β =
c
(

µB
pV/D

)
b

=
c
b2

V
D

(43)

We see that the dimensionless number, α, introduced in Equation (13) is the product of the
Bingham number and the newly introduced dimensionless number β, i.e., α = Biβ.

Can we derive an expression for Φ( fF, ReB, Bi, β) = 0? Because the density of the fluid
does not appear in the expression for the volume flow rate, we must have the product
of fF and ReB in our final expression, i.e., what we are looking for is Φ( fFReB, Bi, β) = 0.
The non-dimensional number β characterizes the nonlinearity effect in the parabolic model,
and when β = 0, the expression for the Bingham model must be recovered. Recall that
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the product of the Fanning friction factor and the Reynolds number is also known as the
Poiseuille number (Po) [54], i.e., Po = fFReB. Defining

χ = χ(Po, Bi, β) =
1

Poβ

(
−1 +

√
1 + 4Biβ

)
(44)

It can be shown that the friction factor that we are looking for is given by

Φ(Po, Bi, β) = 1 +
1
6

Bi
(

1− χ3
)
− Po

16

(
1− χ4

)
− Po2β

40

(
1− χ5

)
= 0 (45)

In the limit of β→ 0, it can be shown that Equation (40) is recovered. In the limit of β→ 0
and Bi→ 0, we have Po = 16, the classical result for the pipe flow of a Newtonian fluid in
the laminar flow regime.

To summarize the results on the friction factor, the Poiseuille number was plotted as
a function of the Bingham number for different β values, as shown in Figure 3. Because
Po = fFReB, at a constant Reynolds number, the plot of Po vs. Bi shows the influence of β
on friction factor, fF. As anticipated, the discrepancies from the linear relationship between
Po and Bi, where the relationship is based on the Bingham model, are indicated by the β
parameter. For the shear-thickening case, c < 0, we have β < 0 and there is more friction.
In the case of shear-thinning behavior, c > 0, we have β > 0, and as we increase β, the value
of friction factor fF decreases for the same Bingham number.
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Figure 3. The Poiseuille number (Po) is shown as a function of the Bingham number (Bi) for different
dimensionless β values (see Equation (45)) for the Hagen–Poiseuille pipe flow of a single fluid that
follows the Parabolic model.

2.3. Hagen–Poiseuille Equation for Non-Newtonian Pipe Flow: Coaxial Flow of Two
Immiscible Fluids

The existence of a lubrication layer resulted in a dual-fluid model in which bulk
concrete and lubrication fluid with different rheological properties are in contact with
each other and flow together, with a distinct interface separating them. This section will
introduce the derivation of the flow rate expression for the co-axial pipe flow of dual fluids.
The method is essentially the same as that detailed in our recent work [41].

Depending on the type of concrete being pumped, it is possible to have two cases,
where either rplug > R− ` or rplug < R− `. For rplug ≥ R− `—henceforward referred to as
“Case I”—only plug flow is experienced by the bulk concrete. This case is common for the
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pumping of CVC [34]. For the other case—henceforward referred to as “Case II”—where
rplug < R− `, two types of flows are experienced by the bulk concrete. In the region of
r ≤ rplug plug flow occurs, while in the region of rplug < r ≤ R− ` shear flow occurs. Case II
is common for the pumping of SCC [34,36,55,56]. Here, the plug radius is given by

rplug = 2τ0,C/G (46)

where τ0,C is the yield stress of bulk concrete.
From Equations (20) and (24), we see that if there is a slip velocity at the wall, let it be

VR, then the flow rate becomes

Q(~ζ, R, G, VR) = πR2VR +
πR3

τ3
wall

∫ τwall

τ0

τ3
rzζdτrz (47)

where τwall = GR/2 depends on the G-parameter (pressure drop per unit pipe length) and
the pipe radius R, and shear rate function depends on the rheological properties (denoted
by ~ζ) of the fluid. Equation (47) shows that when there is a certain slip velocity at the
boundary (r = R), the overall flow rate can be found as a sum of the two terms: the flow rate
for when the velocity is zero at the wall and an additional term of πR2VR. The additional
term depends only on the cross-sectional area and the velocity at the wall [41].

