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Abstract: Hybrid electric vehicles (HEVs) have certain advantages over internal combustion engines
in terms of energy consumption and emission performance. However, the transmission system
parameters are uncertain. The low matching between the engine and the power transmission
system makes it a big problem to improve the efficiency of hybrid vehicles. Therefore, the multi-
objective optimization design of hybrid vehicles is studied. The transmission system parameters of
hybrid vehicles are analyzed from the objective function, decision variables, and constraints. The
NSGA-II algorithm with elite strategy is introduced to realize the optimal selection of parameters and
formulation of energy consumption optimization strategy. The results showed that the multi-objective
optimization algorithm could adjust the position of the working point of the engine and improve the
efficiency by more than 10%. There was an average difference of 2.15% after the improvement in the
fuel consumption of four-gear vehicles. The fuel consumption per 100 km decreases by more than
3%. The maximum climbing gradient of the whole vehicle was 33.9%. The power factor of the direct
gear of the maximum power factor increases by 15% after the improvement. The multi-objective
energy consumption optimization design of hybrid vehicles proposed in the study can effectively
improve the economic and dynamic performance of the whole vehicle and reduce fuel consumption.
It provides a reference for the optimization of the hybrid vehicle transmission system.

Keywords: NSGA-II genetic algorithm; hybrid vehicle; power; economy; drive system

1. Introduction

Hybrid electric vehicles (HEVs) have a large advantage in energy emission perfor-
mance compared to internal combustion engines, and their continued voyage is better
than that of pure electric vehicles, which can effectively improve transport efficiency. The
main part parameters of a hybrid car include the engine, driving motor, transmission as
well as main deceleration, and the performance difference of its car’s power, as well as
fuel economy, which largely depends on the rationality of the power transfer system [1].
The main purpose of HEVs is to continuously reduce the emission of cars, so it has a
high economic requirement for fuel. In parallel and hybrid HEVs, when the energy of
the batteries is insufficient, the batteries will be involved in the conversion problems of
their energy efficiency, and then the phenomenon of increased oil consumption of the
cars occurs. The diversity of the design of the composition structure of the power sys-
tem (as well as the state of vehicle driving, individual driver differences, and so on) can
cause different degrees of impact on the transformation of the efficiency of HEVs. The
current research focus on the energy consumption issues for hybrid cars is mainly on
their energy management, i.e., finding the most suitable car operation mode to improve
their energy consumption issues. The improvement of engine efficiency can effectively
achieve its goal of fuel economy, and improving the efficiency of automotive batteries can,
to some extent, ensure a reduction in energy consumption. The adaptive concept is often
applied in the battery condition assessment, which can effectively ensure that the state
of charge (SOC) can reach the maximum level and, thereby, reduce energy consumption.
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At the same time, in the process of vehicle planning, its supply chain problem is mostly
transformed into a double objective linear programming problem, and the setting of the
relevant economic objective functions and conditional parameters is reasonable to achieve
the cost minimization of the planned route. The non-dominated genetic algorithm can
effectively set constraints and reduce the problem of size constraints in the process of
the car’s energy consumption. On the basis of guaranteeing the dynamic performance
of vehicles, reducing fuel consumption, elevating the operation efficiency of the vehicles,
and improving them, are the most important contents of this current research. The high
range of parameter conditions and engineering constraints, as well as the high number
of influencing factors, should strengthen the objective optimization of hybrid parameters
and the parameter objective design for their performance development needs. The energy
consumption parameters of hybrid electric vehicles are highly nonlinear and discontinuous
and gradient-based optimization algorithms are often difficult to produce good applica-
tion results when performing problem-solving [2,3]. The NSGA-II algorithm, as a global
optimization search algorithm, has a better global search ability, problem-solving ability,
and performs parallel processing. The NSGA-II algorithm can effectively determine the
evaluation indicators and objective functions for the requirements of the power and fuel
economy in the analysis of automobile energy consumption, taking into account factors
such as vehicle mass, transmission system quality, and transmission system efficiency,
and achieving the construction of multi-objective optimization models for power trans-
mission systems. Additionally, this algorithm can solve the objective function through
mutation operation and optimal solution calculation when optimizing speed and accuracy,
so it can achieve the minimization of energy consumption on the basis of grasping the
vehicle’s power performance. In this study, based on the performance advantages of the
non-dominated sorting genetic algorithm (non-dominated sorting genetic algorithm-II
generation, NSGA-II), the multi-objective optimization theory and methods are used to
transform the energy optimization problem of hybrid electric vehicles into a multi-objective
solution problem with the smallest energy consumption. With the help of other scholars
for the analysis of automobile energy consumption problems, and with the help of genetic
algorithms which focus on the limitations of the algorithm accuracy effect, the research also
analyzes the influencing factors that affect the efficiency of automobile energy consumption
and purposefully selects the parameters of the power vehicle driveline for optimal selection,
in the hopes of better research on automobile energy consumption and the design of related
strategies to improve its power and economy.

