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Abstract: The remote sensing ecological index (RSEI) has been widely used in the rapid monitoring
and evaluation of the regional ecological environment; however, the research on the main factors that
cause changes in RSEI and the impact of human activities in the mining area on RSEI is not often
explored. To this end, this paper selected the Landsat (TM/OLI) series of remote sensing images from
1986 to 2022; extracted the four important indicators of the normalized difference vegetation index
(NDVI), the wetness component of the tasseled cap transformation (WET), normalized difference
built-up and soil index (NDBSI), and land surface temperature (LST); calculated the remote sensing
ecological index (RSEI) based on the principal component analysis method; monitored and evaluated
the ecological environment changes in the Shendong Mining Area for a period of 36 years; and
analyzed the driving forces that cause these ecological environment changes. The results show the
following: (1) The ecological status of the study area has shown an overall upward trend during
the 1986–2022 period. (2) From 1986 to 2022, the area of RSEI with a grade of 0.4–0.6 increased
by 1142.74 km2, that with a grade of 0.6–0.8 increased by 124.09 km2, and that with a grade of
0.8–1.0 increased by 0.73 km2. (3) In the past 36 years, the proportion of RSEI with a positive grade
difference was 97.52%, and the proportion of regions with a negative grade difference was 6.20%.
(4) Rainfall is the main factor that causes changes in the regional ecological environment. By analyzing
the main driving factors of ecological environment change and the relationship between human
activities and RSEI, reference can be provided for the formulation of environmental protection policies
and environmental planning in mining areas.

Keywords: coal mining area; ecological environment change; remote sensing ecological index

1. Introduction

Coal resources play an important role in social and economic development. In 2021,
China’s raw coal output was 4.13 billion tons, and coal consumption accounted for 56% of
China’s total primary energy source [1], which shows that coal resources are an important
source of basic energy in China. The mining of coal resources causes a series of ecological
environmental problems [2,3], such as land occupation [4], soil quality decline [5,6], land
subsidence [7], water and soil loss [8], and land damage [9]. Therefore, the monitoring and
evaluation of the ecological environment in mining areas is of great significance.

Remote sensing technology has been widely used in the field of the ecological envi-
ronment because of its advantages, including a wide monitoring range, fast imaging speed,
short revisit period, and low data cost [10], providing an effective means for the monitor-
ing and evaluation of the ecological environment [11,12]. Domestic and foreign scholars

Processes 2023, 11, 1721. https://doi.org/10.3390/pr11061721 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11061721
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr11061721
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11061721?type=check_update&version=3


Processes 2023, 11, 1721 2 of 22

have conducted considerable work in the monitoring and evaluation of the ecological
environment of mining areas using remote sensing technology. Among them, the remote
sensing ecological index (RSEI) can integrate multiple index factors, such as the normalized
difference vegetation index (NDVI), wetness component of the tasseled cap transformation
(WET), normalized difference built-up and soil index (NDBSI), and land surface tempera-
ture (LST), and, being entirely based on remote sensing information with strong objectivity
and stability, it has been widely used in the rapid monitoring and evaluation of the regional
ecological environment [13,14].

With the wide application of RSEI, its application scope is also changing, from, at first,
being only applicable to cities to its use in highways, mountain ecosystems, and scenic
spots. Using Landsat TM/OLI as their data source, Sawut et al. calculated the remote
sensing ecological index of Fukang City, Xinjiang, from 2000 to 2016. They monitored and
evaluated the changes in the quality of the ecological environment of their study area in
the previous 16 years and analyzed the reasons for the quality decline in the ecological
environment [15]. Based on MODIS series data, Yang et al. extracted the five indicators of
vegetation coverage, leaf area index, total primary productivity, and land surface tempera-
ture and humidity, constructed a comprehensive remote sensing ecological index using the
principal component analysis method, and conducted a macrocomprehensive analysis of
the changes in the ecological status of the Lalin Highway from 2012 to 2019 [16]. Shi et al.
used remote sensing image data in the same months of 2000 and 2017 to calculate the remote
sensing ecological index and analyze the ecological vulnerability of the Tianchi Scenic Spot
in Xinjiang using the geographic detector model to detect the impact factors of ecological
vulnerability [17]. Li et al. used Landsat data based on the remote sensing ecological index
combined with DEM data, meteorological data, and vegetation type spatial distribution
data to study and analyze the ecological status of the Helan Mountain ecosystem. They
revealed the relationship between the ecological quality change in Helan Mountain and the
climate and terrain in the 1989–2017 period [18].