In the case of the steady co-axial pipe flow of dual fluids, the flow rate from the fluid
in the lubrication layer is given by

QLL = QHP(~ζLL, R, G, VR = 0)−QHP(~ζLL, R− `, G, VR = VInterface) (48)

where the flow velocity at the interface between the bulk concrete and lubrication layer
fluid (r = R− `) is denoted as VInterface. In order to derive Equation (48), the result from
Equation (47) was used. In Case I, when only plug flow is experienced by the bulk concrete,
its contribution to the overall volume flow rate can be obtained as [41]

QC = π(R− `)2VInterface (49)

The overall flow rate–pressure drop relation is obtained as [41]

Q = QLL + QC

= QHP(~ζLL, R, G)−QHP(~ζLL, R− `, G) (50)

However, in Case II where a sheared-concrete zone is also present in the bulk concrete
along with the zone of plug flow near the pipe center, its contribution to the overall volume
flow rate is given by [41]

QC = QHP(~ζC, R− `, G, VR = VInterface) (51)

The overall flow rate–pressure drop relation is thus obtained as [41]

Q = QLL + QC

= QHP(~ζLL, R, G)−QHP(~ζLL, R− `, G) + QHP(~ζC, R− `, G) (52)

The two cases can be unified into one by the use of the Heaviside step function.
The result is

Qtot = QHP(~ζLL, R, G)−QHP(~ζLL, R− `, G) + QHP(~ζC, R− `, G)H(R− `− rplug) (53)

where H(x) denotes the Heaviside function: H(x) = 1 for x > 0 and H(x) = 0 for x ≤ 0.
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3. Results and Discussion

Following the analytical derivations from the previous section for both single and dual-
fluid cases, it is possible to obtain the relations on the shear rate distribution, the velocity
distribution, and the prediction of volume flow rate for the pressure loss per unit pipe
length. For the single-fluid case, the input parameters that are necessary to make these
predictions include {a, b, c, R, G}, where a, b, and c are the three parameters in the parabolic
fluid model, R is the radius of the pipe, and G represents the pressure loss per unit
pipe length. For the co-axial flow of dual fluids (referred to as the bulk concrete and
the lubrication layer fluid in the context of concrete pumping), we shall need four more
parameters, the thickness of the lubrication layer, `, and three parameters in the parabolic
fluid model for the lubrication layer fluid. One can follow the approaches presented by
Equations (24) and (53) to derive the expressions to predict the volumetric flow rate for
single and dual fluid cases, respectively, depending on the pressure drop per unit pipe
length. In this section, we demonstrate the resulting distributions from the parabolic model
and analyze the influence of the model’s parameters. We consider some possible values for
the a-parameter, b-parameter, and c-parameter with ranges derived by fitting the Parabolic
model to the Herschel–Bulkley model explored in our recent work [41].

3.1. Parabolic Model: Shear Stress and Shear Rate Distribution

Figure 4 shows the influence of the cC-parameter of the bulk concrete for the curves
showing the relationship between shear stress and the shear stress using the Parabolic
model. Figure 4a shows the shear rate vs. shear stress curve with the influence of this
parameter, while Figure 4b presents the conventional approach of shear stress vs. shear
rate curves with the shear rate being on the x-axis as the independent variable. From both
figures, the effect of varying the cC-parameter can be clearly observed in how it influences
either the shear thickening or the shear thinning behavior of the fluid. With the increase
in the analyzed parameter, the shear thinning behavior of the fluid is more prominent for
both curves, where there is a more noticeable increase in shear stress with the increase
in shear rate. The same is true for the analysis of shear thickening behavior; as with the
decrease in the cC-parameter, the shear stress grows slower with the increase in shear rate.
Likewise, for Figure 4b, as the value of the cC-parameter is increased, the shear rate rises
slower and as the parameter is decreased, the curves rise faster with the increasing shear
stress corresponding to the shear thinning and shear thickening behavior, respectively. It
should be noted that Figure 4b demonstrates that the parabolic model can easily reproduce
the shear stress vs. shear rate curve predicted by the Herschel–Bulkley model [41], and the
c-parameter of the parabolic model and n-parameter of the Herschel–Bulkley model are
similar in nature.