2. Related Work

In the research of automobile fuel cell engines, the classical Pontryagin minimum
principle (PMP) and Dynamic programming (DP) theory can be used to improve the
efficiency of fuel application. The practicability of these two theories has been verified by
practice. However, this method needs to know the driving conditions so as to judge the
actual driving conditions of the vehicle and, finally, apply them to the actual vehicle. In the
study of fuel cell engine systems by Fu J et al., adaptive regulation and PMP could manage
the engine energy in layers and estimate the future vehicle power demand according to
the Energy Management Strategy (EMS). Compared with the global optimization method,
the EMS maximized the capacity of vehicle batteries and improved fuel economy [4]. The
optimal power of hybrid electric vehicles can be solved according to the PMP principle.
On this basis, Shi et al. introduced a neural network to solve the parameters of power
prediction and adopted an adaptive adjustment method to calculate the SOC of the battery.
The simulation results showed that the hybrid improved method could evaluate the vehicle
speed and had good power prediction ability. While ensuring the economic cost of the
vehicle, it also ensured the sustainability of battery charging [5]. In the study of the battery
life of electric vehicles, the way to increase vehicle mileage includes the improvement of
energy efficiency. Zhang Q. G. found that the multi-island genetic algorithm (GA) could
optimize the parameters of the control strategy in the hybrid electric vehicle, thus improving
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the accuracy of the model control strategy. The results showed that this method could
improve the effective utilization rate of automobile energy. In the energy consumption
optimization of hybrid vehicles, it was necessary to focus on the oil pump components in
the power system. The efficiency of the oil pump had a significant impact on the efficiency
of the hybrid vehicle [6]. Huang M. and other researchers used the NSGA-II algorithm
to adjust the proportion of the oil pump rotor to achieve the adjustment of the oil supply
system, thus improving its functional accuracy. The prototype test results showed that the
proportion designed by this method is reasonable [7].

