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Abstract: In the Industry 4.0 environment, an ideal smart factory should be intelligent, green, and
humanized, and the logistics transportation from raw materials to final products in the factory
should be completed by smart logistics. In order to address the problems of low efficiency, poor
workstation service satisfaction, high distribution costs, and non-greening during the logistics distri-
bution processes in discrete smart manufacturing workshops are required. A mathematical model of
optimized multi-objective green logistics distribution paths in a smart manufacturing workshop has
been constructed in this study, with low costs, high efficiency, and workstation service satisfaction
taken into consideration. Then, this mathematical model was solved with an improved ant colony
optimization algorithm. A “time window span” was introduced in the basic ant colony optimization
algorithm to prioritize the services to workstations with a relatively high urgency in material demand,
with the aim of improving workstation service satisfaction. Lastly, in order to verify the effectiveness
of the model and algorithm proposed in this study, a simulation experiment has been conducted
on the workstation logistics distribution system in a smart manufacturing workshop to provide
convincing evidence for optimizing workstation logistics distribution paths in workshops of discrete
manufacturing enterprises.

Keywords: time tolerance; low carbon emission; smart manufacturing; workshop logistics distribution;
path optimization

1. Introduction

Many researchers abroad and at home have investigated the problem of path opti-
mization for logistics distribution. For example, Zhao Z X and Li X M have investigated
the path optimization problem of electric vehicles for fresh food delivery in traffic varying
with time [1]. With customer satisfaction on cold chain distribution taken into consider-
ation, Rent T, Xiang Y C, et al. constructed an optimized model with minimum carbon
emissions [2]. With customer satisfaction defined with a time-window fuzzy method,
Yin Y and Zhang H Z established a multi-objective model for optimal-path selection [3].
Hu Z A, Jia Y Z, and Li B W et al. have used customers’ feedback on service time and
good integrity as indicators to measure customer satisfaction [4]. Although the studies
mentioned above have emphasized customer satisfaction, only a few of them have analyzed
the time-sensitivity of customers, and the majority of these studies have still taken the
costs of logistics enterprises as their starting points. To address the problem of intelli-
gent production logistics systems in manufacturing enterprises, Lu Z Y, Zhuang Z L, and
Huang Z Z et al. proposed a system framework of multi-agent-based production logistics.
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With a real-time, intelligent, decision-making capability, this system can thereby resolve
the problems of order scheduling and AGV path selection in the production processes [5].
Several scholars have used multiple system simulation software, including Flexsim, Arena,
and Witness to construct models to simulate various links in production logistics and
seek their bottlenecks. By adjusting parameters to optimize the system, they wanted to
achieve the objectives of the highest efficiency, lowest costs, and optimized services in
the system [6,7]. Existing studies on path optimization of logistics distribution have ap-
plied such algorithms such as the pigeon flock-intelligent water droplet complementarily
improved optimization algorithm [8], and ant colony optimization algorithm [9], which
have many parameters and a low solution efficiency. Several studies have revealed that
the plant growth simulation algorithm has fewer parameters, and has been successfully
used in multi-level planning, combinatorial optimization, and integer programming [10].
However, although this algorithm has been successfully used in solving multi-objective
questions [11], its search is extremely random with a relatively slow convergence. Thus, it
still needs to be improved to solve multi-objective problems.

