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Abstract: High-sensitivity biomedical sensors could make it possible to detect and classify chemical
and biological species in a variety of applications, from disease diagnosis to medication discovery,
thus, boosting the likelihood of life-saving intervention. Synthesized nanowires have already pro-
duced advancements in a variety of sectors, including biological sensors over the last decade. When
compared to macro-sized materials, the nanowires’ large surface area-to-volume ratio increased
sensitivity. Their applications for biomarker, viral, and DNA detection, as well as drug discovery, are
also discussed. Self-powering, reusability, sensitivity in high ionic strength solvents, and long-term
stability are all examples of recent developments. Shortly, the nanowire is likely to lead to major
improvements in biomedical sensors. This review provides a full overview of the nanowire sensor’s
working principle and production procedure. We have discussed how to produce nanowires that
can be utilized as biosensors for different bacteria and pathogens, protease, DNA and RNA, neuro-
transmitters, and chemical compounds. Biosensing technology has dramatically improved because of
the introduction of nanowires in biosensors. This is a result of the application of new biorecognition
components and transducers, improvements in the manufacture, design, and miniaturization of
nanostructured devices at the micron scale, and unique approaches for the synthesis of nanowires.
The versatility, robustness, and dynamic nature of sensing technologies have all improved thanks to
the usage of nanowires.

Keywords: nanowires; biological sensors; neurotransmitter detection; DNA/RNA detection; viral
detection; protein detection

1. Introduction

Structures with a thickness or diameter limited to tens of nanometers or less and an
unrestricted length are known as nanowires. The phrase “quantum wires” originated from
the importance of quantum mechanical effects at these scales. There are several different
kinds of nanowires, including superconducting, metallic (Au, Ag, Ni, and Pt) [1–4], semi-
conducting, and insulating ones (TiO2, SiO2) [5]. Recent research has shown that nanowires
can be used as basic tools to create nanoscale probes for a variety of purposes, including
biosensing, electrophysiology, intracellular matter transfer, mechanical transduction, and
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immunomodulation [6,7]. The optical performance, electrical characteristics, chemical
composition, and topographies are only a few of the highly modifiable parameters that
may be found in nanowires. Different surface functionalization on various nanowires can
be used to achieve a variety of biochemical sensing approaches, considerably expanding
the applications for chemical and biomolecular (H2O2, nucleic acids, glucose, and proteins)
sensing [5,8,9].

Several cells can be sensed using nanowires in a high-throughput, high-spatiotemporal-
resolution manner [10]. Nanowire can be used for analyzing extracellular biophysical
signals, such as the contraction force and mechanical transduction of cells, in addition
to biomolecular sensing [11,12]. Significantly, devices that sense and stimulate cells have
been produced using nanowire-based sensing platforms. They might offer opportunities
to simultaneously detect a variety of biological substances [13,14]. Nanowires provide
for the least intrusive operation of cells due to their high controllability and excellent
biocompatibility [15,16]. The usage of patterned nanowires could help with the difficult
task of detecting more intracellular signals as well as the collection of long-term, high-
throughput signals. The high specific surface area of nanowires, which offers a large number
of attaching sites for detecting receptors, biomarker molecules, or cells, contributes to their
great sensitivity [17,18]. Yet, the 3D sensing matrix also ensures multichannel detection of
weak or spatially dependent bio-signals [19,20]. On the other hand, the meticulous shape
and multi-level structure that enables easy attachment to particular cell structures like
tentacles and synapses should partially account for the great selectivity of nanowires. The
adaptable bio-recognition layer also offers a synergistic contribution to the controllable
selectivity of nanowires [21,22].

The discovery and diagnosis of disease, as well as the development and screening
of new therapeutic compounds, are all areas of healthcare and the life sciences where
the detection of biological and chemical species is crucial [23–25]. Therefore, the creation
of new tools that allow for a quick, sensitive, and direct examination of these species
has the potential to have a big impact on humanity [26–28]. Nanowire-based devices are
becoming a potent and versatile class of electrical sensors with extreme sensitivity for the
direct detection of biological and chemical species [5,29,30]. To identify, prevent, and cure
illness, biosensors have been crucial in the development of testing kits, vaccinations, and
antiviral medications. Because they have several benefits, including quick and continuous
measurement, high sensitivity and low specificity, and the use of fewer reagents, they have
been widely used as immuno-sensors for the detection of target biomolecules in bodily
fluids [31]. Yet, in a clinical therapy, the biosensor’s detection limit cannot be sufficient.
The sensitivity of sensors can be affected by the extremely low possibility of false-positive
results in the low concentration range. Thus, it is essential to create a highly sensitive sensor
system with a wide dynamic range to find clinically significant indicators [29].

This review emphasizes recent developments in biosensors based on nanowires. We
briefly describe the creation of efficient sensing methods that use biosensors built on
nanowires, such as Ribonucleic Acid (RNA), (Deoxyribonucleic Acid) (DNA), proteins,
neurotransmitters, and viruses. Moreover, this review offers a thorough grasp of the
design methods and corresponding methodologies for nanowire-based biosensors used
for distinct biomedical sensing activities. In contrast to publications that concentrate on
a single application area or type of nanowire material, this study examines a variety of
biosensing applications and nanowire materials. Lastly, the prospects of useful biomedical
platforms are examined with a focus on the development and application directions of
nanowire-based biosensor arrays.