The energy consumption solution of hybrid vehicles can be considered as the solution
to multi-objective optimization problems, mainly including mathematical programming
and heuristic intelligent algorithm [8]. The mathematical programming method requires the
variables to meet the requirements of continuous differentiability, which leads to the poor
universality of the method. Heuristic intelligent algorithms include the genetic algorithm,
ant colony algorithm, particle swarm algorithm, etc. These methods have a strong global
search ability. It has wide applicability in solving high-latitude nonlinear problems [9].
S. Kumar et al. used fuzzy mathematics to establish the model and then adopted a genetic
algorithm to optimize the parameters of the mathematical model. In the evaluation and
prediction of the relationship between parameters and targets, the predicted value of
the model was slightly different from the experimental value, indicating that the newly
established model had a good prediction performance [10]. The combination of different
heuristic algorithms also has advantages in solving multi-objective optimization problems.
Xue B. applied the ant colony algorithm and the GA to wireless power transmission. For
the multi-objective optimization of energy transmission and information transmission,
this method could optimize both objectives at the same time and had a high efficiency
and information transmission capacity [11]. The vehicle battery system has a strong
correlation with EMS. To prolong the life of the vehicle battery system, on the basis of
the GA and other methods, Liang J. and others used the PMP principle to optimize the
function and constructed the cost function as the objective optimization function. PMP
had good performance after optimization and could be used to evaluate the durability
and economic cost of the battery [12]. Dutta J. solved the multi-objective vehicle planning
problem with the help of the cluster main path and fully considered the operating costs
and fuel consumption to reduce the vehicle’s pollution emissions. The cluster concept
and multi-objective model were used to realize the selection of the best planning route
and linked customers to the planning route [13]. The decision information is judged and
selected optimally with the help of the strength Pareto evolutionary algorithm and the non-
dominated genetic algorithm (NSGA). Yuen T. J. used evolutionary algorithms to achieve
multi-objective optimization and adopted constraints to standardize the powertrain design.
The non-dominated sequencing genetic algorithm and differential constraint algorithm
were used to analyze the motor transmission ratio, motor torque, and wheel pressure ratio.
The results showed that this method could complete the convergence in a short time and
greatly reduce the energy consumption of vehicles [14]. Jin L. et al. proposed an improved
NSGA-II algorithm to analyze the search problem of motor multi-objective parameters.
A redundant mutation operator was used to improve the recognition performance of
non-dominant individuals. The rotor clearance, rotor tooth width, and other parameters
affecting the motor performance were optimized. The optimization model based on the
maximum output shaft torque was established. The experimental results showed that
the optimized parameters could shorten the 100-km acceleration time in the background
experimental simulation environment. The battery SOC value had good stability and
was suitable for the design of the motor system. Electric vehicles had a relatively wide
application space due to the advantages of distributed energy storage [15]. Wei H. proposed
to maximize the diversity of the NSGA-II to achieve the relationship between the charge
distribution, the charging cost, and the goal optimization and to dynamically adjust the
time. The results showed that this method could improve the durability and practicability
of electric vehicles, reduce the over-dependence on data, and have high applicability [16].
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Dao D. N. proposed an evolutionary algorithm based on the strength Pareto and multi-
objective optimization parameters, which was an innovative combination of the NSGA-III
algorithm and SPEA/R algorithm. The benchmark function was the test tool and the
suspension system was the simulation environment. The results showed that the algorithm
had good applicability and potential in parameter optimization [17].

In summary, enhancing the research on energy management strategies for fuel cell
engines can effectively achieve the estimation of power demand. Many scholars use neural
network algorithms, genetic algorithms, and multi-objective algorithms to study the issue of
energy consumption. In addition, the NSGA-II algorithm has received more attention due to
its advantages in solving the multi-objective parameter problem, but most of the problems
focus on solving the parameters and battery cost, and less consideration is given to the
factors affecting the automobile’s power. As for how to carry out the analysis of automobile
energy consumption problems, D. Shi et.al., in the literature [7], solve the power prediction,
Zhang Q. Y. et.al., in the literature [8], carry out the control strategy of hybrid cars with the
help of the multi-Island GA parameter optimization and Huang M et.al., in the literature [9]
scale the rotor of the oil pumps with the help of NSGA-II algorithm. The research content of
the literature is to analyze the impact on the energy consumption and operation efficiency
of hybrid cars, different from that, the research translates the energy consumption problems
of the cars into multi-objective solution problems and performs efficiency optimal problem-
solving from the impact factor evaluation, the control of the power index, and so on, instead
of analyzing them only from a single dimension. In the analysis of the objective problem
of energy optimization for hybrid electric vehicles, Liang J et al., in Reference [13], use
the principle of PMP for the optimization of the cost objective function and construct the
cost function as the objective optimization function. In the literature [15] Yuen T. J. et.al.
combine the Pareto algorithm with the NSGA algorithm to realize the judgment of decision
information, Jin L et.al. then implement the improvement of the NSGA-II algorithm with
the operation of redundant mutation operators and realize the improvement of the motor
multi-objective parameters search efficiency. In the literature [16], Wei H et.al. performed
a charge cost analysis with the NSGA-II algorithm for better dynamic regulation. Most
scholars conduct automobile problem analysis with the help of the NSGA-II algorithm,
indicating its better application efficacy. Different from other scholars in the NSGA-II
algorithm, to improve the research of the concept of the energy impression unit of hybrid
cars to conduct the problem, the factor analysis from the nature of its problem, to some
extent, reduces the computational effort but also reduces the experimental error caused by
the uniformity of the parameter environment. Therefore, combined with the above analysis,
the research is based on the advantages of the NSGA-II algorithm to construct the objective
problem based on the parameter indicators that affect the power and economy of hybrid
electric vehicles, to control the constraints of the parameter conditions, to establish the
constraints that meet the practical needs, to use the economy, and power as the criterion
goals for the optimal value solution of the problem to achieve its energy consumption
optimization effect.