To this day, the vehicle routing problem is a popular research topic not only in China
but also abroad in the field of logistics research. The problem model is mainly studied in
terms of four main pairs of considerations: vehicle capacity, time constraint, and vehicle
class. For the vehicle path problem with capacity constraints, Ahmed (2018) proposed
an efficient particle swarm optimization algorithm based on a two-layer local search and
found that the proposed algorithm out-performs other particle swarm optimization al-
gorithms [12]. Reihaneh and Ghoniem (2018) developed a branch-and-cut algorithm for
solving [13]. Altabeeb et al. (2019) proposed a hybrid firefly algorithm to improve the
quality and convergence speed of the solution and assessed it to be significantly better
than other firefly algorithms by example [14]. Smiti et al. (2020) addressed the cumulative
capacity constrained vehicle path problem through developing a mathematical model with
the shortest arrival time to the customer as the optimization objective, and two optimization
models were proposed to solve it [15]. For the vehicle path problem with time windows,
Molina et al. (2020) proposed a hybrid ant colony algorithm with local search, and verified
experimentally that the method has a good performance [16]. Bogue et al. (2020) proposed
a column generation algorithm and a post-optimization heuristic algorithm for solving [17].
Jalilvand et al. (2021) developed a two-stage stochastic model and proposed a recursive
hedging algorithm for a vehicle path problem with a two-level time window allocation and
stochastic service times [18]. Tilk et al. (2021) designed a branch pricing cut algorithm to
solve the model [19]. Hoogeboom et al. (2021) solved the model using a branch-and-cut
approach with the objective of minimizing the travel time and the risk of violating the time
window [20]. For the problem of multiple paths for pairs of vehicles, Gholami et al. (2019)
used a genetic algorithm to solve a mixed-integer nonlinear model with cost minimization
as an objective when studying a multi-vehicle path problem considering product transfer
between vehicles in a dynamic situation [21]. Wang et al. (2019) developed a mathemat-
ical model with the optimization objective of minimizing total carbon emissions when
considering an integrated single-vehicle scheduling and multi-vehicle path problem, and
then proposed a forbidden search hybrid algorithm to solve it [22]. Behnke et al. (2021)
proposed a column generation method for solving the vehicle path problem with het-
erogeneous vehicles and heterogeneous roads [23]. Intelligent logistics is one of the five
core industries of intelligent manufacturing, and workshop logistics and distribution are
the key par. Logistics distribution in the workshop belongs to the distribution problem
of discrete task-driven automated guided vehicle AGV, whose task orders arrive in real
time, and the transportation environment has dynamic uncertainty [24]. The research of
intelligent manufacturing logistics distribution paths based on multi-objective optimization
is as follows. For example, multi-AGV obstacle avoidance path planning based on initial
time window detection [25,26], improved ant colony algorithm, and corresponding conflict
resolution strategies are designed to obtain the optimal solution of the multi-AGV global
path [27], Dijkstra algorithm and time window arrangement are used for multi-AGV path
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planning, with AGV collisions and conflicts avoided according to priority [28], production
process optimization [29], equipment scheduling optimization [30], and equipment fault
prediction and health maintenance [31], etc. Lee C et al. established a physical information
system model of an intelligent robot warehouse to predict AGV movement through work-
flow data collection and process monitoring and used a variety of strategies to implement
collaborative decisions to avoid AGV conflicts [32]. Cai et al. proposed that the digital
twin model of machine tools can be constructed through the acquisition and processing of
real-time data [33].

It is known from the research of foreign scholars that most of the current research in
this field are based on vehicle path problems that consider both the vehicle capacity and
time window, or based on vehicle path problems that consider both the vehicle capacity
and vehicle type, while relatively few studies consider vehicle capacity, service attitude,
carbon emission, time window, and vehicle type simultaneously.

The logistics distribution in the workshop belongs to the problem of discrete task-
driven multi-automated guided vehicle (AGV) distribution, whose task orders arrive in
real time, and the transportation environment has a dynamic uncertainty. According to the
actual operation status of the logistics distribution in the workshop, the logistics distribu-
tion encompasses the characteristics of the continuous and uninterrupted work of the AGV
equipment, dynamic path planning, and simultaneous operation of multiple AGVs, thus
optimizing the efficiency of logistics distribution under the premise of avoiding conflicts.
However, even disturbance events are the key to the problem, and the optimization effect
of the traditional path planning methods is still far from the demand of intelligent logistics.
The research on AGV path planning algorithms has been relatively mature, but for the
multi-AGV dynamic path planning problem, the existing methods still have the problems
of the weak handling of perturbation events, and high difficulty in obtaining the global
optimal solution. With the development of physical simulation technology, and the accu-
mulation of workshop environment data, it is therefore worthwhile to study the direction
of integrating the appropriate model, data, and algorithms to optimize the multi-AGV
path planning problem. The current workshop AGV logistics system has the following
upgrade requirements: (1) the path planning method needs to quickly plan a conflict-free
distribution path when the distribution task is issued and reduce the cost of the distribution
time; (2) the path planning method needs to be in a dynamic environment, according to the
detailed conditions of the unexpected events. The planned path of the AGVs is adjusted
in real time to avoid conflicts with a small cost of conflict adjustment time by establishing
the workshop digital twin environment model, realizing the workshop state update and
information synchronization, adjusting the path planning algorithm parameters using
the model optimization, realizing the optimization of the workshop AGV path planning
problem, realizing on-time delivery, and realizing the high satisfaction of the work station
of the delivery service; and (3) the promotion of low-carbon actions in society, logistics and
transportation equipment usually consumes a lot of energy and has a high carbon emission,
while the energy saving and emission reduction in transportation is the general trend to
reduce energy consumption and emissions in transportation. In order to respond to the
national advocacy of a “low-carbon economy”, the current internal material transportation
link of the workshop must therefore be optimized.