2. Fabrication Process and Working Principle of Nanowire
2.1. Fundamentals of Nanowire Fabrication Process

Nanowire synthesis can be carried out in one of two ways: top-down or bottom-up.
A top-down strategy uses techniques such as lithography, milling, or thermal oxidation
to break up large chunks of material into smaller ones. A bottom-up strategy is used to



Processes 2023, 11, 1739 3 of 23

combine adatoms to create the nanowire. The majority of synthesis methods take a bottom-
up strategy. To fine-tune the size and aspect ratio of the structures, initial synthesis using
either method may frequently be followed by a nanowire heat treatment phase. This stage
frequently involves a type of self-limiting oxidation (Figure 1). Suspension, electrochemical
deposition, and vapor deposition are three prominent ways to construct nanowires [32].
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Figure 1. A typical synthesis of nanowires applied in biosensors including (Ia,Ib) Au@SiNW substrate;
(II) PEG/PPy nanowires; (III) schematic illustrations of ZnO/Al2O3 core–shell nanowire; (IV) the
Au–Pt multi-segment nanowire array; and (V) Ru@V2O4 nanowires for sensitive colorimetric H2O2

and cysteine sensing. Reproduced with permission from [33–37]. Copyright 2021, 2019, 2019, and
2021 ACS, Elsevier, Elsevier, and Elsevier.

There are other additional techniques for synthesizing nanowires that are being care-
fully studied, developed, and used for biosensor applications:

Electrospinning: The process of electrospinning uses an electric field to spin nanofibers
from a polymer solution. The threads are then gathered to create a network of nanowires
on a substrate.

Template-assisted synthesis: Using a template to direct the formation of nanowires is
known as “template-assisted synthesis.” A self-assembling monolayer or a porous mem-
brane can serve as the template.

Vapor–liquid–solid (VLS) growth: In this technique, nanowires are grown from a
vapor-phase precursor using a metal catalyst.

2.2. Working Principle of Nanowire for Biosensor

To provide a quantifiable signal, a biosensor combines a transducer with a biological
element, such as an enzyme or antibody. The transducer detects, records, and transmits
data regarding a physiological change or the presence of various chemical or biological
elements in the environment. The sizes and designs of biosensors vary, and they may
monitor and detect even extremely minute amounts of some diseases, dangerous chemicals,
and pH levels [38].
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A basic biosensor consists of: (i) either a biomolecule or biological element that may
recognize the target substrate (glucose, lactose, enzymes, DNA, RNA, or virus), or an
analyte, which is a material of interest whose contents are being identified or detected.
(ii) A transducer that transforms energy from one form into another. The transducer is
an essential part of a biosensor. The biorecognition event is converted into an electrical
signal that can be monitored and connected to a target that is chemical or biological, as
well as a quantity. (iii) The transduced signal is processed and made ready for display in
step. Electrical signals from the transducer are amplified and converted into digital signals.
The processed signals are quantized using the display unit. According to the analyte, or
signal detection to be monitored, biosensors can generally be categorized into a variety of
categories [39].

3. Application of Nanowire for Biosensor
3.1. Detection of Various Neurotransmitters and Molecular

Biological molecules such as nucleic acids, neurotransmitters, and small molecules
can currently be recognized. The operation of a biosensor is based on the interaction of the
target analyte and biological recognition component. When the target analyte connects to
the biological recognition element, it emits a signal, which the transducer then turns into
an electrical signal. Several industries, including environmental monitoring, food safety,
and medical diagnostics, use these biosensors. Dopamine, as well as glucose, cholesterol,
and other chemicals can be selectively detected using biosensors (Table 1).

Table 1. Characteristics of nanowire systems for neurotransmitter and molecular detection.

Materials Mechanism Target Concentration
Range

Limit of
Detectiozn Ref.

Silicon NWs Fluorescent signal γ-Aminobutyric
acid (GABA) 970 fM to 9.7 µM 9.7 µM [40]

Pt-Au NWs Cyclic voltammetry
(CV)

Penicillin and
tetracycline

300–240 µM
300–210 µM

41.2 µA µM−1 cm−2,
26.4 µA µM−1 cm−2 [36]

Ru@V2O4 nanowires Colorimetric sensor Cysteine 3–50 µM 0.139 µM [37]

Cu2O/Cu@C
core–shell NWs Amperometry Uric acid 0.05 to 1.15 mM 330.5 µA·mM−1·cm−2 [41]

Rutile/anatase TiO2
(R/A-TiO2)

Photoelectrochemical
biosensor Glucose 1–20 mM 0.019 mM [42]

Mo-W-O NWs
intercalated graphene

Electrochemical sensor
(CV, Differential pulse
voltammetry (DPV))

Dopamine and
Tyrosine

0.001–448.0 µM,
0.001–478.0 µM 0.8 nM, 1.4 nM [43]

CuO/Cu2O NWs Photoelectrochemical Tyrosinase 0.05–10 U/mL 0.016 U/mL [44]

Lee et al. developed an immunosensor based on a silicon nanowire field-effect transis-
tor (FET) device to identify the GABA molecule [40]. By using electron beam lithography,
zigzag-shaped silicon nanowires were synthesized, and a semiconductor analyzer was used
to verify the p-type FET device’s electrical properties. By measuring the fluorescence signal,
the ideal immobilizing circumstance for the antibody against the GABA molecule was
identified. Using the immunoreactions, the conductance change on silicon nanowire-based
devices was sensitively used to quantify different GABA concentrations ranging from
970 fM to 9.7 µM (Figure 2).
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Figure 2. Generated nanowire pattern on SOI wafer as seen in the scanning electron microscope
image in (a,b) device schematic for a field effect transistor based on silicon nanowires to detect GABA
(scale bars: 5 m, 500 nm). (c) This system’s conductance increased when GABA was added as a
result of an immunoreaction, which was observed using a FET device based on silicon nanowires.
(d) A reproducible conductance signal is seen through certain GABA molecule concentrations.
(e) After using the GABA target molecule, the conductance versus time measurements on the GABA
antibody-modified p-type silicon nanowire vary from 970 fM to 9.7 µM. Reproduced with permission
from [40]. Copyright 2019 Springer.