It should be noted that the monitoring of the ecological environment quality of
mining areas abroad pays more attention to a certain element in the ecological environ-
ment system, such as soil physical and chemical properties and water resources [19–21],
biodiversity [22,23], land remediation [24,25], etc., and most of the research on the appli-
cation of the RSEI to the monitoring of ecological environment quality in mining areas is
concentrated in China. Wu studied the ecological status, spatiotemporal change character-
istics, and driving factors of the Yongding Mining Area in Fujian Province from 2002 to
2014 using the remote sensing ecological index. The research results show that the RSEI is
applicable to the ecological environment monitoring of a coal mining area [26]. Wu used the
RSEI to monitor and analyze the ecological environment change in the Mattaihao Coal Mine
in Ordos, Inner Mongolia, from 2016 to 2019 [27]. Fan made a comprehensive evaluation of
the ecological environment of the Shenfu Mining Area from 2000 to 2016 by building an
improved remote sensing ecological index, that is, adding the net primary productivity in-
dex of vegetation on the basis of the original remote sensing ecological index [28]. Through
summary and analysis, we found that the current research on the eco-environmental status
of the mining area based on the RSEI mainly focuses on the long-term monitoring and
result analysis of the RSEI, while the research on the main factors that cause changes in
the RSEI and the impact of human activities in the mining area on the RSEI is not often
explored. As an important coal production base in China, the Shendong Mining Area is
also an important ecologically fragile zone in China and a national key monitoring area
and key control area for water and soil loss. The region is dry and rainy, with monotonous
native vegetation types and low coverage [29], and human activities are one of the main
driving factors that cause changes in the ecological environment. Therefore, monitoring
and evaluating the ecological environment of the Shendong Mining Area and exploring
the main controlling factors that cause changes in the ecological environment are of great
significance for the formulation of environmental protection policies and environmental
planning in the mining area.
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Therefore, this paper takes the Shendong Mining Area in western China, which is
ecologically fragile, as its study area and calculates the NDVI, WET, NDBSI, and LST based
on Landsat TM/OLI data. On this basis, the principal component analysis method was used
to construct a remote sensing ecological index to monitor and evaluate the spatiotemporal
changes in the ecological environment in the Shendong Mining Area from 1986 to 2022.
We analyze the main driving factors of changes in the ecological environment in different
periods in the study area and the relationship between human activities and the RSEI,
with a view to improving the environmental sustainability of coal production. The rest
of this paper is organized as follows: The study area introduces the Shendong Mining
Area. Data sources, data processes, and research methods are described in the Methods
(Section 3). The temporal and spatial visualization of each index and analysis of the RSEI
are presented in the Results and Analysis (Section 4). The Discussion (Section 5) presents
the analysis of driving forces for changes in ecological environment quality in coal mining
areas, limitations, and future work.

2. Study Area

The Shendong Mining Area is located at the junction of the southeast of Ordos City,
Inner Mongolia Autonomous Region, and the north of Yulin City, Shanxi Province, with the
geographical coordinates 39◦08′–39◦58′ N and 109◦79′–110◦41′ E (Figure 1). The mining
area is located in the transitional zone between the southeast edge of the Mu Us Desert and
the northern end of the Loess Plateau in the northwest region. It is high in the northwest
and low in the southeast, belonging to the typical arid and semiarid continental monsoon
climate. The study area is dry in spring and winter and rainy in summer, with an annual
evaporation rate that is 6–7 times that of the city’s annual rainfall. The study area is
dominated by wind–sand landforms, and the soil is dominated by loess and wind–sand.
The soil is poor, low in organic matter content, extremely prone to desertification, and weak
in corrosion resistance. The types of native vegetation on the surface are monotonous, with
drought-resistant and cold-resistant desert plants and xerophytes as the main species. As
a typical arid and semiarid desertification mining area in China, the Shendong Mining
Area is characterized by weak ecological stability, high environmental sensitivity, and poor
overall plasticity.

Figure 1. Geographical location of the study area.
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However, the Shendong Mining Area is China’s largest coal production base and
a core production area for energy security [30]. The entire mining area mainly adopts
underground mining methods. The development process has gone through four stages.
From 1985 to 1990, it was the initial stage of development; from 1990 to 1999, the mining
area adjustment plan was in the stage of exploration and improvement; from 2000 to 2008,
the mining area integrated small coal mines and entered the stage of integrated innovation
and development, building China’s first 100 million ton coal production base; and from
2009 to 2022, the mining area entered a stage of rapid development and leapfrogging,
with 13 mines built and production exceeding 200 million tons [31,32]. At present, the
region has formed an integrated development model that integrates coal production,
processing, transportation, coal chemical industry, thermal power, and other industries.
The regional economy is developing rapidly, and the population and urban scale are
gradually expanding [33].