In summary, in an Industry 4.0 environment, an ideal smart factory is intelligent, green,
and humanized. In such a factory, the logistics transportation from the raw materials to
the final products is completed by smart logistics. In order to address the problems of low
efficiency, poor workstation service satisfaction, high distribution costs, and non-greening
during the logistics distribution processes in discrete smart manufacturing workshops,
a mathematical model of multi-objective optimized workshop green logistics distribution
paths has been constructed in this study, with low costs, high efficiency, and workstation
service satisfaction taken into consideration. Then, with an improved ant colony optimiza-
tion algorithm, the mathematical model constructed was solved. A “time window span”
was introduced in the basic ant colony optimization algorithm to prioritize the services into
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workstations with a high level of urgency in material demand to improve the workstation
service satisfaction. Finally, in order to verify the effectiveness of the model and algorithm
proposed in this study, a simulation experiment with the Solomon’s VRPTW standard
problem set used with its test instances was performed to provide convincing evidence
for optimizing the workstation logistics distribution paths in the workshops of discrete
manufacturing enterprises.

This article is structured as follows: Section 2 provides the problem description and
prerequisite assumptions. Section 3 presents the notation description and mathematical
model. Section 4 presents the algorithm design. Lastly, the paper ends with Section 5 that
concludes the research outcomes.

2. Problem Description and Prerequisite Assumptions
2.1. Problem Description

The path optimization problem of workshop logistics distribution is essentially a vehi-
cle routing problem (VRP), which was first introduced by the scholars Danting and Ramser
in 1959 [34]. From the perspective of theoretical research, the path optimization problem
of logistics distribution has been proven to be an NP-hard problem [35], with a high so-
lution complexity and a large computational amount. The initial studies on this problem
primarily focused on optimizing a single objective such as the shortest driving path, the
lowest consumption cost, and the shortest time used. With the progress of science and
technology, the focus of these studies have gradually shifted to multi-objective optimization,
with more diversified factors taken into consideration. Therefore, these studies can reflect
the actual workshop logistics distribution processes to a greater extent. On the basis of
a soft time window, Muller decomposed the multi-objective optimization problem and
solved it with a heuristic algorithm [36]. At the current stage, the studies on vehicle path
problems are primarily focused on model construction and solution algorithm selection.
In terms of model construction, these studies have primarily used optimization objectives
and constraint conditions to improve their models.

With comprehensive reference to the existing literature and analyzes of the path
optimization problem of workshop logistics distribution, this study has found that in some
workshops, distribution carts cannot deliver the required materials to the workstations
within the time windows specified by these workstations, thus incurring high-time penalty
costs, and leading to low workstation service satisfaction. Furthermore, unreasonable route
planning increases the number of carts used in the distribution process and the distribution
distance and drives up the costs of distribution as a result. On the basis of each workstation’s
demand for production materials, this study has constructed an optimization model for
multi-objective workshop logistics distribution paths with low costs, high efficiency, and
workstation service satisfaction taken into consideration. In a case where there are K
distribution carts with a capacity of Q in a discrete manufacturing workshop, there are
N workstations to which the materials should be delivered to, and the location of each
workstation and the number of materials required by each workstation are known. Thus,
the delivery of these workshop materials with the objective of achieving workstation service
satisfaction can be described as a task to use each distribution cart to deliver the required
materials from the workshop distribution center to each workstation within the time
window specified by each workstation. During the distribution process, each distribution
cart delivers its materials along with the planned route and adjusts its delivery service
order to the workstations according to the size of the time-window span specified by each
workstation to ensure that workstations with a higher level of urgency in material demand
can receive their required materials in priority. Therefore, the distribution efficiency of
workshop materials can be enhanced, and a minimum quantity of carts used in the whole
distribution process, as well as the shortest distribution distance and highest workstation
service satisfaction, can be achieved. With the materials delivered to each workstation
and distribution carts returned back to the workshop distribution center, the delivery task
would therefore be accomplished.
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2.2. Prerequisite Assumptions

In this study, the following basic assumptions have been made:

(1) Constraint on the carrying capacity. The material quantity qi required by workstation
i is known, and the sum of material quantities of workstations along each specified
delivery path of each distribution cart should not exceed the maximum carrying
capacity Q of that distribution cart.

(2) Constraints on the distribution carts. The stopping, starting, loading, and unloading
times of each distribution cart as well as its breakdown, is negligible. All distribution
carts start from the distribution center and return back to the distribution center
after completing their delivery tasks. A single distribution cart can serve multiple
workstations in one task. However, each workstation can be served by only one
distribution cart each time. During its whole distribution process, the driving speed
of each distribution cart is constant and known.

(3) Constraint on the distribution center. In each workshop, there is only one material
distribution center. The location of this distribution center is known, and its materials
are sufficient and can meet the requirements of all workstations.

(4) Constraint on the time window. For workstation i, the distribution cart must provide
its service within the time window of [ei, li]. If the distribution cart arrives earlier
than the moment of ei, then it must wait at the workstation, and if the distribution
cart arrives later than the moment of li, then its service must be delayed.

3. Notation Description and Mathematical Model
3.1. Notation Description

Many notations and variables are used in this paper. Therefore, for the convenience of
analysis, explanations, and descriptions are provided here for these notations.