3. Hybrid Vehicle Energy Consumption Optimization Strategy Based on NSGA-II
Genetic Algorithm
3.1. Multi-Objective Design Optimization of Hybrid Electric Vehicle Transmission System

The power performance and fuel economy of hybrid vehicles have an important
role and internal relationship with the reasonable matching of the optimal transmission.
However, the conventional power transmission system is mostly matched with a large
number of experimental data, which costs a lot of time. The application effect is poor.
Therefore, with the help of computer simulation technology, the selection and optimization
of the power drive system of hybrid electric vehicles are realized. This operation can
avoid excessive dependence on experimental samples and reduce the cost and complexity
of repeated experiments, which is highly feasible [18]. The research proposes to solve
the optimal decision problem with the multi-objective optimization theory. The optimal
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solution of multiple objectives is the optimal solution of multiple objectives in the feasible
region. It can solve the optimal solution of the involved contradictory and incomparable
optimization objects. The general form can be expressed as Formula (1).

Maximice y = ( f 1(x), f 2(x), f 3(x), . . . , f k(x))
Subject to e(x) = (e1(x), e2(x), e3(x), . . . , em(x))

(1)

In Formula (1), c represents the target variable. They are all in the corresponding
variable space Y. k is the number of target variables. x is the decision variable. The decision
points are all in the corresponding decision space X. m represents the number of decision
variables, e represents random error. Multi-objective optimization includes objective func-
tion, decision variables, and constraints. According to the functional relationship among
the three, the solution of the optimal result can be effectively achieved. The effectiveness
and pertinence of the selection of decision variables will have a great impact on the ex-
perimental results. The transmission system parameters of hybrid vehicles include the
reduction ratio, the number of transmission gears, and the transmission ratio of each gear.
The maximum transmission ratio selected is inversely proportional to the fuel economy
of the vehicle, that is, the smaller the maximum transmission ratio is, the better the fuel
economy of the vehicle is. The change in the transmission ratio of the main reducer will
cause a change in the position of the power balance curve. Although the reduction of the
transmission ratio can improve the economy of energy consumption, it will also reduce the
power of the vehicle [19]. Figure 1 is the schematic diagram of the influence change of the
main reduction ratio.

Figure 1. Schematic diagram of vehicle power change under different main reduction ratios.

An increase in the number of transmission gears will increase the chances of the
engine working in low-fuel consumption areas, while also improving the maximum power
utilization of the engine, thereby improving both power performance and fuel economy [20].
However, the complexity of the structure makes the maintenance more difficult. Based on
the above analysis, it is considered that the rotation ratio is an important indicator that
affects the power and economy of the whole vehicle. Therefore, the optimal configuration
of the transmission system parameters is studied. The decision variable is defined as
Formula (2).

X = [ig1, ig2, ig3, . . . , ign, i0]T (2)

In Formula (2), n represents the number of transmission gears. ign(i = 1, 2, 3, . . . , n) is
the gear ratio of the transmission. i is the number of gears. i0 represents the turning ratio
of the final drive. The dynamic performance indicators of the hybrid vehicles are different
due to their focus. However, in terms of ultimate form capacity, it is shown as a grade
ability and maximum speed. The ability to achieve high speed in the shortest time is the



Processes 2023, 11, 1735 6 of 14

most important indicator to measure the dynamic characteristics of the vehicle, and also
the main concentrated reflection of the dynamic performance of the vehicle.

ne =
i0ignuai
0.377r

(3)

In Formula (3), ign represents the transmission rotation ratio. ign is the rotating arm
of the final drive. uai represents the driving speed of the car. r is the wheel radius. The
starting acceleration time can be expressed as Formula (4).

t = t0 +
∫ ui

umin

δm
3.6[Ft − (F f + Fw)]

du (4)

In Formula (4), umin represents the minimum starting speed. Ft, F f , Fw are the driving
force, rolling resistance and air resistance faced by the vehicle during acceleration. t0 is the
starting time. δ is the conversion factor of the rotational mass of the vehicle, and the value
is greater than 1. The mathematical expression is shown in Equation (5).