3. Methods
3.1. Data Sources and Data Processes

Table 1 shows the data sources used in this study. The remote sensing images are
from Landsat 5 ETM T1_ L2 and Landsat 8 OLI/TIRS_T1. For the L2 image, the remote
sensing image from a month with less than 5% cloud cover, good image quality, and good
vegetation growth was selected from the Google Earth Engine platform. The image set
underwent radiation correction and atmospheric correction. At the same time, the thermal
infrared bands in the two data sets were resampled to a resolution of 30 m using the
triple convolution method, so the image could be used directly after downloading. The
meteorological data were obtained from the Resource and Environmental Science and Data
Center of the Chinese Academy of Sciences (https://www.resdc.cn/, it was accessed on
20 July 2022). The monthly rainfall and temperature data from 1986 to 2015 were collected,
and the spatial data of rainfall and temperature in the study area were obtained through the
nearest-neighbor interpolation tool on the ArcGIS 10.2. The vector data of the study area
were obtained from the Resource and Environmental Science Data Center of the Chinese
Academy of Sciences. Finally, all data were rasterized to 30 m × 30 m using the unified
WGS1984 ellipsoid coordinates and WGS 1984 49 N projection.

Table 1. Data Sources and Data Processing.

Index Calculation Method and Description Source

1986–2011 Landsat 5 ETM Remote sensing image data Google Earth Engine (http://cdc.cma.gov.cn,
it was accessed on 16 May 2022)

2015–2020 Landsat 8 OLI/TIRS Remote sensing image data Google Earth Engine (http://cdc.cma.gov.cn,
it was accessed on 16 May 2022)

Rainfall and temperature data Nearest-neighbor interpolation Geospatial data cloud (http://www.gscloud.cn/,
it was accessed on 20 July 2022)

The raw coal production Statistical data Ordos Statistical Yearbook
Yulin Statistical Yearbook

3.2. Research Methods
3.2.1. Assessment Factor Selection

The four remote sensing indexes of NDVI, WET, NDBSI, and LST can be directly
obtained from remote sensing images according to different band combinations. NDBSI was
generated by combining the building index IBI and the soil index SI [34]. The calculation
formula and reference parameters of these four indicators are shown in Figure 2 [35].

In the above calculation formula, B, G, R, NIR, SWIR1, and SWIR2 represent the
reflectivity of bands 1, 2, 3, 4, 5, and 7 of the TM data and bands 1, 3, 4, 5, 6, and 7 of the
OLI data. c is the corresponding coefficient for each band when calculating humidity. For
Landsat 5 TM images, c1 = 0.0315, c2 = 0.2021, c3 = 0.3102, c4 = 0.1594, c5 = −0.6806, and

https://www.resdc.cn/
http://cdc.cma.gov.cn
http://cdc.cma.gov.cn
http://www.gscloud.cn/
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c7 = −0.6109. For Landsat8 OLI images, c1 = 0.1511, c3 = 0.1793, c4 = 0.3283, c5 = 0.3407,
c6 = −0.7117, and c7 = −0.4559 [34,36].
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In the calculation of the surface temperature, L6 and L10 are the radiation values of
the TM thermal infrared 6 and 10 bands at the sensor; T is the temperature value at the
sensor; DN is pixel gray value; Gain and Bias are the gain and bias values of the 6 and
10 bands, respectively; and k1 and k2 are the calibration parameters, which were obtained
from the user manual [37,38].

For TM, k1 = 607.76 W/
(
m2 · s · r · µm

)
, and k2 = 1260.56 K. For the TIRS 10 band,

k1 = 774.89 W/
(
m2 · s · r · µm

)
, and k2 = 1321.08 K. The calculated temperature T can be

converted into the surface temperature LST through the correction of the specific emis-
sivity; λ is the central wavelength of the thermal infrared band; ρ = 1.44 × 10−2 m·K; ε is
the specific emissivity of the ground object; and the surface temperature can be directly
obtained from the Google Earth Engine [39].