In Figure 5, the shear rate vs. shear stress curves are presented with the influence of
other parameters from the Parabolic model, Figure 5a showing the effect of varying the
aC-parameter on the curves, and Figure 5b including the effect of varying the bC-parameter
on the shear rate curves. For Figure 5a, it can be observed that the most noticeable effect
of varying the aC-parameter is a change in yield stress values. With the decrease in this
parameter, the curves’ x-intercepts shift more to the right, indicating an increase in the
values of yield stress. Such results are expected given the expressions for the yield stress
derived from the Parabolic model, as presented in Equation (8). In the case of Figure 5a, the
bC-parameter has a more significant influence on the shear rate vs. shear stress curve, unlike
the aC-parameter. This is consistent with previously reported results [36,41,57] because the
b-parameter is inversely related to the plastic viscosity derived from the parabolic model
when it reduces to the Bingham model as given by Equation (11).
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Figure 4. Influence of cC-parameter of the bulk concrete: (a) on shear rate vs. shear stress curves
predicted by the Parabolic model; (b) on shear stress vs. shear rate curves predicted by the Parabolic
model. Unless otherwise specified in the figure, the following values were used: aC = −0.6 s−1,
bC = 0.02 Pa−1s−1, R = 62.5 mm, ∆P/L = 60 kPa/m.
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Figure 5. Shear rate vs. shear stress curves predicted by the Parabolic model: (a) influence of
aC-parameter of the bulk concrete; (b) influence of bC-parameter of the bulk concrete. Unless oth-
erwise specified in the figure, the following values were used: aC = −0.6 s−1, bC = 0.02 Pa−1s−1,
cC = −10−6 Pa−2s−1, R = 62.5 mm, ∆P/L = 60 kPa/m.

3.2. Single-Fluid Model
3.2.1. Shear Rate and Velocity Distribution

Figure 6 shows the influence of the cC-parameter of the bulk concrete on the velocity
distribution and shear rate distribution. Figure 6a,b show the shear flow and plug flow
regions in the bulk concrete, but plug flow is not visible in the figure due to the small plug
radius. This is common for the pumping of SCC [41]. In Figures 6a, as we increase the
c-parameter, the velocity increases for the same radial distance and hence the volume flow
rate. This is also true for the shear rate distribution shown in Figure 6b. The shear rate
value increases with increasing c-parameter value. This is not surprising because increasing
the c-parameter decreases the friction value. Thus, as the fluid is more shear-thinning,
c > 0, the velocity and shear rate distributions are higher, and when the fluid is more
shear-thickening, c < 0, the corresponding velocity and shear rate values are lower.
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Figure 6. Influence of cC-parameter of the bulk concrete: (a) on the velocity distribution; (b) on
the shear rate distribution predicted by the Parabolic model. Unless otherwise specified in the
figure, the following values were used: aC = −0.6 s−1, bC = 0.02 Pa−1s−1, cC = −10−6 Pa−2s−1,
R = 62.5 mm, ∆P/L = 60 kPa/m.