δ = 1 +
1
m

∑ Iw
r2 +

1
m

I f i2gi20ηT
r2 (5)

In Formula (5), Iw represents the moment of inertia of the wheel axle. I f is the flywheel
moment of inertia, ηT is the efficiency of the transmission system. The mass conversion
coefficient has a different value range due to the difference between different vehicle types.
For example, the coefficient value of a freight car is between 0.04 and 0.05. The conventional
car is between 0.03 and 0.05. At the same time, the consumption of the vehicle at constant
speed per unit of time is related to factors such as engine power, fuel density, and engine
torque. In the case of accelerated driving, the acceleration of the vehicle, the starting
speed, and the ending speed should also be considered. There are certain differences in the
influencing factors of vehicle fuel economy under different working conditions. It can be
expressed as the contents in Table 1. Its content is referenced in reference [21].

Table 1. Influencing Factors of Vehicle Fuel Economy under Different Working Conditions.

Working Conditions Functional Representation Related Variable Indicators

Constant speed driving Q1 =
Pe1ge

367.1ρg

Engine power (Pe1)
Acceleration of gravity (g)

Fuel density (ρ)

Accelerate driving Q2 =
Pe1ge∆T

102ρg Acceleration time (∆T)

Slow down Q3 = tQd No-load fuel consumption (Qd), Deceleration time (t)

Idle driving Q4 = Qdt4 Constant fuel consumption (Qd), Idle time (t4)

Multiple duty cycle Qs = ∑ Qi
S

=
Q1 + Q2 + Q3 + Q4
S1 + S2 + S3 + S4

∗ 100

Average vehicle speed, effective driving time and
theoretical distance of a single cycle, maximum vehicle
speed, maximum acceleration and deceleration. S is

the total distance traveled, i is the number of
working conditions.

At the same time, when optimizing the transmission system parameters, the power
factor of the vehicle itself should be considered. Therefore, the constraint design of the
driving force adhesion under the maximum gear is studied. The speed ratio constraints
and constraints to prevent power interruptions are also considered. The constraints can be
expressed in Table 2. Its content is referenced in Reference [22].
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Table 2. Constraints in Three Cases.

Constraint Type Functional Representation Relevant Variable Indicators/Meanings

Dynamic
constraint

Low gear maximum
factor constraint g1(x) = D∗

1max − D1max ≤ 0 Maximum power factor requirements (D∗
1max) and

factor values in low gear (D1max)

Direct gear power
factor constraint g2(x) = D∗

0max − D0max ≤ 0 Maximum power factor requirement (D∗
0max) and

factor value of direct gear (D0max)

Bonding limit g3(x) = Ttqmaxi0ig1ηT
r − Fsϕϕ ≤ 0

Driving force factor (η)
Maximum engine torque (Ttqmax)

Normal reaction force of driving wheel (Fsϕ)
Pavement adhesion coefficient

(ϕ)

Maximum
speed limit g4(x) = u∗

amax − uamax ≤ 0
Maximum speed requirement (u∗

amax)
Numerical value (uamax)

Acceleration (a)

Proportional series
distribution constraint g5(x) = ig2

ig3 − ig1
ig3 ≤ 0

The ratio of two adjacent transmissions will be
appropriately reduced with the increase of gear to
achieve the correction of the distribution scheme

Constraints to avoid
power interruption g6(x) = neM

ig2 − nemax
ig1 ≤ 0

Maximum speed of the engine in the current gear
(nemax), speed at the maximum torque of the engine

in the next gear (neM)

The optimization model of the transmission system parameters of hybrid electric
vehicles can include the transmission ratio decision variables under two types, the objective
function under the two dimensions of power and economy, and three constraints to achieve
the multi-objective optimization of the model.

3.2. Energy Consumption Optimization Control Strategy Based on NSGA-II Genetic Algorithm

A simple genetic algorithm (SGA), as a biological computing model, can realize
individual selection by searching and calculating the fitness of spatial individuals. The
population is updated by cross-mutation until the algorithm achieves the solution of the
optimal individual in the final convergence result. As a basic framework, the SGA can
provide basic support for its algorithm improvement. The mathematical definition is shown
in Formula (6).

SGA = (C, E, P0, M, Φ, Γ, Ψ, T) (6)

In Formula (6), C represents the individual coding method. E represents fitness
evaluation function. P0 is the initial population. M is the population size. Φ is the selection
operator. Γ is a cross operator. Ψ is a mutation operator. T is the termination condition. The
algorithm flow is shown in Figure 2.