3.2.2. RSEI Model

The remote sensing ecological index not only appears in the form of a single indicator
but also integrates the information of the above-mentioned four indicators. The integration
of the index weights through a principal component transformation can effectively avoid
the influence of human factors and only rely on the nature of the data itself. This study
conducted a principal component analysis on four different indexes on the GEE platform.
Because the dimensions of the four indexes are inconsistent, if PCA is directly calculated,
the weight of each index will be unbalanced. Therefore, before the principal component
analysis, we normalized the four indexes, unified their dimensions to 0~1, and then
performed the principal component transformation. The common normalization formula is

NIi = (Ii − Imin)/(Imax − Imin) (1)

where NIi is a normalized index value, Ii is the value of the index in pixel i, Imax is the
maximum value of the index, and Imin is the minimum value of the index [34]. After the
four indicators are normalized, a new image composed of four index bands is synthesized,
and then the principal component analysis is performed. The first principal component
(PC1) is further processed to generate the remote sensing ecological index (RSEI). The larger
the value, the better the ecological quality. PC1 can be further subtracted from 1 to obtain
the initial ecological index RSEI0.

RSEI0 = 1−
∫
(NDVI, WET, NDBSI, LST) (2)
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In order to facilitate the measurement and comparison of indicators, the RSEI can also
be normalized:

RSEI = (RSEI0 − RSEI0−min)/(RSEI0−max − RSEI0−min) (3)

The RSEI is the constructed remote sensing ecological index, with a value range
of [0~1]. In order to specifically reflect the characteristics of changes in the ecological
environment in the study area, the ecological index of each year was further divided into
five grades with an interval of 0.2: poor (0.0~0.2), poor (0.2~0.4), medium (0.4~0.6), good
(0.6~0.8), and excellent (0.8~1.0) [40,41].

4. Results and Analysis
4.1. Temporal and Spatial Visualization of Each Index

The four calculated indicators (NDVI, WET, NDBSI, and LST) can be clearly observed
through spatial visualization (as shown in Figures 3–10), so as to further analyze the spatial
and temporal differences in the study area.
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4.1.1. NDVI

It can be observed in Figure 3 that the NDVI of the study area was concentrated at
0.40–0.60 in the 1986–2000 period. From 2005 to 2022, the NDVI values in 2011 and 2022
were lower, with a concentrated distribution between 0.40 and 0.60. In other years, the
NDVI value was generally good, with a concentrated distribution between 0.60 and 0.80.
At the same time, areas with large NDVI changes were concentrated on both sides of the
river, located in the northeast, southwest, and northwest of the study area.

In order to more clearly understand the change trend of NDVI in different periods,
the average NDVI in each year and the proportion of NDVI area at different levels were
calculated (Figure 4). It can be observed in Figure 4 that the NDVI of the study area showed
a fluctuating upward trend from 1986 to 2022, with a large increase in the 1986–2005 period,
while the NDVI of the study area showed a gentle upward trend after 2005. The proportion
is consistent with the change trend of the mean value of NDVI. In 2005 and 2015, NDVI
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had a high level, with the largest grade area proportion of 0.6–0.8, accounting for 95.54%
and 79.62%, respectively. In the 1986–2000 period, 2011, and 2022, the largest NDVI grade
area was 0.4–0.6, and the area ratios were 89.25%, 76.67%, 93.48%, 80.06%, 82.96%, and
80.32%, respectively.

4.1.2. WET

It can be observed in Figure 5 that the humidity in the study area gradually improved
between 1986 and 2022. In 1986, the humidity in the study area was generally distributed
between 0.2–0.4 and 0.4–0.6, and an area of 0.8–1.0 gradually increased with time. The
increased area was mainly distributed to the west and south of the study area. From 2015
to 2022, the overall distribution of humidity in the study area was between 0.8 and 1.0.

In order to understand the change trend of humidity in different periods more clearly,
the mean value of humidity in each year and the area proportion of humidity at different
levels were calculated (Figure 6). It can be observed in Figure 6 that the humidity in the
study area showed a gradual increase from 1986 to 2022. In 1986, the humidity was the
lowest, mainly in the range of 0.2–0.6, accounting for 55.71% of the area. In 1990, the
humidity increased, concentrated in the range of 0.6–0.8, and the area of this interval
accounted for 92.21%. In 1995, humidity continued to increase, with the proportion of
0.8–1.0 increasing by 28%. In 2000, the proportion of 0.8–1.0 increased by 18% compared
with 1995. The humidity decreased in 2005, but the change was not obvious, and the
proportion of 0.8–1.0 decreased by 4%. The humidity continued to decrease in 2011, the
proportion of 0.6–0.8 increased by 37.94%, and the proportion of 0.8–1.0 decreased by
42.14%. From 2015 to 2022, the humidity in the study area increased significantly, and the
proportion of 0.8–1.0 was over 95%, close to 100%.