G denotes a distribution network.
In n = (N, E), N represents a set of n workstation nodes (N = {n0, n1, n2, . . . , nn}), and

E represents a set of edges (E = {e1, e2, . . . , em}), indicating there are m edges linking every
two nodes.

n0: material distribution center
ni: distribution node of each workstation
dij: distance between node i and node j
qi: material quantity required by workstation i
Q: maximum carrying capacity of each distribution cart
k: a set of distribution carts
Ti: time moment for a distribution cart to arrive at workstation i
Ei: the earliest time moment when a distribution cart is allowed to arrive at workstation i,
the latest time moment when a distribution cart is allowed to arrive at workstation i
li: the upper limit of time that satisfies workstation i
ei: the lower limit of time that satisfies workstation i
ck: unit driving cost of the distribution cart
ce: unit penalty cost incurred by the early arrival of the distribution cart
cl: unit delay cost incurred by the late arrival of the distribution cart
ca: fixed start-up cost of the distribution cart
S: driving speed of the distribution cart
ρo: fuel consumption amount of the distribution cart with no loading of goods
ρ∗: fuel consumption amount of the distribution cart with full loading of goods
Q: rated loading capacity of the distribution cart
eo: CO2 emission coefficient of fuel
d: driving distance of a distribution cart
pe: carbon tax price in the carbon emissions trading market
xijk: whether distribution cart k is driving between workstation i and workstation j, with
1 indicating Yes and 0 indicating Not
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xk
ij: The load of the Kth material distribution vehicle between stations i, j is denoted by x

yik: whether workstation i is being served by distribution cart k, with 1 indicating Yes, and
0 indicating Not

3.2. Mathematical Model

A multi-objective optimization model with the shortest total path of logistics distri-
bution, a maximum workstation service satisfaction, and the least number of distribution
carts is constructed as follows:

min f1 =
N

∑
i=0

N

∑
j=0

K

∑
k=1

dijxijk (1)

min f2 =
N

∑
i=0

K

∑
k=1
{max[(ei − Ti), 0] + max[(Ti − li), 0]} (2)

min f3 =
K

∑
k=1

N

∑
j=1

x0jk (3)

min f4 =
k

∑
k=1

n

∑
i,j=0

peeoρ(x)xk
ijdij (4)

S.T.
N

∑
i=1

qiyik ≤ Q (5)

K

∑
k=1

yik = 1 (6)

N

∑
i=0

N

∑
j=0

K

∑
k=1

xijk =
N

∑
i=0

N

∑
j=0

K

∑
k=1

xjik = 1 (7)

N

∑
i=1

N

∑
j=1

xijk ≤ |N| − 1 (8)

N

∑
i=0

xijk =
N

∑
j=0

xjik = yik (9)

xijk =

{
1, k f rom position i to j
0, others

(10)

yik =

{
1, positon l served by k
0, others

(11)

In the multi-objective optimization model listed above, “i = 0” and “j = 0” represent
the starting point and the ending point of a distribution cart, respectively, and dij repre-
sents the distance between workstation i and workstation j. Equation (1) is a function
calculating the shortest total driving distance of all distribution carts. Equation (2) is
a function calculating the maximum workstation service satisfaction, also meaning the
smallest penalty cost. Equation (3) is a function calculating the smallest number of dis-
tribution carts used. Formula (4) is a function calculating the cost of carbon emissions.
Formula (5) indicates that the loading quantity of each distribution cart should not exceed
its maximum loading capacity. Formula (6) indicates that each workstation can be served
by only one distribution cart. Formula (7) indicates that all distribution carts start from
the distribution warehouse, and finally return to the distribution warehouse. Formula (8)
is to eliminate bypasses. Formula (9) indicates that the distribution cart arriving at and
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departing from a workstation should be the same cart. Moreover, decision variables are
provided with Formulas (10) and (11). The model constructed above is a multi-objective
optimization model. For the convenience of model solving, with the application of the unit
distribution cost ck, unit wait penalty cost ce, unit delay penalty cost cl, and fixed start-up
cost of distribution cart ca, in this study the model mentioned above has been transformed
into an optimization model of a single objective, that is to calculate the total cost of all
the distribution carts fulfilling their distribution tasks. The adjusted objective function is
shown as follows:

min f =
N
∑

i=0

N
∑

j=0

K
∑

k=1
ckdijxijk+

K
∑

k=1

N
∑

i=0
{cemax[(ei − Ti), 0] + clmax[(Ti − li), 0]}

+
K
∑

k=1

N
∑

j=1
cax0jk +

k
∑

k=1

n
∑

i,j=0
peeoρ(x)xk

ijdij

(12)