Figure 2. SGA Algorithm Flow Diagram.
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The SGA algorithm encodes the problem space parameters, converts them into binary
codes, and then initializes the population. Then, the fitness function, selection operator, and
cross-mutation are used for calculation. When the number of evolution iterations reaches
the termination condition, or the individual optimal value has been found, the algorithm
operation is completed. However, when solving the multi-objective problem, there is
an interaction relationship between the sub-objectives. The SGA algorithm is difficult to
ensure the balance between the different sub-objectives by finding the optimal solution
globally. Therefore, the research selects the non-dominated sorting genetic algorithms
(NSGA), which are suitable for a high-dimensional, multi-objective solution to solve the
model to obtain the Pareto optimal solution. The NSGA-II algorithm, with an elite strategy,
can effectively reduce the complexity of computation compared to the NSGA algorithm. It
has good performance in low-dimensional optimization problems. The solution set has
good distribution, high operation efficiency, and good application in the optimization of
two-objective problems. Figure 3 shows the flow diagram of the NSGA-II algorithm.

Figure 3. Flow Diagram of NSGA-II Algorithm.

The NSGA-II algorithm realizes the distribution of the fit value with the help of a fast
and non-advantageous sorting method. That is, each individual in the group is divided into
different individuals according to their degree of non-dominance. It preliminarily realizes
the marking of the individual strengths and weaknesses of the multiple non-dominant lay-
ers with the same dominance. Then the objective function between neighboring individuals
is calculated, and the individuals are further classified by the congestion index. Combining
the above two aspects, the distribution of population fitness is completed. The difference
between the two groups can be considered from two aspects. If the two individuals are in
the same non-dominated layer, the individuals with the maximum crowding degree will
be marked optimally. On the contrary, the individuals with a lower dominant status will
be marked as dominant, thus achieving the balance of population diversity in the search
process. At the same time, the elite strategy of the NSGA-II algorithm can effectively avoid
the loss of excellent individuals in the parent generation. The calculation of the objective
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function, selection operator, and crossover mutation of the algorithm are the same as those
of the genetic algorithm.

The engine, drive motor, and power battery are the main power sources and auxiliary
systems of a hybrid electric vehicle. There is an independent driving relationship between
the two systems. There are differences in vehicle driving modes under different driving
conditions. This mode is related to vehicle speed, target required torque, SOC, and other
factors. Therefore, improving the reasonable performance of the drive torque distribution
control can effectively ensure that the mode is more stable and rapid in the switching
process. It mainly includes the division of the engine operation area and the judgment
of the battery status. The driver’s acceleration and braking operation commands are
transformed into a demand matrix. When the demand matrix value is greater than 0, the
torque relationship between the engine and motor can be expressed as Formula (7).

Tr = Te + Tm (7)

In Formula (7), Te represents the engine torque. Tm represents the motor torque. The
driving mode changes instantaneously during actual driving. Therefore, from the point
of view of the logic threshold control, the minimum working torque and the motor assist
torque of the motor are designed by the steady-state efficiency characteristic curve of the
engine. It is combined with the torque-speed characteristics of the motor to realize the
division of the engine working area. The division diagram is shown in Figure 4a.

Figure 4. Engine Operation Area and Battery SOC Division.

In Figure 4b, when the state of charge (SOC) of the battery is high, the value is within
the target torque range between curves B-C. At this time, the cooperative control of the
control strategy is used to optimize the engine operation point. When the SOC value is low,
the engine runs independently and the motor is used as a generator to charge the battery.

4. Application Evaluation of Hybrid Vehicle Energy Consumption Optimization
Strategy Based on NSGA-II Genetic Algorithm

The research analyzes the external feature-fitting data of the selected engine. The
external characteristics are analyzed through programming with MATLAB software, and
the engine torque and power are analyzed at different engine speeds. Table 3 presents the
specific data.

Table 3 shows that when the engine speed is less than 4000, the corresponding engine
matrix shows an overall upward trend. After the rotational speed exceeds 4000, the engine
matrix value shows a downward trend and the maximum value reaches 103.3 (r/min).
The relevant engine power also increases first and then decreases and the engine speed is
5600 N.m. The change in fuel consumption rate reaches the minimum value of 265.4 when
the engine speed is 4200. Then the engine efficiency before and after the improvement of
the multi-objective optimization algorithm is statistically analyzed. Figure 5 shows the
specific results.
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Table 3. Engine Torque and Power at Different Engine Speeds.