For the simultaneous detection of penicillin and tetracycline, a hybrid nanowire/nano-
particle array containing a range of bio-molecular sensors was used to build an electro-
chemical biosensor. The penicillinase was then immobilized on the Au NPs using 1-Ethyl-3-
(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide (EDC/NHS) cross-linked
after being electroless plated on the Pt nanowire segments using L-cysteine to create a mono-
layer on the Au segment as the bio-receptor for tetracycline detection. The vertically aligned
Pt–Au nanowire array was prepared by an electrodeposition method within the anodic
aluminum oxide (Figure 3).The electrode of Au(L-cysteine)–Pt(penicillinase) demonstrated
simultaneous detection capability and astonishingly high sensitivities of tetracycline and
penicillin, with values of 41.2 A µM−1cm−2 (penicillin) and 26.4 A µM−1cm−2 (tetracycline).
Investigated sensitivities were analyzed with various segment lengths. Tests on actual
samples using extracts of chicken and beef produced positive results for recovery [36].
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Figure 3. The manufacturing of nanowire of Au–Pt multi−segment assembly: L−cysteine on the Au
is shown schematically in (A); electroless plating of Au NPs on Pt region followed by the enzyme
of penicillinase (B); the sensing mechanisms of penicillinase and penicillin (C); L−cysteine and
tetracycline (D). Cyclic voltammetry of the nanowire arrays of (E) Au(L−cysteine) sensing 100 µM
tetracycline (1 mM PBS) and (F) Pt (Penicillinase) detecting 100 µM penicillin (1 mM PBS). Reproduced
with permission from [36]. Copyright 2019 Elsevier.

A one-step hydrothermal technique was used to create a Ru@V2O4 nanocomposite
with enzyme-like activities. The tetra-enzyme-like activities of the produced Ru@V2O4
NWs, including peroxidase-like, oxidase−like, superoxide dismutase-like, and catalase−like
activity, were developed (Figure 4). The peroxidase-like and oxidase-like behaviors of
Ru@V2O4 nanowires, which were following the Michaelis–Menten kinetics, were first vali-
dated by the kinetic investigation. Next, using Ru@V2O4 nanowires’ POD− and OD−like
enzymatic activity, a polyfunctional colorimetric sensor platform was developed for the de-
tection of cysteine (Cys) and H2O2. The response limit for H2O2 detection using Ru@V2O4
nanowires was 0.788 µM, and the detection range for H2O2 was 1–500 µM. In ideal cir-
cumstances, the degree of discoloration had a low detection limit of 0.139 µM and was
linearly proportional to the Cys concentration in the range of 3–50 µM. Moreover, Ru@V2O4
nanowires can identify Cys in serum and H2O2 in samples collected [37].

Thermal degradation of [Cu3(btc)2(H2O)3] MOF (HKUST-1) NWs results in the syn-
thesis of porous Cu2O/Cu@C core–shell nanowires. The NWs are subsequently employed
as materials for electrodes to create Uric Acid (UA) sensors (Figure 5). By manipulating the
calcination settings, authors can create composite NPs made of copper NPs and cuprous
oxide that are encased in a non-graphitic carbon nanowire shell. These NWs have strong
electrocatalytic performance at low working voltage, which helps UA biosensors become
more interference resistant. The substrate’s copper and carbon content also speed up
electron transfer, which significantly raises the UA biosensors’ sensitivity. At a working
potential of −0.5 V versus SCE, a sensitivity of 330.5 µAmM−1cm−2 and a linearity range
of 0.05–1.15 mM are attained [41].
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Figure 4. The synthesis of Ru@V2O4 NWs with good tetra-enzyme and the colorimetric sensor
method for Cys and H2O2 are shown schematically (left image). The activity of catalysis of three
distinct substances (RuCl3, V2O4 NWs, and Ru@V2O4 NWs) on TMB is shown in (A). (B) Spectra
of UV-vis absorption of reactions catalyzed using Ru@V2O4 NWs, including OPD (blue line), ABTS
(purple line), and TMB (yellow line). Individual ABTS, TMB, or OPD are shown by the accompa-
nying dashed lines. Spectra of TMB, H2O, Ru@V2O4 nanowires, Ru@V2O4 nanowires/TMB/H2O2,
Ru@V2O4 nanowires/TMB, TMB/H2O2, and Ru@V2O4 nanowires/H2O2, are shown in (C,D). Re-
produced with permission from [37]. Copyright 2021 Elsevier.

3.2. Detection of DNA and RNA

The research of DNA and RNA detection methods has received significant interest due
to its wide range of potential applications, including the identification of clinical diagnoses,
the recognition of DNA-based gene sequences, nano-bioengineering, and the field of food
science [45]; many approaches, including electrochemical [46], optical fiber sensors [47], and
surface plasmon resonance biosensors techniques [48], have been thoroughly studied for
DNA sensor (Table 2). Scientists’ ability to successfully diagnose pathologies is especially
important for success in the field of healthcare science [49].