4. Algorithm Design

The optimization of the material distribution paths for shop stations in discrete assem-
bly manufacturing enterprises belongs to the NP-hard problem, which has a high problem
complexity. Researchers both at home and abroad have proposed various algorithms to
solve such problems, which have been mainly categorized into the two main categories
of exact algorithms and heuristic algorithms. The known exact algorithms are suitable for
solving problems of a small scale and low complexity, but for large-scale vehicle routing
problems (VRPs), due to the complexity of the solution process, exact algorithms may
not be able to obtain the optimal solution, leading scholars to propose the utilization of
heuristic algorithms. The ant colony algorithm and the forbidden search algorithm are
the more widely used types of heuristic algorithm applications. The ant colony algorithm
has more global search capability and a higher computational efficiency compared to the
forbidden search algorithm. The genetic algorithm has a strong applicability in solving
vehicle path problems, and can also solve complex VRP problems as well, and it is widely
used by both domestic and foreign scholars due to its good solution performance. Table 1
shows a summary of the advantages, disadvantages, and applicability of five common
modern heuristic algorithms. The ant colony optimization algorithm is a positive feedback
swarm intelligent optimization algorithm, which encompasses the advantages of paral-
lelism, a strong robustness, adaptability, and the ability to be easily combined with the other
algorithms. However, the convergence speed of this algorithm is relatively slow, making its
solution tend to be a solution of local optimization. In order to solve the above problems,
this paper improves on the basis of the standard genetic algorithm. These improvements
focus on two aspects: first, in order to increase the search space, the crossover operator was
designed to shuffle the paths of chromosomes randomly according to the probability after
crossover; and second, three variants were taken for the mutation operator for mutation.
With reference to the study by Tan et al. [37], this study has improved the basic ant colony
optimization algorithm to solve the model constructed above.

Table 1. Comparison of the characteristics of modern heuristics.

No. Algorithm Type Advantage Disadvantage Scope of Application

1 Ant colony algorithm
Good positive feedback

mechanism and easy association
with other algorithms.

Long search time, need to
constantly adjust variables, and

slow solution speed.

It is applicable to
multi-objective

optimization problems.

2 Simulated
annealing algorithm

High robustness, and permits
parallel processing at
multiple constraints

The accuracy of the results is not
high, and the running time is

long and inefficient.

Applicable to the
modification of existing

path problems.

3 Particle
swarm algorithm

The algorithm is simple and fast
to compute, with a strong global

search capability.

It is not applicable to discrete
problems and tends to
converge prematurely.

Solved in combination
with other algorithms.
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Table 1. Cont.

No. Algorithm Type Advantage Disadvantage Scope of Application

4 Taboo search algorithm Strong local search ability and is
prone to premature convergence.

The solution is complex,
computationally inefficient, and

dependent on the initial
solution obtained.

Solving
large-scale problems.

5 Genetic algorithm
High computational efficiency

and strong bureau
search capability.

Poor local search capability.
VRP and other complex

realities that fit
the problem.

The algorithm-solving process is shown below:

Step 1: Initialize the algorithm, and assign values to all variables, with an initial population
randomly generated.

Step 2: Perform the fitness evaluation and Pareto sorting to select the better individuals to
form a new population.

Step 3: Perform a binary tournament selection to update the population.
Step 4: Pair up the chromosomes for path crossing.
Step 5: Perform chromosome mutation (including division, integration, and partial ex-

change) by probability.
Step 6: Judge whether the chromosomes are a feasible solution. If not, then remove the

chromosomes not satisfying the condition and select again from the parent better
individuals who are placed in the population.

Step 7: Judge whether the ending condition of the algorithm has been satisfied. If yes, then
output the current optimal solution. If not, then return to Step 2.

The algorithm is described as follows:

(1) Encoding: Use the real number coding method to perform the genotype encoding,
and each gene position should correspond to its real client number. For example, if the
number of gene positions in a path is 6 (i.e., there are six clients with a client number
of 1, 3, 4, 6, 7, and 9, respectively), and the routing order is as follows: 0→ 1→ 4→ 3
→ 7→ 9→ 6→ 0, then this path has a genotype of 01437960.

(2) Fitness measurement: Use an objective function as the indicator for fitness measurement.
(3) Pareto optimal sequencing: Perform the Pareto optimal sequencing based on the

fitness of each individual, with the best individual assigned a sequencing level of
0, and the next best individual assigned a sequencing level of 1, and so on.

(4) Operator selection: Use the method of the binary tournament to select the operator.
(5) Operator cross-over: As shown in Figure 1, set a cross-over probability and generate

a random number between 0 and 1. If the random number is lower than the cross-over
probability, then use two better paths in two chromosomes randomly selected from
the population to perform a two-point cross-over. After the cross-over, remove the
redundant workstations on each chromosome. In order to increase the search space,
randomly shuffle the paths of chromosomes by probability after the cross-over.

(6) Operator mutation: Three mutation methods are used to perform the mutation [38].