Order Number Engine Speed (r/min) Engine Torque (N.m) Engine Power (KW) Fuel Consumption Rate
(gg/(KW.h))

1 800 78.1 56.6 377.0

2 1000 77.8 58.3 346.6

3 1200 82.7 19.0 331.2

4 1600 91.2 25.6 305.8

5 2000 91.4 32.0 299.1

6 3200 101.2 38.1 290.9

7 3600 103.2 43.3 286.4

8 4200 95.5 49.3 265.4

9 4600 99.1 53.4 265.6

10 5000 103.3 55.8 300.1

11 5200 98.7 57.8 326.6

12 5600 93.6 58.6 310.9

13 6000 84.0 58.7 295.4

14 6400 78.1 56.6 285.6

15 6800 77.8 54.2 276.9

16 10,000 82.7 53.8 263.5

Figure 5. Engine Efficiency before and after Improvement of Multi-Objective Optimization Algorithm.

Figure 5 shows that before applying the multi-objective optimization algorithm, the
working efficiency of the engine changes in varying degrees with the increase in working
time. The adjustment of working points is large. After algorithm improvement, the working
points of the engine are mostly concentrated in the high-value area, which effectively
reduces the energy consumption and improves the efficiency by 13.25%.

Figure 6 shows the convergence curve changes before and after the improvement,
labeled as population points. Figure 6 shows that the convergence curve of population
evolution under the initial parameters is relatively scattered. When the acceleration time
is greater than 15 s, data loss occurs, the population converges to a small region, and the
convergence of the Pareto front is poor. The proposed algorithm is in the optimal solution
set when the number of iterations reaches 200. The individuals of each group are evenly
distributed and can better maintain the edge individuals, achieving satisfactory optimiza-
tion results. The Pareto optimal solutions obtained correspond to the corresponding points
and there is no difference between good and bad. The ADVISOR simulation system is used
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to simulate the power performance and fuel economy of the engine. It is optimized to
analyze the multi-objective optimization control performance of hybrid electric vehicles.
The dynamic characteristics of the vehicle can be fitted by optimizing the gear ratio before
and after. Figure 7 shows the relevant dynamic characteristic curve.

Figure 6. Multi-Objective Optimization Results.

Figure 7. Power Factor Change of Vehicle Gear at Different Speeds.

Figure 7 shows that the power factor displayed by the different vehicle gears at differ-
ent speeds is quite different. Specifically, after the improvement, the power factor of the
first gear increases by 6.74%, and the power factor of the third gear increases by 14.28%.
The dynamic characteristics of gears 1~3 have been greatly improved. The average value
of the power factor of the fourth gear, before and after improvement, is 0.48 and 0.45,
respectively. There is an average difference range of 2.15% when using the fourth gear
in the analysis of the vehicle’s fuel consumption performance. The slope of the fuel con-
sumption curve of the fourth gear at constant speed before the improvement is significantly
greater than after the improvement. The maximum fuel consumption reaches 6.45 L/km at
120 km/h. After optimization, the fuel consumption of the fourth gear vehicle at 40 km/h
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per 100 km decreases by 3.75%. The fuel consumption per 100 km at 80 km/h decreases by
4.92%. The fuel economy has been greatly improved. The results show that this method can
improve the power performance of low-grade vehicles and reduce the energy consumption
of high-grade vehicles. Table 4 compares the target data of hybrid electric vehicles before
and after the algorithm optimization.

Table 4. Target Data of Hybrid Electric Vehicles before and after Algorithm Optimization.