Shariati has developed a label-free, field-effect transistor DNA sensor for the hepatitis
B virus (HBV) using indium tin oxide (ITO NWs) [49]. ITO nanowires’ robust conductance
and functionally changed surface led to an increase in probe immobilization and target
hybridization. ITO NWs had a diameter of less than 50 nm of crystalline, according to a
measurement made using HRTEM. On the Au-modified nanowires, the single-stranded
hepatitis B virus DNA (SS-DNA) was immobilized as a probe. The linear concentration
range of the DNA targets was 1 fM to 10 µM. The DNA biosensor has a limit of detection
(1fM). For a specific single strand, the hybridization process took 90 min. The biosensor
had a 1.1 × 105 switching ratio between the on and off states. DNA oligonucleotide se-
quences that belong to mismatched, complementary, and non-complementary were readily
distinguishable for biosensor sensitivity. The highly satisfying specificity for distinguishing
complementary sequences from non-complementary and mismatched oligonucleotides
was proven using the HBV sensor (Figure 6).
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(D–G) images of EDX mapping, and (H) the amperometric responses of UA sensors using core–shell
Cu2O/Cu@C NWs with the serial injection of UA at various concentrations. (K) Selectivity of as-
prepared UA sensors and (L) The stability of UA sensors after 1 month. Sensor mechanism of the UA
sensors using core−shell Cu2O/Cu@C NWs: 0.05 mM (I) and 0.1 mM (J) standard curve of it as UA
sensors. Reproduced with permission from [41]. Copyright 2020 Elsevier.

Table 2. Characteristics of NWs biosensor for DNA/RNA detection [5].

Materials Mechanism Target Concentration
Range

Limit of
Detection Ref.

ITO NWs FET DNA of hepatitis B
virus (HBV) 1 fM to 10 µM 1 fM [49]

Core D-Shaped Photonic
Crystal Fibre Embedded

silver nanowires

Surface Plasmon
Resonance DNA/RNA 1.35 to 1.50 RIU 4000 nm/RIU [35]

Silicon NWs FETs Hepatitis C virus
(nDNA) 10–328 mM 10 mM [50]

TiO2 NWs fluorescence ssDNA; dsDNA; 2 nM to 200 nM 1.4 nM [51]

SOI NWs Chip Micro-Raman Circular RNA
(Glioma) 10−16–1.1 × 10−16 M 10−16 M [52]

(PEG)-polypyrrole (PPy)
nanowire

Differential pulse
voltammetry (DPV) miRNA 0.10 pM ~ 1.0 nM 0.10 pM [34]

SiNWFETs/PEG-mSAMs FETs miRNA-21 10 aM–10 pM 10 aM [53]

Morpholino-functionalized
Si NWs Label-free detection DNA 1 nM–100 pM 100 pM [54]



Processes 2023, 11, 1739 9 of 23
Processes 2023, 11, x FOR PEER REVIEW 9 of 23 
 

 

 
Figure 6. The development of a FET device using ITO nanowires. (A) The gold film was covered 
with an indium and tin film. The P-Type semiconductor that serves as the back-gate electrode is the 
Si platform (SiO2 layer). (B) E-beam lithography was used to form the electrodes and FET design. 
(C) A diagram of a tubular furnace. (D) The under-controlled production of NWs in a tube furnace. 
(E) IDS–VGS graphs from a synthesized transistor of ITO NWs after immobilizing probes; VDS was 
set to a value of +3 V. (F) The transfer properties were toggled from on to off before hybridization 
(red curve) and after (black curve), with VDS = +3 V. The lowest limit of detection was 1 fM in (G) 
the link between current changes and concentration. Regarding the DNA biosensor’s consistency 
and repeatability across three (blue line) and five weeks (black line); after three and five weeks, 
respectively, it reached 98% and 96% of its initial response. The dynamic evaluations of the FET 
biosensor. (H) The sensor’s dynamic tests use mismatched, non-complimentary, and 
complementary targets. At VDS = +1 V and VGS = +2 V, the ITO NWs reaction and expected outputs 
were obtained. Reproduced with permission from [49]. Copyright 2018 Elsevier. 

Table 2. Characteristics of NWs biosensor for DNA/RNA detection [5]. 

Materials Mechanism Target Concentration 
Range 

Limit of 
Detection 

Ref. 

ITO NWs FET 
DNA of 

hepatitis B 
virus (HBV) 

1 fM to 10 μM 1 fM [49] 

Core D-Shaped Photonic 
Crystal Fibre Embedded 

silver nanowires 

Surface Plasmon 
Resonance DNA/RNA 1.35 to 1.50 RIU 4000 nm/RIU [35] 

Silicon NWs FETs Hepatitis C 
virus (nDNA) 10–328 mM 10 mM  [50] 

TiO2 NWs fluorescence ssDNA; 
dsDNA;  2 nM to 200 nM 1.4 nM [51] 

SOI NWs Chip Micro-Raman Circular RNA 
(Glioma) 10−16–1.1 × 10−16 M 10−16 M [52] 

(PEG)-polypyrrole (PPy) 
nanowire 

Differential pulse 
voltammetry (DPV) 

miRNA 0.10 pM ~ 1.0 nM 0.10 pM [34] 

SiNWFETs/PEG-mSAMs FETs miRNA-21 10 aM–10 pM 10 aM [53] 
 Morpholino-

functionalized Si NWs 
 Label-free detection DNA 1 nM–100 pM 100 pM [54] 