(a) Partial exchange: Randomly select two paths in a same chromosome and
exchange some gene positions between these two paths to generate new paths.

(b) Combine short paths: Combine two relatively short paths in a chromosome to
form a long path.

(c) Split long path: Split any too-long path in a chromosome with gene positions
randomly selected.

Each mutation type occurs by probability, and after mutation, each path is randomly
shuffled by probability.
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5. Analysis of Algorithm Example

We used Solomon’s VRPTW standard problem set with 100 workstations as a test example
in this study. In this set, problems can be divided into six groups, termed the C1, C2, R1, R2, RC1,
and RC2 groups. Among these groups, the C group includes the problems with clustered data,
meaning that the workstations in these problems are distributed into clusters according to their
space locations or time windows. Meanwhile, the workstations in the problems of the R group
are evenly distributed in terms of spatial location. In terms of problem complexity, the problems
of the RC group lie between the problems of group C and group R, with mixed characteristics of
the problems from these two groups. In addition, for problems of the C1, R1, and RC1 groups,
the time window of the distribution warehouse is narrow, and the loading capacity of each
distribution cart is relatively low. Therefore, in these problems, each distribution cart can only
serve a small number of workstations. For the problems of the three other groups, the time
window of the distribution center is wide, and the loading capacity of each distribution cart is
also high. Therefore, in these problems, a distribution cart can serve multiple workstations. In
the experiment, we used a PC with a P4-1.7G CPU and 256 M memory. The operating system
and development software used were WinXP and VC++6.0, respectively. The parameters were
set as follows: the population size N was set as 100, the maximum number of evolutional
generations Maxgen was set as a number ranging from 100 to 10,000 according to different
examples, the cross-over rate Pc was set as 0.8, and the mutation rate Pm was set as 0.08,
respectively. The model-related parameters are shown in Table 2. This paper adopts a carbon
tax system to link the carbon emissions with their carbon emission costs, and thus measure the
carbon emission costs and assumes that the tax rate of carbon tax is relatively stable, but basically
determined over a period of time. These specific values were obtained from the special report
“Designing the Structure of China’s Carbon Tax System”, jointly published by the National
Development and Reform Commission and the Ministry of Finance. The values of the CO2
emission factors for the fuels were obtained from the Chinese Academy of Engineering.
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Table 2. Model parameters.

Parameter Symbols Parameter Name Parameter Values

Q Maximum load capacity of material distribution vehicles 100 kg
Vo Average travel rate of material distribution vehicles 50 m/min
Fk Fixed cost per material distribution vehicle RMB 100/Vehicle
Cp Transport costs per unit distance traveled by vehicle RMB 2/km
µ1 Waiting costs for early arrival RMB 20/h
µ2 Delay costs for late arrivals RMB 60/h
eo Carbon emissions per unit of fuel consumption 2.8 kg/L
λ Carbon emissions per unit of cargo transported per unit of distance 0.0075 g/kg·km
ρo Fuel consumption per unit distance when the vehicle is unladen 0.122 L/km
ρ∗ Fuel consumption per unit distance when the vehicle is fully loaded 0.388 L/km
pe Carbon tax RMB 2/kg

Figure 2 shows the diagram of the cart paths of the test example C201 solved with
the algorithm proposed in this study. In this example, the workstations were distributed
into clusters, the distribution center had wide time window, and each distribution cart was
able to serve multiple workstations. It was solved with a maximum evolutional generation
number of 1000 and a computational running time of 28.5 s. The solution obtained in this
study was found to be consistent with the known optimal solution obtained in foreign
studies [39]. Meanwhile, this solution satisfied the conditions for the smallest number
and shortest driving distance of distribution carts. Figure 3 shows the diagram of the cart
paths of test example R103. In this example, the workstations were evenly distributed, the
distribution center had a narrow time window, and each distribution cart was only able
to serve a few workstations. It should be noted that it was much more difficult to solve
the problems of group R1 than the problems of group C. Thus, the test example R103 was
solved with a maximum evolutional generation number of 10,000 and a computational
running time of 268.6 s. Compared with the existing optimal solution, the solution obtained
in this study achieved a shorter total driving distance. A comparison between the path of
test example R103 solved with the algorithm proposed in this study, and the path of the
known optimal solution is shown in Table 3.
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Table 3. Comparison between the paths of the specific solution of the R103 problem and the known
optimal solution.