4.1.3. NDBSI

It can be seen from Figure 7 that the dryness of the study area showed a downward
trend from 1986 to 2022. In 1986, the dryness grade of the study area was the highest, which
was concentrated between 0.8–1.0, and then gradually decreased. In 1990, 1995, and 2000,
the dryness of the study area was concentrated between 0.6–0.8, and in 2005, the dryness
was concentrated between 0.2–0.4. Compared with 2005, the dryness in 2011 and 2015
increased; the dryness in the study area was concentrated between 0.6–0.8, accounting for
84.45% and 95.71%, respectively.

In order to more clearly understand the change trend of dryness in different periods,
the mean value of dryness in each year and the proportion of dryness area in different
grades were calculated (Figure 8). It can be seen from Figure 8 that the change trend of
dryness in the study area is declining, and the turning points is 2005. In 1986, the dryness
was mainly between 0.8–1.0, and the area of this interval accounted for 69.96%; in 1990,
1995, and 2000, dryness was mainly distributed in the range of 0.6–0.8, and the proportions
of area in this range were 87.09%, 73.59%, and 79.95% in each year. From 1995 to 2000,
the proportion of dryness grade 0.4–0.6 decreased; the dryness grade in 2005 and 2022 is
mainly between 0.2–0.4, accounting for more than 98%. The dryness ratio was concentrated
between 0.6–0.8 in 2011 and 2015. It can be seen that the change in dryness in the study
area is basically opposite to that of humidity.

4.1.4. LST

It can be observed in Figure 9 that the change in surface temperature in the 1986–2022
period was uneven. The surface temperature gradually decreased in the 1986–1995 period
and increased in 2000, finally decreasing in the 2005–2022 period. As a whole, the surface
temperature in 1986, 2000, and 2005 was higher, and that in 1995, 2011, 2015, and 2022 was
lower, as well as being lower in the river area of the study area.

In order to more clearly understand the change trend of dryness in the different
periods, the mean value of dryness in each year and the area and proportion of dryness in
different grades were calculated (Figure 10). It can be observed in Figure 10 that the trend of
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heat change in the study area from 1986 to 2022 is downward–upward–downward–upward.
In 1986, the surface temperature was concentrated between 0.6 and 0.8 and, in 1990, it was
concentrated between 0.4 and 0.8; therefore, the surface temperature was on the high side.
In 1995, the surface temperature was concentrated in the range of 0.4–0.6 and, in 2000, in
the range of 0.6–1.0, again being on the high side. The surface temperature was mainly
distributed in the ranges of 0.6–0.8 in 2005 and 0.4–0.6 in the 2011–2022 period, accounting
for 47.69%, 76.02%, and 71.97%. From 1986 to 2022, the heat intensity in the study area
changed slightly, except for that in 2000 and 2005.

4.2. Analysis of RSEI
4.2.1. Results of the PCA of Each Index and the RSEI

The principal component analysis results of the RSEI in the Shendong Mining Area
from 1986 to 2022 are shown in Table 2. It can be observed in Table 2 that the contribution
rates of the characteristic values of the first principal component PC1 from 1986 to 2022
were 76.90%, 71.10%, 64.99%, 72.08%, 70.16%, 62.72%, 63.55%, and 65.18%, which shows
that PC1 concentrated most of the characteristics of the four indicators. In 1995, 2011,
2015, and 2022, in PC1, the principal component loads of NDVI and WET were positive,
indicating that they played a positive role in the ecological environment, while the principal
component loads of LST and NDBSI were negative, indicating that they had a negative
impact on the ecological environment, which is consistent with the real-life situation. In the
1986–1990 and 2000–2005 periods, the principal component correspondence coefficient was
the opposite to those in 1995, 2011, 2015, and 2022. Therefore, the “1-PC1” operation was
required. The results show that NDVI and WET were both positive, while NDBSI and LST
were both negative. At the same time, it can also be found that although the contribution
rate of NDVI was positive, the contribution rate was low, while the contribution rate of
meteorological factors, such as WET, NDBSI, and LST, was high. Therefore, the main factor
to evaluate whether the ecological environment improved is the meteorological conditions,
which is consistent with the actual situation.

Table 2. Principal component analysis of the four factors.