Figure 6. The development of a FET device using ITO nanowires. (A) The gold film was covered
with an indium and tin film. The P-Type semiconductor that serves as the back-gate electrode is the
Si platform (SiO2 layer). (B) E-beam lithography was used to form the electrodes and FET design.
(C) A diagram of a tubular furnace. (D) The under-controlled production of NWs in a tube furnace.
(E) IDS–VGS graphs from a synthesized transistor of ITO NWs after immobilizing probes; VDS was
set to a value of +3 V. (F) The transfer properties were toggled from on to off before hybridization
(red curve) and after (black curve), with VDS = +3 V. The lowest limit of detection was 1 fM in
(G) the link between current changes and concentration. Regarding the DNA biosensor’s consistency
and repeatability across three (blue line) and five weeks (black line); after three and five weeks,
respectively, it reached 98% and 96% of its initial response. The dynamic evaluations of the FET
biosensor. (H) The sensor’s dynamic tests use mismatched, non-complimentary, and complementary
targets. At VDS = +1 V and VGS = +2 V, the ITO NWs reaction and expected outputs were obtained.
Reproduced with permission from [49]. Copyright 2018 Elsevier.

The annealed ZnO/Al2O3 core–shell nanowire device was developed by Hiromi et al.
as a platform for RNA capture (Figure 7). Comparing the efficiency of capturing RNAs
to that of other circulating nucleic acids, such as genomic DNA (gDNA) and cell-free
DNA (cfDNA), the annealed ZnO/Al2O3 core–shell nanowire could capture RNAs with
a high level of efficiency. Moreover, the Al2O3 shell’s crystalline structure, which acts
as a protective layer to stop nanowire degradation, was thought to make the nanowire
biocompatible with blood plasma samples. Potentially serving as a platform for RNA-based
extraction and detection, the devise was developed [35].
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electrode (GCE), PPy nanowire arrays were manufactured. By electrochemically oxidizing 
the amine groups provided by the PEG end chains, the surfaces of PPy nanowires were 
embellished with 4-armed PEG molecules. The highly effective antifouling qualities of 
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Figure 7. (I) ZnO/Al2O3 core–shell nanowire schematic illustrations; (II(a–h)) SEM and TEM images
of the nanowire—atomic-resolution TEM images of the nanowire showing orientation growth of (100)
ZnO and (110) Al2O3; and (III) Capture of miRNAs on annealed ZnO/Al2O3 core–shell nanowires,
comparison of the nucleic acids’, miRNAs’, mRNAs’, cfDNAs’, and gDNAs’ capture efficiency.
Capture efficiency of miR21 on nanowire at concentrations of 0.01, 1, 10, and 1000 pM; comparison of
miR21, miR155, and miR124 capture efficiencies. Error bars for a set of measurements (n = 3) display
the standard deviation. Reproduced with permission from [35].

To provide superior antifouling performances, Wang et al. have developed ultra-
sensitive sensors based on polyethylene glycol-polypyrrole ((PEG-PPy) NWs [34]. Using
electrochemically polymerizing pyrrole at the constant voltage on the glassy carbon elec-
trode (GCE), PPy nanowire arrays were manufactured. By electrochemically oxidizing
the amine groups provided by the PEG end chains, the surfaces of PPy nanowires were
embellished with 4-armed PEG molecules. The highly effective antifouling qualities of
PEG and the exceptional electrical conductivity of PPy nanowires, a conducting polymer,
are synthesized in the newly developed PEG/PPy nanowires. MicroRNAs (miRNAs) are
potential indicators of the onset, prognosis, and risk of diseases because they play critical
roles in the development of cancer and several other diseases. It is simple to create an ultra-
sensitive electrochemical biosensor for miRNA by immobilizing DNA probes on PEG/PPy
NWs. Changes in the methylene blue (MB) redox signal were tracked using the differential
pulse voltammetry method to measure DNA/RNA hybridization. The biosensor produced
a large linear range (0.10 pM–1.0 nM) to the target miRNA, and miRNA mismatches can
also be satisfactorily discovered with ease (Figure 8).
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Figure 8. (A(a–g)) Diagrammatic representation of the improved sensor manufacture using
PEG/PPy NWs and antifouling properties. A plain GCE, PPy/GCE, aPEG/PPy/GCE, C1/PEG/GCE,
MB/C1/PEG/GCE, T2/MB/C1/PEG/GCE, and DPV result are examples of outcomes. (a) bare GCE
(b) PPy/GCE (c) PEG/PPy/GCE (d) C1/PEG/GCE (e) MB/C1/PEG/GCE (f) T2/MB/C1/PEG/GCE
(f) DPV results (B) Common DPV spectra for the incubation of MB/C1/PEG/PPy/GCE with various
target miRNA concentrations (10−15 M–10−7 M) are shown in order from top to bottom. (C) Elec-
trochemical Impedance Spectroscopy (EIS) data were captured at the following locations: GCE (a);
PPy/GCE (b); PEG/PPy/GCE (c); C1/PEG/PPy/GCE (d); and T2/C1/PEG/PPy/GCE (e). DPV
characterization of MB/C1/PEG/PPy/GCE recorded before (curve b) and after (curve c) target
miRNA (T2) hybridization is shown in (D) together with the C1/PEG/PPy/GCE DPV curve (black
line a). Reproduced with permission from [34]. Copyright 2019 Elsevier.

3.3. Detection of Protein

To identify certain proteins in biological samples, biosensors for protein detection are
used. An enzyme, protein, cell, or other biological recognition element recognizes a certain
analysis and transforms the biological signal into an identifying signal. A particular kind
of biosensor is a peptide-based electrochemical biosensor, which recognizes target proteins
utilizing certain peptide sequences with high affinity and selectivity. The aptamer biosensor
is another form of biosensor utilized for protein detection. In several applications, aptamers,
which are biological recognition components, can be used in place of antibodies. Another
form of biosensor used to detect proteins is CRISPR/Cas-based technology (Table 3).
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Table 3. Characteristics of nanowires for protein detection.