3.2.2. Volumetric Flow Rate vs. Pressure Loss

In Figure 7, the volume flow rate relationship is shown: Figure 7a demonstrates how
changing the values of the cC-parameter affects the volume flow rate vs. pressure loss
per unit pipe relation for the single fluid flow; Figure 7b presents the influence of the
cC-parameter on the volume flow rate while varying pressure loss per unit pipe length in
contour form. Based on Figure 7a, an increase in the value of the cC-parameter also results
in a steeper increase in volume flow rate curves. Similarly to Figure 4b, Figure 7a shows
the same influence of the c-parameter of the parabolic model and the n parameter of the
Herschel–Bulkley model [41] on the flow rate–pressure drop relation. From Figure 7b, it
is clearly seen that, at low values of ∆P/L, the influence of the c-parameter is negligible,
but as we increase ∆P/L, its effect becomes predominant. As we increase the c-parameter
from low to high, the volume flow rate increases for the same pressure drop. This is
expected because, as we increase the c-parameter, the β value also increases, resulting in
lower friction, as given in Figure 3.
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Figure 7. (a) Influence of cC-parameter on volume flow rate vs. pressure loss per unit pipe for the
single fluid flow predicted by the Parabolic model; (b) contour plot of the volumetric flow rate (Q)

as a function of the pressure loss per unit pipe length, ∆P/L, as the x-axis and cC-parameter on
the y-axis. Unless otherwise specified in the figure, the following values were used: aC = −0.6 s−1,
bC = 0.02 Pa−1s−1, R = 62.5 mm.
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3.3. Dual Fluid Model

For the dual fluid case, the rheological properties of both bulk concrete and the
lubrication layer of the fluid affect the volume flow rate predictions. Figure 8 shows the
volume flow rate vs. pressure loss per unit pipe length for the dual fluid case predicted
by the Parabolic model based on Equation (53). Figure 8a presents the influence of the
cC-parameter of the bulk concrete and Figure 8b presents the influence of the cC-parameter
of the lubrication layer of the fluid. Both figures demonstrate the same trend as in Figure 7a,
where for smaller values of pressure drop, the influence of the c-parameter on the flow rate
is negligible, whereas for bigger values it becomes predominant. Comparing these two
figures, it can be seen that both of these parameters have a similar effect on the volume flow
rate curves: increasing the c-parameter increases the volume flow rate due to low friction.
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Figure 8. Volume flow rate vs. pressure loss per unit pipe length for the dual fluid flow predicted by
the Parabolic model: (a) influence of cC-parameter of the bulk concrete with cLL = −1.5 · 10−5 Pa−2s−1

for the fluid in the lubrication layer; (b) influence of cLL-parameter of the fluid in the lubrica-
tion layer with cC = −10−6 Pa−2s−1 for the bulk concrete. Unless otherwise specified in the
figure, the following values were used: aC = −0.6 s−1, bC = 0.02 Pa−1s−1, cC = −10−6 Pa−2s−1,
aLL = 3.5 s−1, bLL = 0.2 Pa−1s−1, cLL = −1.5 · 10−5 Pa−2s−1, R = 62.5 mm, ` = 1.5 mm.

Similar to Figure 8, Figure 9 presents the influence of the a-parameter on the volume
flow rate as a function of pressure loss per unit pipe length for bulk concrete and the
lubrication layer of the fluid. Figure 9a shows the effect of the aC-parameter of the bulk
concrete and Figure 9b shows the effect of the aLL-parameter of the lubrication layer of the
fluid on the volume flow rate values. Both figures show the same trend that the volume
flow rate is not affected by the variation in values of the a-parameter, both for the bulk
concrete and the lubrication layer of the fluid. This result is true for the whole range of
pressure loss per unit pipe length used in the figures.