Year Index PC1 PC2 PC3 PC4

1986

NDVI −0.467 0.636 0.433 0.435
WET −0.367 −0.318 −0.584 0.650

NDBSI 0.732 −0.071 0.272 0.621
LST 0.333 0.699 −0.631 −0.037

Characteristic value 0.015 0.003 0.001 0.000
Eigenvalue contribution rate (%) 76.900 15.150 6.740 1.210

1990

NDVI −0.560 0.494 0.472 0.468
WET −0.573 −0.299 −0.69 0.325

NDBSI 0.551 −0.149 −0.005 0.821
LST 0.234 0.803 −0.548 −0.014

Characteristic value 0.011 0.003 0.002 0.000
Eigenvalue contribution rate (%) 71.100 17.460 9.550 1.890

1995

NDVI 0.431 0.718 0.436 0.328
WET 0.328 −0.052 −0.708 0.623

NDBSI −0.528 −0.248 0.397 0.709
LST −0.654 0.648 −0.389 −0.043

Characteristic value 0.009 0.004 0.001 0.000
Eigenvalue contribution rate (%) 64.990 27.490 6.690 0.820

2000

NDVI −0.583 0.560 0.428 0.405
WET −0.310 −0.151 −0.754 0.559

NDBSI 0.624 −0.094 0.294 0.717
LST 0.416 0.810 −0.402 −0.092

Characteristic value 0.011 0.003 0.001 0.000
Eigenvalue contribution rate (%) 72.080 19.580 7.130 1.200
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Table 2. Cont.

Year Index PC1 PC2 PC3 PC4

2005

NDVI −0.411 0.656 0.577 0.428
WET −0.653 0.252 −0.772 0.549

NDBSI 0.472 −0.548 0.237 0.715
LST 0.427 0.454 −0.120 −0.060

Characteristic value 0.004 0.001 0.001 0.000
Eigenvalue contribution rate (%) 70.160 20.490 8.350 1.000

2011

NDVI 0.282 0.721 −0.612 −0.157
WET 0.324 0.218 0.588 −0.708

NDBSI −0.36 −0.413 −0.476 −0.687
LST −0.828 0.511 0.229 −0.032

Characteristic value 0.016 0.006 0.003 0.001
Eigenvalue contribution rate (%) 62.72 24.71 9.91 2.65

2015

NDVI 0.274 0.859 −0.403 −0.152
WET 0.196 0.051 0.549 −0.811

NDBSI −0.343 −0.311 −0.683 −0.565
LST −0.876 0.402 0.264 −0.007

Characteristic value 0.007 0.003 0.001 0.000
Eigenvalue contribution rate (%) 63.550 29.050 6.570 0.830

2022

NDVI 0.679 0.478 −0.526 −0.185
WET 0.156 −0.041 0.469 −0.868

NDBSI −0.578 −0.093 −0.667 −0.460
LST −0.425 0.873 0.239 0.011

Characteristic value 0.013 0.006 0.001 0.000
Eigenvalue contribution rate(%) 65.180 27.340 7.230 0.250

4.2.2. Temporal and Spatial Changes in RSEI

After normalization, the RSEI was divided into five levels, poor (0.0–0.2), relatively
poor (0.2–0.4), medium (0.4–0.6), good (0.6–0.8), and excellent (0.8–1.0), according to the
boundaries of 0.2, 0.4, 0.6, 0.8, and 1.0, respectively. The spatial distribution of the divisions
of the remote sensing ecological index is shown in Figure 11.
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The higher the normalized RSEI, the better the ecological condition. Conversely, the
lower the normalized RSEI, the worse the ecological condition. It can be observed in
Figure 11 that the ecological condition of the study area was poor in 2000, followed by 1990.
The ecological conditions were good in 1986, 1995, 2005, 2011, 2015, and 2022. In order to
more clearly understand the change trend of the RSEI in different periods, the mean value of
the RSEI in each year (Figure 12) and the area and proportion of the RSEI at different levels
were calculated (Table 3 and Figure 13). It can be observed in Figure 12 that the RSEI in the
study area is on the rise as a whole, with the specific change pattern of rising–falling–rising,
specifically, the 1986–1995 period as the rising stage, the 1995–2005 period as the falling
stage, and the 2005–2022 period as the final rising stage. It can be observed in Table 3
and Figure 13 that the RSEI of the study area from 1986 to 2022 was concentrated in the
range of 0.4–0.6, except in 1986 and 2005. As a whole, the distribution of 0.8–1.0 is the
lowest, followed by 0.0–0.2. From the perspective of the specific changes that occur each
year, the RSEI grades in the study area were mainly concentrated in the range of 0.2–0.4,
accounting for 77.40%. In 1990, the RSEI grades were mainly concentrated in the range
of 0.2–0.6, accounting for 89.06%, and in the 1995–2000 period, the RSEI grades increased
compared with those in 1990, when the grades were mainly concentrated in the range of
0.4–0.6, accounting for 84.05% and 80.58%, respectively. In 2005, the RSEI grades were
significantly low, mainly concentrated in the range of 0.2–0.4, accounting for 85.03%. In
2011, the RSEI of the study area increased significantly, and from 2011 to 2022, the RSEI
grades of the study area were mainly concentrated in the range of 0.4–0.6, accounting for
59.41%, 74.40%, and 78.87%, respectively.
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Table 3. Area and proportion of the different grades of the RSEI.