Materials Mechanism Target Concentration
Range

Limit of
Detection Ref.

Silicon-on-insulator
(SOI)-NWs

A field-effect transistor
(FET) CA 125 10−15–10−16 M 2.2 × 10−16 M [55]

SiNW FET FET Cardiac Troponin I 0.002–0.01 ng/mL 0.002 ng/mL [56]

ZnO NWs
Fiber-optic-based

localized surface plasmon
resonance (FO-LSPR)

prostate-specific
antigen (PSA) 5–200 pg/mL 0.51 pg/mL [57]

(N, S-GQDs@Au-PANI)
NWs

Impedimetric
immunosensor

Carcinoembryonic
antigen 0.5–1000 ng mL−1 0.01 ng mL−1 [58]

ZnO NWs integrated
inside microfluidic chips fluorescence detection α-fetoprotein (AFP) 1 pg/mL–1 µg/mL 1 pg/mL [59]

Semiconductor NWs Epifluorescence
microscopy Protein Concentration 0.25–0.00008 w% 0.00008 w% [60]

Paper-Based Zinc
Oxide NWs Fluorescence signals

Cardiac Biomarkers of
acute myocardial
infarction (AMI)

1.00–7.94 ng/mL 1.00 ng/mL [61]

Awatef reported developing a novel aptasensing substrate powered by SERS for
the highly accurate and focused detection of prostate-specific antigen (PSA). Vertically
aligned silicon nanowires (SiNWs) coated with silver nanoparticles (AgNPs) make up the
transducing SERS substrate (Figure 9). The aptamer is immobilized using thiol chemistry
and the Raman signal is enhanced by the silver nanoparticles. Only if the aptamer is
present on the surface of SiNWs does the presence of PSA cause the emergence of amide
bond vibration modes. The platform is sensitive, specific, and selective to PSA in a broad
concentration range from 0.1 to 20 g·L−1 with a detection limit of 0.1 g·L−1, which includes
the blood serum range of both healthy participants and ill patients [56].

Kim et al. have researched sensors for localized surface plasmon resonance based on
fiber optics and featuring 3D nanomaterials [57]. These sensors were designed for very
sensitive plasmonic biosensing employing ZnO nanowires and AuNPs. The following
features of the biosensor development stand out: (1) an expanded sensing area; (2) the
influence of nanowires in trapping light; and (3) a straightforward optical system from the
optical fiber. The hydrothermal fabrication of ZnO nanowires on the cross-section of fibers
and AuNPs on the NWs was used to create the 3D nanomaterials. The suggested sensor
produced a constant value in response to variations in the refractive index. Compared
to 2D FO-LSPR sensors where a monolayer of AuNPs is attached to optical fiber, the
3D FO-LSPR sensor showed a 171% increase in the localized surface plasmon resonance
response for bulk changes in refractive index. Additionally, the limits of detection for the
prostate-specific antigen, a helpful biomarker for the diagnosis of prostate cancer, were 2.06
and 0.51 pg/mL, correspondingly, using 2D and 3D FO-LSPR biosensors (Figure 10).
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Figure 9. (a) A schematic depiction of the bioplatform’s functionality and step-by-step assem-
bly; (b) Raman spectra of MCH/AgNPs/SiNWs, PSA (1 g·L−1)/anti−PSA/MCH/AgNPs/SiNWs
for various incubation times; 4 h (a), 8 h (b), 12 h (c), and 16 h (d) of the SERS substrate
(MCH/AgNPs/SiNWs) in aptamer solutions. SERS spectra of anti−PSA/AgNP/SiNWs from the
aptasensing system taken before (a) and after incubation in various PSA solutions at concentrations
of 0.1 g·L−1 (b), 1 g·L−1 (c), 5 g·L−1 (d), 10 g·L−1 (e), and 20 g·L−1 (f) [56]. Copyright 2021 Elsevier.

To identify carcinoembryonic antigen quantitatively, N, S-graphene quantum dots@Au-
polyaniline (N, S-GQDs@Au-PANI NWs) were synthesized (CEA). Simple interfacial poly-
merization and hydrothermal pyrolysis were used to create the N, S-GQDs, and Au-PANI,
correspondingly (Figure 11). A bifunctional probe to measure an increase in electrochem-
ical activity and attaching anti-CEA, 2–9 nm N, S-GQDs is designed by Au–PANI NWs
(30–50 nm) through linkage of Au–thiol. The initiation of CEA antibody-antigen biomedical
applications after the addition of CEA dramatically increases the charge transfer resis-
tance, which is a highly reliable and label-free immunoassay technique, thus, provided for
the impedimetric measurement of CEA. The N, S-GQDs@Au-PANI NWs are conductors
that speed up electron transport. At the detection limit (0.01 ng mL−1), the label-free
immunosensor demonstrates a broad range from 0.5 to 1000 ng mL−1. The immunosensor
built on N, S-GQDs@Au-PANI also exhibits remarkable stability and selectivity against
various cancer-causing agents and amino acids [58].
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Figure 10. Localized surface plasmon resonance (LSPR) spectra measured with the suggested sensor
are shown in a schematic picture together with the optical system: optical fiber−based measurement
set-up (a) and 3D FO−LSPR sensor-measured spectra for solutions with various refractive indices
(b). Comparison of 2D and 3D structures’ refractive index sensitivities for solutions with various
refractive indices; diagram showing the interaction between an antibody and an antigen and the
results of measurements in 2D (c) and 3D (d) structures. (e) Immunoassay procedures and (f) the
variations in intensity seen using each sensor in response to different PSA values. Reproduced with
permission from [57]. Copyright 2019 Nature portfolio.
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Figure 11. The schematic for the production of (a) electrochemically impedimetric immunosen-
sor with no labels; (b) N, S−GQD hydrothermal pyrolysis, and interfacial polymerization of Au-
PANI; (c) Nyquist plot of Pt||PANI−Au/N,S−GQDs/anti-CEA at different concentration of CEA
(0–1000 ng mL−1); (d) standard curve for the identification of CEA; (e) the impedance before and
following exposure to different CEA concentrations; and (f) proportion of alteration in impedance
concerning the bare Pt||PANI−Au/N,S−GQDs/anti-CEA without CEA (0.1 Hz). Reproduced with
permission from [58]. Copyright 2019 Nature Portfolio.
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3.4. Detection of Viruses and Bacteria