Item Known Optimal Solution in the
Existing Literature

Optimal Solution Obtained with the
Algorithm Proposed in This Study

Total driving distance 1292.68 1268.34
Number of carts 13 13
Cart fixed cost 1300 1300
Transportation cost 2585.36 2536.68
Penalty cost 0 0
Carbon emission cost 7070.96 5524.89
Total cost 10,956.32 9361.57
Loading rate 81% 86%
Solution path 0 60 45 83 5 99 6 0 0 50 33 30 51 9 71 35 81 0

0 71 65 78 34 35 81 77 28 0 0 65 34 78 3 77 28 0
0 2 22 75 56 4 25 54 0 0 96 99 6 0
0 7 19 11 8 46 47 48 82 18 89 0 0 87 13 60 45 46 8 83 890
0 94 96 95 97 87 13 0 0 27 69 88 10 90 70 31 0
0 27 69 30 9 66 20 51 1 0 0 76 79 29 24 68 80 12 0
0 42 43 15 57 41 74 72 73 21 58 0 36 64 49 19 47 48 82 18 0
0 40 53 12 68 80 0 0 94 95 97 14 38 86 17 61 93 0
0 50 33 76 79 10 31 0 0 40 53 26 39 23 55 4 25 540
0 36 64 49 63 90 32 70 0 0 42 43 15 41 57 2 58 67 0
0 92 98 14 44 38 86 16 61 85 91 100 37 0 0 92 37 98 91 44 16 84 5 85 100 59 0
0 26 39 23 67 55 24 29 3 0 0 52 7 62 11 63 32 66 20 1 0
0 52 62 88 84 17 93 59 0 0 73 22 75 56 74 72 21 0

With the algorithm proposed in this paper, we have solved the typical problems among
all the six types of Solomon’s problems. A comparison between the solutions obtained in
this study on these typical problems and the existing optimal solutions proposed in foreign
studies, as well as the solutions provided by other scholars in China [40], is shown in Table 4.
Among these solutions, the smallest cart quantity solution and the shortest driving distance
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solution are non-dominant solutions that were obtained with the algorithm proposed in
this study. It should be noted that we have obtained other non-dominant solutions when
solving several of the other test examples, with the cart quantities of these non-dominant
solutions falling between the cart quantities of the smallest cart quantity solution and the
shortest driving distance solution. Due to typographical reasons, these results have not
been listed in the table at this time. In addition, the deviation items listed in the table refer
to the deviations between the shortest driving distance solution obtained in this study and
the existing optimal solution in terms of the driving distance. The “-” symbol in the table
indicates that no result is available on the corresponding test in any of the literature cited.
The underlined data are the data of results that were consistent with or are better than the
known optimal solution.

Table 4. Comparison of solution results on typical problems among all six types of problems.

Name of
Typical Problem

Results of the
Literature [39]

(Number of
Carts/Distance)

Results of the
Literature [40]

(Number of
Carts/Distance)

Smallest Cart
Quantity Solution

(Number of
Carts/Distance)

Shortest Driving
Distance Solution

(Number of
Carts/Distance)

Deviation

C101 10/828.94 - 10/828.94 10/828.94 0

C201 3/591.56 - 3/591.56 3/591.56 0

R101 19/1645.79 21/1814.60 18/1699.52 21/1695.32 3.01%

R103 13/1292.68 16/1389.71 13/1268.34 15/1268.34 −1.88%

R201 4/1252.37 15/1371.91 6/1359.47 7/1244.47 −0.63%

R202 13/1191.70 13/1430.62 13/1168.52 7/1121.09 −5.93%

RC101 14/1696.94 20/1826.68 17/1765.71 17/1765.71 4.05%

RC201 4/1406.91 - 3/1336.23 5/1322.17 −6.02%

RC205 4/1297.19 13/1582.64 3/1430.26 4/1351.28 4.17%

These experimental results show that there are minor deviations existing between
the solution obtained with the algorithm proposed in this study and the known optimal
solution, and the solution obtained in this study was found to be significantly better than
the results presented in the literature [18]. Therefore, with the algorithm proposed in
this study, the path problem of distribution carts with time windows can effectively be
resolved. Notably, this algorithm was found to be effective in solving some cluster (group
C) problems (with obtained solutions being found to be consistent with the known optimal
solutions) and problems with the wide time windows of the distribution centers (groups
R2 and RC2) (with the total driving distances of the obtained solutions being shorter than
those distances of the known optimal solutions). The unique advantage of this study is
that the multi-objective optimization problem of workshop logistics distribution with time
tolerance has been described as a MOP problem. Therefore, each calculation can generate
two (or more than two) non-dominant solutions, which can be used by decision-makers
with a requirement of the smallest cart quantity or the shortest driving distance. For
instance, in the test example RC201, in between the smallest cart quantity solution and
the shortest driving distance solution listed in the table, there is one more non-dominant
solution with a cart quantity of seven and a total driving distance of 1331.02. Compared
with the known optimal solution, these solutions have used more distribution carts but
decreased the total driving distance to a large extent. For those cases with the total driving
distance (corresponding to which are travel times, fuel consumption, and transfer rates)
as a priority objective, these non-dominant solutions are valuable. In contrast, under the
traditional single-objective method, each calculation can only yield one solution, which is
not flexible for a decision-maker to make a choice.
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6. Conclusions