When considering Figure 10, the results are similar to those of Figure 7b. In Figure 10,
contour plots for the volumetric flow rate as a function of pressure loss per unit length and
b-parameter are presented: Figure 10a shows the influence of the bC-parameter of the bulk
concrete and Figure 10b shows the influence of the bLL-parameter of the lubrication layer
of the fluid. In the case of the bC-parameter of the bulk concrete in Figure 10a, it can be
seen that while the effect of varying this parameter is not that prominent for the low values
of ∆P/L, it becomes more prominent towards the end of the used range of ∆P/L on the
graph. The same is true for the bLL-parameter of the lubrication layer of the fluid, that the
influence of the parameter becomes more noticeable with the increase in values of ∆P/L. It
can be seen that, at high values of ∆P/L, the larger the bC and bLL-parameters, the larger the
volume flow are under a given pumping pressure. This is not surprising because the larger
the b-parameter, the smaller the plastic viscosity of the fluid (Equation (11)), and previously
reported studies [41] have shown that for smaller values of µp,C and µp,C, the volume flow
rate is larger for the same pressure drop.
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Figure 9. Contour plots of the volumetric flow rate (Q) as a function of the pressure loss per unit pipe
length, ∆P/L, as the x-axis and a-parameter on the y-axis: (a) aC-parameter of the bulk concrete on the
y-axis; (b) aLL-parameter of the fluid in the lubrication layer on the y-axis. Unless otherwise specified
in the figure, the following values were used: aC = −0.6 s−1, bC = 0.02 Pa−1s−1, cC = −10−6 Pa−2s−1,
aLL = 3.5 s−1, bLL = 0.2 Pa−1s−1, cLL = −1.5 · 10−5 Pa−2s−1, R = 62.5 mm, ` = 1.5 mm.
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Figure 10. Contour plots of the volumetric flow rate (Q) as a function of the pressure loss per unit pipe
length, ∆P/L, as the x-axis and b-parameter on the y-axis: (a) bC-parameter of the bulk concrete on the
y-axis; (b) bLL-parameter of the fluid in the lubrication layer on the y-axis. Unless otherwise specified
in the figure, the following values were used: aC = −0.6 s−1, bC = 0.02 Pa−1s−1, cC = −10−6 Pa−2s−1,
aLL = 3.5 s−1, bLL = 0.2 Pa−1s−1, cLL = −1.5 · 10−5 Pa−2s−1, R = 62.5 mm, ` = 1.5 mm.

3.4. Computational Apps for the Parabolic Model

Using the analytical expressions derived for the single-fluid and dual-fluid cases and
the necessary rheological parameters, one can predict the relationship between the volume
flow rate and pressure loss per unit pipe of length. Furthermore, different software and
programming languages can be used to easily obtain the necessary curves by inserting the
parameters corresponding to the bulk concrete and lubrication layer.

To facilitate applications of our theoretical results in practice, a demonstration appli-
cation using the Wolfram Mathematica software (version 13.2) has been developed, with
a sample graph shown in Figure 11. Users can manipulate the values of the rheological
parameters for both bulk concrete and the lubrication layer of the fluid, the diameter of the
pipe, and the lubrication layer thickness within the ranges of values written in the program.



Processes 2023, 11, 1745 17 of 21

The resulting graph shows the total volume flow rate vs. the pressure loss per unit pipe
length. Furthermore, the application can be used for the analysis purposes of the relation
on how the parameters of the bulk fluid, the lubrication layer, the pipe diameter, and the
lubrication layer thickness influence the resulting curve.
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Figure 11. The graphical user interface of a Wolfram-based demonstration App that presents the
volume flow rate vs. pressure loss per unit pipe length curve for the dual-fluid pipe flow of the
Parabolic model (See Equation (53)). The following values were used for the computational app in
the figure: aC = −0.6 s−1, bC = 0.02 Pa−1s−1, cC = −10−6 Pa−2s−1, aLL = −6 s−1, bLL = 0.2 Pa−1s−1,
cLL = −1.5 · 10−5 Pa−2s−1, R = 62.5 mm, ` = 1.5 mm.

4. Limitations of the Present Work

In this section, the main assumptions and limitations of the existing work are summa-
rized, along with the future study to be conducted. The main assumptions and limitations
are similar to those reported by Kwon et al. [35], Khatib and Khayat [36], and Zhaidar-
bek et al. [41]. For the analytical derivations, the Hagen–Poiseuille equation is used as the
governing law. Therefore, the derived equations are limited to the fully developed, steady,
laminar, one-dimensional, and isothermal flow, with the fluids being incompressible, homo-
geneous, and experiencing no change in their properties during pumping. The rheological
properties of the bulk concrete and lubrication layer of the fluid are considered separately
and with time independence. The pipe diameter and thickness of the lubrication layer
are assumed as constant, and the lubrication layer thickness is also independent of the
fluid’s rheological properties. Finally, the difference in the densities of bulk concrete and
lubrication layer fluid is considered as negligible.