The tin-doped WO3/In2O3 heterojunction NWs photoelectrode-based sensitive DNA
sensor for detection of hepatitis B virus relies on laser amplification. The present COVID-19
pandemic serves as an example of how the spread of viruses and bacteria has put the world’s
biosecurity at risk. Disease prevention and control have historically depended heavily
on the early detection of bacterial and viral illnesses. Surface-enhanced Raman scattering
(SERS), surface plasmon resonance, surface-enhanced fluorescence, and surface-enhanced
infrared absorption spectroscopy are some examples of plasmonic phenomena that can be
used to identify viruses. This finding and evaluation will help the audience accelerate the
study and creation of a novel class of adaptable bacterium and virus biosensors (Table 4).

Table 4. Characteristics of NWs for virus and bacteria detection.

Materials Mechanism Target Concentration
Range

Limit of
Detection Ref.

Tin-doped WO3/In2O3
NWs

Electrochemical
impedance spectra (EIS)

Hepatitis B virus
(HBV) 0.1 pM–10 µM 1 fM [62]

Te-doped ZnO NWs (EIS) HBV DNA 1 pM to 1 µM 0.1 pM [63]

AgNWs THz plasmonic sensors PRD1 3.4–6.7 FOM 3.4 FOM [64]

Porous silicon nanowire Impedance Influenza viruses 1000–100 TCID50 100 TCID50 [65]

Silicon nanowire (SiNW) RT-PCR Dengue serotype 2 10–100 fM 10 fM [66]

Nanowire Aptamer Gas Plasma-Treated
Surface Hepatitis C virus 2.0 × 10−15–10−17 M 10−17 M [67]

ZnO nanowire Fluorescent immunoassay
(FIA) SARS-CoV-2 0 to 1500 a.u. 5 µg mL−1 [68]

Gold-Decorated Silicon
Nanowire Surface-Enhanced Raman Bilirubin 10–8–5 × 10–5 M 10–8 M [33]

MoS2 nanowires HBV DNA FET Hepatitis B virus 0.5 pM to 50 µM 1 fM [69]

A sensitive electrochemical aptasensor has been developed employing nickel nanowires
(NiNWs) modified with antibodies for target separation and impedance amplification and
an aptamer-coated gold interdigitated microelectrode for target capture and impedance
measurement. Streptavidin was electrostatically attracted to the interdigitated microelec-
trode and then bound to streptavidin–biotin to create the biotinylated aptamers against
Salmonella typhimurium. Then, the aptamer-bacteria-NiNW complexes were formed by
incubating the bacteria NiNW complexes on the microelectrode after the target Salmonella
cells had been magnetically separated and concentrated using the NiNWs modified with
the anti-Salmonella typhimurium antibodies. The improved impedance change in the
microelectrode was monitored and used to calculate the quantity of target bacteria after
an external arc magnetic field was created and used to regulate the NiNWs to construct
conductive NiNW bridges across the microelectrode. With a detection limit of 80 CFU/mL,
this electrochemical aptasensor was able to quantitatively detect Salmonella with a range
of 102 to 106 CFU/mL in 2 h. For the samples of drugged chicken, the average recovery
was 103.2% (Figure 12).
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Figure 12. (a) The force analysis schematic for the NiNW in the magnetic field and (b) Streptavidin,
biotinylated aptamers, BSA, and nickel bacteria at a concentration of 105 CFU/mL on the surface
of the microelectrode and the application of the arc magnetic field were successively modified. The
Nyquist plots after these modifications: (c) the change in the electron transfer resistance and (d) the
detection of Salmonella in chicken carcass using this aptasensor (N = 3). Reproduced with permission
from [62]. Copyright 2020 Elsevier.