Year
Poor (0.0–0.2) Relatively Poor

(0.2–0.4) Medium (0.4–0.6) Good (0.6–0.8) Excellent (0.8–1.0)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

1986 180.93 10.98 1275.93 77.40 157.43 9.55 31.81 1.93 2.30 0.14
1990 63.77 3.87 638.11 38.71 829.96 50.35 111.94 6.79 4.60 0.28
1995 1.90 0.11 133.89 8.12 1385.42 84.05 116.47 7.07 10.71 0.65
2000 1.89 0.11 261.73 15.88 1328.35 80.58 46.18 2.80 10.24 0.62
2005 75.50 4.58 1401.59 85.03 154.15 9.35 16.65 1.01 0.50 0.03
2011 46.51 2.82 246.66 14.96 979.33 59.41 374.58 22.72 1.30 0.08
2015 1.90 0.12 18.32 1.11 1226.33 74.40 392.24 23.80 9.60 0.58
2022 6.96 0.42 182.33 11.06 1300.17 78.87 155.90 9.46 3.03 0.18
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4.2.3. Monitoring and Analysis of RSEI Changes

Based on the RSEI classification standard for each year from 1986 to 2022, the statistics
of the classification area changes (Table 4) and difference change detection (Figure 14) were
conducted for the RSEI images of each adjacent year and the beginning and end years in
the study area.

Table 4. Proportion of the difference in ecological status in the study area.

Year Interval
Grade Deterioration Grade

Unchanged Grade Improvement

−4 −3 −2 −1 0 1 2 3 4

1986–1990 - 0.01 0.15 6.05 0.12 76.89 16.71 0.07 0
1990–1995 - 0 0.24 19.94 0.11 74.54 5.15 0.03 0
1995–2000 - 0.03 1.13 73.87 0.12 24.77 0.07 0 -
2000–2005 0.02 0.21 13.84 83.86 0 2.00 0.07 0.01 -
2005–2011 0.04 0.32 1.44 8.87 0.15 35.96 42.38 10.59 0.24
2011–2015 0.00 0.04 6.70 34.81 2.92 41.48 12.23 1.54 0.28
2015–2022 0.03 0.17 8.87 56.73 0.84 32.97 0.37 0.01 -
1986–2022 0.01 0.16 1.01 5.04 0.11 34.93 57.42 1.31 0.02
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It can be observed in Figure 14 that the area with a positive RSEI difference in the
1986–1990, 1990–1995, and 2005–2011 periods is significantly larger than the area with a
negative RSEI difference. The area with a negative RSEI grade difference in the 1995–2000
and 2000–2005 periods is significantly larger than the area with a positive RSEI grade
difference. Combined with Table 4, it can be concluded that the proportion of the unchanged
RSEI level is concentrated in the range of 0.00–0.12%, indicating that the ecological situation
of the study area has changed significantly in each consecutive year. In the 1986–1990,
1990–1995, 2005–2011, and 2011–2015 periods, the regions with a positive RSEI differential
accounted for 93.67%, 79.72%, 99.21%, and 55.25%, respectively, while in the 1995–2000,
2000–2005, and 2015–2022 periods, the regions with a negative RSEI differential accounted
for 75.04%, 97.92%, and 68.43%, respectively. As a whole, in the 1986–2022 period, the RSEI
of the study area improved.

From 1986 to 2022, the area where the ecological conditions deteriorated reached
102.38 km2, accounting for about 6.20%, while the area where the ecological conditions
improved was 1544.23 km2, accounting for approximately 93.68%, indicating that the
ecological quality of the study area increased significantly. Among them, the area of grade
1 was 575.80 km2, accounting for 34.93%, mainly distributed in the west, southwest, and
northeast of the edge of the study area. The area of grade 2 was 946.56 km2, accounting for
approximately 57.42%, mainly distributed in the northwest and southeast of the study area.
The area of grade 3 was 21.53 km2, accounting for approximately 1.31%. The distribution
range is small, and it was superimposed on the area of grade 2, namely the northwestern
and eastern edges of the study area.