Despite these limitations, the rheological characteristics of the fluid in the lubricating
layer are challenging to estimate experimentally. For the parabolic model, there are four
parameters for the lubrication layer fluid: aLL-parameter, bLL-parameter, cLL-parameter,
and lubrication layer thickness `, that need to be determined in order to calculate the flow
rate–pressure drop relation. One approach to solve this problem is to use a wall-slip model
to approximate the dual-fluid flow rate–pressure drop relation. According to the wall-slip
model, Equation (53) can be simplified to

Q = QHP(~ζC, R, G) + Qs (54)

where the first term is the single-fluid flow rate in Equation (28) using the bulk concrete
parameters and Qs is the additional flow rate that occurs due to the slip effects on the
surface. The latter is given by

Qs = πR2us (55)

where us is the wall-slip velocity. Using the wall-slip model, the lubrication layer fluid
properties can be characterized by just one parameter—the wall-slip velocity. The wall-slip
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velocity represents a macro-scale description of the wall’s boundary condition [58–62] and
depends on the lubrication layer fluid at the wall. This velocity can be estimated in capillary
tubes [16]. Consequently, a future goal is to validate the applicability of the wall-slip model
in estimating the dual-fluid flow rate–pressure drop relationship in concrete pumping.

5. Conclusions

In this study, rheological models with shear stress as the independent variable are
considered, contrasting the conventional approach of using shear rate as the independent
variable. The parabolic model is analyzed by dimensional analysis and employed for
analytical predictions of the flow rate vs. pressure drop relations in Hagen–Poiseuille
pipe flow for a single fluid and in the co-axial flow of dual-fluids. A key advantage of the
parabolic model is its ability to account for the nonlinearity of the shear stress and shear
rate relations through the inclusion of the nonlinear c-parameter, leading to more accurate
results compared to linear models such as the classical Bingham model.

Theoretical derivations have been conducted to derive analytical results for the shear
rate distribution, velocity distribution, and volume flow rate relations for Hagen–Poiseuille
flow in viscoplastic fluids. This method, which is applied to the parabolic model in this
paper, can be generalized for other models with shear stress as the independent variable.
This study presents not only the analytical expressions but also explores the effects of the
a, b, and c parameters.

While studying the flow curves (i.e., shear rate vs. shear stress curves) for the parabolic
model, it is demonstrated how the value of the c-parameter affects the curves: if the value
is reduced to c = 0, the curve reduces to that of the Bingham model, while a positive c
value corresponds to the shear thinning behavior, and a negative c value corresponds to the
shear thickening behavior. The b parameter strongly affects the flow curves. In comparison,
varying the a-parameter does not have a significant influence on the flow curves.

Subsequently, this study also analyzes the resulting relations based on the parabolic
model and how they are influenced by the rheological parameters of the bulk concrete for
the single fluid case, along with the lubrication layer for the dual fluid case. For the relation
between the volume flow rate vs. pressure loss per unit length of pipe for the single-fluid
case, the influence of the c-parameter becomes more prominent for the higher values of
pressure drop while being negligible at its low values. For the volume flow rate–pressure
drop relation in the dual fluid case, it has been found that varying the a-parameters for
both the bulk concrete and lubrication layer fluid has little effect on the relation, while the
b-parameters possess a strong effect on the relation with the increasing value of pressure
loss per unit pipe length.

Finally, a demonstration App is developed, enabling users to obtain volume flow rate
curves by inputting the rheological properties of the bulk concrete and lubrication layer.
This application facilitates the study of the influence of rheological parameters on volume
flow rate curves and allows for further data analysis.
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