In order to address the problems of low efficiency, poor workstation service satisfac-
tion, high distribution costs, and non-greening during the logistics distribution processes
in discrete smart manufacturing workshops, a mathematical model of multi-objective opti-
mized workshop green logistics distribution paths has been constructed in this study, with
low costs, a high efficiency, and workstation service satisfaction taken into consideration.
Then, this mathematical model was solved with an improved ant colony optimization
algorithm. A “time window span” was introduced in the basic ant colony optimization
algorithm to prioritize the services to workstations with a relatively high level of urgency in
material demand, with the aim of improving workstation service satisfaction. The results of
the algorithm examples show that the multi-objective optimization model of smart manu-
facturing workshop logistics distribution constructed in this study based on time tolerance
and the introduction of a “time window span” in the basic ant colony algorithm are both
flexible and extensible for solving the logistics distribution problem. Thus, the method
proposed in this study is effective, and can provide a good reference for decision-makers.

In many industries and fields, intelligent manufacturing technology and related in-
dustries are already very mature, can completely replace the traditional equipment manu-
facturing industry, and also completely realize zero labor and fully automatic production
modes. At the same time, the development of intelligent manufacturing will have a signifi-
cant impact on the readjustment of the manufacturing structure model, and even develop
a whole new manufacturing model, which will also bring about favorable conditions such
as lower production costs, increased production efficiencies, shorter production cycles, and
higher production capacities, and can also enable production to achieve further personal-
ization, customization, and innovation. In addition, this flexible and fast production mode
can also bring more convenience to the downstream operation and sales and can make
more rapid responses to the changes occurring in the market. The rapid development of
smart manufacturing technologies and models is both significant and challenging for the
transformation and upgrading of China’s traditional manufacturing industry.

Nowadays, green and low carbon have become the basic guiding principles and impor-
tant criteria for China’s economic, social, and ecological development and transformation,
among which, for the manufacturing industry is to vigorously develop green manufac-
turing and intelligent manufacturing. China’s manufacturing industry is one of the major
carbon emitting regions and countries of the world, and therefore, the global manufacturing
industry, especially China’s manufacturing industry, needs to contribute to the “double
carbon” goal through technological innovation and creativity. Green manufacturing mainly
aims to reduce energy consumption, while smart manufacturing aims to improve quality
and efficiency. The two promote each other and are inseparable, and both are inevitable
choices for the high-end development of Chinese manufacturing. Through the concept
of “green development”, to guide China’s traditional equipment manufacturing indus-
try to green manufacturing and intelligent manufacturing, coordinated innovation and
development, focusing on reducing emissions, reducing energy consumption, achieving
the goal of carbon peak, and carbon neutral environmental protection are all required.
Most of China’s traditional manufacturing enterprises in the production process cause
a large loss of resources, and at the same time produce a large amount of sewage, and with
the traditionally high energy consumption, the high pollution equipment manufacturing
production model has not met the general interests of China’s long-term sustainable de-
velopment, which encompasses the urgent need for more scientific assessment methods
so that more individuals can follow the environmental regulations used to build a new
manufacturing industry environmental protection development concept and sustainable
development system.

The problem model constructed in this paper is based on the traditional vehicle path
problem model, taking into account the impact of vehicle type, time constraints, carbon
emissions, and the timeliness of distribution on the traditional vehicle path problem model-
ing, in terms of both the depth and difficulty of the study. At the theoretical level, this paper
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broadens the research theories and methods in the field of vehicle path problems. At the
practical level, it provides some reference for the logistics enterprises to optimize distribu-
tion routes, reduce carbon emissions, etc., so as to achieve the goal of effectively reducing
the logistical costs. This paper compares the case algorithm in the existing literature of
intelligent manufacturing enterprises with the algorithm established in this paper for distri-
bution path optimization, which can solve the practical problems of the related companies
to some extent, but there are still many shortcomings, and the following problems need to
be improved in future research. The model established in this paper only considers the case
of one distribution center, while in practice, enterprises often establish multiple distribution
centers in order to speed up both their efficiency and save costs, and the problem model of
multiple distribution centers should be established in the future. Furthermore, this paper
considers the static vehicle path problem, and further considerations need be given to the
influence of dynamic factors, such as the traffic road conditions during vehicle travel, in
the future. The discussion of the model in this paper is only for the vehicle path problem
with fuzzy time windows, while in real life, the customer demand time is usually mixed
time windows. In the distribution process, the customers’ demand for their goods as well
as the types of goods are different, and enterprises attach different levels of importance to
them. In this paper, only the weight of goods was considered, while the influence of the
volume of goods was not considered, and these issues need to be paid further attention to
in future models.
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