On a microplate (MP), a ZnO NWs is developed using a hydrothermal synthesis
procedure. This plate is used as a fluorescence immunoassay to find antibodies that are
specific for SARS-CoV-2 NP. It is coated with SARS-CoV-2. In comparison to the bare MP,
the ZnO-NW MP binds SARS-CoV-2 NP tagged to histidine at higher concentrations (up
to 5 g mL−1) and without any surface modification. When compared to a commercial
immunoassay, an innovative serological test using the ZnO-NW MP is more sensitive,
allowing for the early identification of anti-SARS-CoV-2 NP IgG antibodies in COVID-
19 patients who are asymptomatic (Figure 13). This is the first assay to identify early
SARS-CoV-2 antibody reactions among asymptomatic patients [68].
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MP and the MP were coated with SARS-CoV-2 NP antigen (1, 3, 5 g mL−1) employing anti-human 
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using gold-decorated silicon NWs (Au@SiNWs). To create SiNWs, crystalline silicon 
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gold. The model analyte 4-mercaptopyridine has a low detection limit down to a 
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Figure 13. (a) Schematic depiction of the SARS-CoV-2 antibody detection procedure employing
the ZnO-NW MP. Four steps make up the ZnO-NW MP-based method for detecting SARS-CoV-2
antibody responses in COVID-19 patients; (b) Graphic depiction of the modified ZnO-NW pro-
duced using a hydrothermal process, which involves sputtering as a seeding technique, shaking
the ZnO-NW precursor solution during conduction heating, and then developing the material;
(c) Growth of ZnO-NW MP produced using polystyrene microplate; (d) SEM pictures of ZnO-NWs
were synthesized in a microplate for 1, 3, and 5 h. SARS-CoV-2 NP antigen is introduced to the
ZnO-NW MP’s surface, and anti-SARS-CoV-2 NP IgG antibodies are found there; (e) Both the
ZnO-NW MP and the MP were coated with SARS-CoV-2 NP antigen (1, 3, 5 g mL−1) employing
anti-human IgG coupled to Alexa 488 to measure the fluorescence intensity and image. * p < 0.01
versus NP antigen at 1 µg/mL and the same antibody concentration, ** p < 0.01 versus anti-NP IgG
at 32 ng mL−1 and the same antigen concentration; and (f) the bound rabbit anti-SARS-CoV-2 NP
IgG polyclonal antibody (32, 160, 800 ng m L−1). Reproduced with permission from [70]. Copyright
2022 Wiley.

As hemoglobin breaks down, bilirubin (BR), a byproduct that might signal liver
problems and cause jaundice. When neonates’ unconjugated BR concentrations rise quickly
to fatal levels, it can result in brain damage (Figure 14). For sensitive label-free BR detection,
Anna et al. suggest a novel technique for fabricating a SERS-active substrate using gold-
decorated silicon NWs (Au@SiNWs). To create SiNWs, crystalline silicon wafers were
chemically etched with the help of gold before being further embellished with gold. The
model analyte 4-mercaptopyridine has a low detection limit down to a concentration
of 10−8 M. Amino groups were added to the surface of the SiNWs to facilitate effective
BR adsorption and SERS detection. The required sensitivity for clinical applications,
5 × 10−5 M for BR adsorption, was used to verify the signal stability for 7 days [33].
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Reproduced with permission from [33]. Copyright 2021 ACS. 
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Figure 14. (a) A schematic illustration of how Au@SiNWs substrates are developed and then have
their surfaces modified. Distribution of the tested electric field when it is ordinarily incident on either
(b) a periodic SiNW or (c) a periodic Au@SiNW substrate. The color represents the log10(E) value,
where E is the vector of the electric field. For = 633 nm, calculations are performed. (d) BR powder
Raman spectrum, average SERS spectrum of artificial urine, at a concentration of 5 × 10−5 M in artifi-
cial urine for Au@SiNWs at various times (0−7 days) after BR adsorption. The standard deviations
derived from spectra are indicated by the shading of gray in the average spectra. Reproduced with
permission from [33]. Copyright 2021 ACS.

4. Conclusions and Perspective

In the disciplines of engineering and technology, biomedicine, ecotoxicology, toxicol-
ogy, food safety monitoring, disease progression, and medication delivery, biosensors have
a wide range of applications. In this review, we have covered how to construct nanowires
that can be used as biosensors for various pathogens and bacteria, protease [71], DNA [72]
and RNA [73], neurotransmitters, and molecular molecules. The use of nanowires in biosen-
sors has led to a dramatic increase in biosensing technology during the past ten years [74].
This is due to the utilization of new biorecognition components and transducers, advance-
ments in the production, design, and miniaturization of nanostructured devices at the
micron scale, and novel methods for the creation of nanowires [75]. The use of nanowires
has increased the sensing technology’s adaptability, durability, and dynamic nature [76].
By utilizing several nanowires with various properties within biosensors, the transduction
process has been greatly improved (such as increased sensitivity, faster detection, shorter
response time, and reproducibility).

The nanowire sensor will depend on how much ahead it is in comparison to the present
gold standards, such as ELISA and PCR, in terms of ease of use, specificity, sensitivity,
and dependability. Despite having incredibly high sensitivity in comparison to other
approaches, in vivo environments in particular, its analytical signal strength is still too low
to be corrupted by significant background noise. This increased sensitivity issue as well
as simpler fabrication processing problems may be solved by advancements in receptor
binding techniques [77]. Additionally, the reduced cost of commercially available items is
made possible by the present top-down production processes’ greater yield ratio.



Processes 2023, 11, 1739 20 of 23

To improve device performance and detection, several nanowires-related challenges
need to be resolved. The problems with these biosensors include (i) the toxicity, which
varies depending on the physical characteristics of the material type, (ii) the production
of nanostructures, and (iii) the sustainability of nanostructures in sensor applications,
which has not been properly examined. The majority of biosensors used in biomedical
applications need a sizable sample to identify an object, which could result in false-positive
or false-negative results. On a global scale, only a few biosensors have achieved commercial
success. More study is needed in this area, and we anticipate that companies will soon
translate the current academic research into prototypes that are practical from a commercial
standpoint. Particularly, it is anticipated that nanowires would lead to the creation of
potential wearable biosensors.
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