Function Index Velocity Before
Optimization

After
Optimization

Rate of
Change

Maximum speed / 161.08 159.28 −1.25

Dynamic

Acceleration time within 100 km/h / 15.91 14.55 4.41

Maximum climbing slope / 32.55 33.9 4.41

Maximum power factor direct gear / 0.082 0.097 16.23

Economy
(constant speed

fuel consumption)

Slow gear 40 km/h 3.82 3.47 2.61

60 km/h 4.61 4.3 3.07

Medium speed gear
40 km/h 3.95 3.59 2.94

60 km/h 4.83 4.52 3.32

80 km/h 4.98 4.15 −3.17

High gear

40 km/h 3.8 3.23 3.77

60 km/h 4.49 3.9 −3.54

80 km/h 5.06 4.39 −4.79

100 km/h 5.82 5.3 −1.4

Mixed fuel consumption per
hundred kilometers / 5.41 5.21 −2.65

Table 4 shows that the dynamic index and economic index change to a certain extent
after the algorithm optimization. Among them, the starting acceleration time and fuel
consumption per hundred kilometers have decreased to varying degrees after optimization.
The value of mixed fuel consumption at 100 km has changed from 5.41 to 5.21, with a
decrease of 1.4%. The maximum climbing gradient of the whole vehicle after improvement
is 33.9%. The constant speed fuel consumption of the whole vehicle in different gears
has decreased after improvement. The overall performance of the car has been improved.
The power factor of direct gear is more than 15%. Therefore, the multi-objective control
optimization strategy proposed in the study has good applicability and rationality. We
evaluated the vehicle power performance of the NSGA-II genetic algorithm proposed
in the study and analyze it from the aspects of climbing ability, acceleration status, and
energy consumption. The comparison algorithms are genetic algorithm, particle swarm
optimization (PSO), and model predictive adaptive control (MPD) based on the model’s
prediction. The results are shown in Figure 8.

The results in Figure 8 indicate that, in terms of climbing ability, the performance of
the four algorithms from large to small is: NSGA-II > MPD > PSO > GA. Among them, the
average number of climbing degrees of the PSO algorithm and the GA is small at different
driving speeds, and the overall node fluctuation is more obvious. Although the MPD
algorithm performs well and the overall curve changes smoothly, its climbing curve slope
is smaller than the NSGA-II proposed in the study. In terms of vehicle acceleration status,
the NSGA-II algorithm and MPD algorithm spend less time on acceleration improvements,
and the overall performance is relatively stable. When the time is greater than 13.2 s, the
NSGA-II algorithm still has a different amplitude of 0.64% compared to the MPD algorithm.
In terms of fuel consumption, the proportion of fuel consumption for the four algorithms
varies from high to low: GA > PSO > MPD > NSGA-II. The overall fuel consumption of the
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NSGA-II algorithm proposed in the study is relatively low, and there are fewer fluctuations
under power acceleration. The above results indicate that the NSGA-II algorithm can
achieve energy consumption optimization while retaining the power of the vehicle and
maintaining a relatively stable driving state of the power vehicle.

Figure 8. Climbing Ability, Acceleration Status, and Energy Consumption of Four Algorithms in
Automotive Power Applications.

5. Conclusions

Improving the power and fuel economy of hybrid electric vehicles is an important
measure to ensure application efficiency. Based on the original genetic algorithm, the
energy consumption optimization strategy is established with the goal of multi-objective
optimization. The optimization results show that when the engine speed is less than 4000,
the corresponding engine matrix shows an overall upward trend. After the rotational
speed exceeds 4000, the engine matrix value shows a downward trend and the maximum
value reaches 103.3 (r/min). After applying the multi-objective optimization algorithm,
the working points of the engine are mostly concentrated in the high-value area, which
effectively reduces the energy consumption and improves the efficiency by 13.25%. After
improvement, the power factor of the first gear increases by 6.74%. The power factor of
the third gear increases by 14.28%. The average value of the power factor of the fourth
gear, after improvement, is 0.48 and 0.45 respectively. There is an average difference
range of 2.15% when using the fourth gear in the analysis of vehicle fuel consumption
performance. The fuel consumption of fourth gear vehicles at 40 km/h and 80 km/h per
hundred kilometers decreases by 3.75% and 4.92%. The fuel economy has been greatly
improved. The consumption of mixed fuel decreases by 1.4%. The maximum climbing
gradient of the whole vehicle after improvement is 33.9%. The power factor of the direct
gear of the maximum power factor shows an increase of more than 15%. The above results
show that the vehicle’s energy consumption strategy, under multi-objective control, can
effectively reduce the vehicle’s energy consumption. Strengthening the stability analysis
of the engine in the actual driving process is an aspect that needs further attention in
future research.
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