4.3. Analysis of the Driving Factors

In order to further analyze the comprehensive representativeness of the RSEI, the
correlation analysis of the RSEI and the four ecological indicators was conducted. The
results of the analysis are presented in Table 5. In the calculation of the correlation co-
efficient between each index, the p-value at the 95% confidence level was less than 0.05,
passing the significance test. It can be observed that the RSEI has the highest average
correlation, with an average value of 0.709 in the 1986–2022 period and a maximum value
of 0.819 in 1986. NDBSI occupies the second place, with an average value of 0.670 in the
1986–2022 period. The correlation of WET, LST, and NDVI is relatively low, with 0.575,
0.452, and 0.435, respectively. From the perspective of single factors, NDBSI has the highest
average correlation among the four factors, reaching a maximum value of 0.765 in 1995.
The average correlation coefficient between the RSEI and the four factors in each year is
greater than 0.669. The average value of the 1986–2022 period is 0.709, which is 33.02%
higher than the average value of the four indicators (0.533). It is evident that in addition to
integrating the information of each factor, the ecological index is more representative than
the individual factor and can better represent the comprehensive ecological situation of the
region. To sum up, the indicators related to the ecological status of the study area are in the
order of NDBSI > WET > LST > NDVI, from the largest to the smallest.

Table 5. Correlation matrix of the RSEI and the four factors.

Year Index NDVI WET NDBSI LST RSEI

1986

NDVI 1 0.316 −0.733 −0.295 0.830
WET 1 −0.790 −0.592 0.800

NDBSI 1 0.557 −0.986
LST 1 −0.659

Average correlation * 0.448 0.566 0.693 0.481 0.819

1990

NDVI 1 0.545 −0.633 −0.206 0.866
WET 1 −0.763 −0.515 0.878

NDBSI 1 0.364 −0.962
LST 1 −0.507

Average correlation * 0.461 0.608 0.587 0.362 0.803
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Table 5. Cont.

Year Index NDVI WET NDBSI LST RSEI

1995

NDVI 1 0.364 −0.796 −0.287 0.981
WET 1 −0.807 −0.737 0.514

NDBSI 1 0.692 −0.856
LST 1 −0.324

Average correlation * 0.482 0.636 0.765 0.572 0.669

2000

NDVI 1 0.479 −0.677 −0.370 0.326
WET 1 −0.766 −0.662 0.761

NDBSI 1 0.668 −0.687
LST 1 −0.984

Average correlation * 0.509 0.636 0.704 0.567 0.690

2005

NDVI 1 0.214 −0.755 −0.234 0.422
WET 1 −0.672 −0.429 0.574

NDBSI 1 0.551 −0.740
LST 1 −0.967

Average correlation * 0.401 0.438 0.659 0.405 0.676

2011

NDVI 1 0.555 −0.655 −0.342 −0.596
WET 1 −0.817 −0.601 −0.798

NDBSI 1 0.552 0.78
LST 1 0.939

Average correlation * 0.517 0.658 0.675 0.498 0.778

2015

NDVI 1 0.209 −0.530 −0.069 0.892
WET 1 −0.711 −0.609 0.562

NDBSI 1 0.582 −0.827
LST 1 −0.459

Average correlation* 0.269 0.510 0.608 0.420 0.685

2022

NDVI 1 0.35 −0.743 −0.08 0.939
WET 1 −0.859 −0.446 0.349

NDBSI 1 0.402 −0.700
LST 1 0.219

Average correlation * 0.391 0.552 0.668 0.309 0.552

Mean of 1986–2022 0.435 0.575 0.670 0.452 0.709

* The average correlation was calculated by the absolute value of the correlation coefficient between one indicator and
the other indicators, taking NDVI in 1986 as an example. MeanNDVI_1986 = (|0.316| + |−0.733| + |−0.295|)/3 = 0.448.

5. Discussion
5.1. Analysis of Driving Forces for Changes in Ecological Environment Quality in Coal
Mining Areas
5.1.1. Climate Change

According to the results of the analysis in Section 4.2, NDBSI and WET are the most
relevant indicators of the ecological conditions in the study area. Therefore, in order
to further explore the relationship among NDBSI, WET, and the RSEI, the temperature
(Figure 15) and rainfall (Figure 16) in the 1986–2015 period were statistically analyzed.

It can be observed in the first figure that the temperature distribution trend of the study
area in the 1986–2015 period was consistent. The highest temperature occurred between
June and August, and the lowest temperature occurred between November and February.
The overall temperature in the 1986–2015 period presented a fluctuating upwards trend,
and the change range of temperature was small, with an annual mean difference of 2.5 ◦C.
From 1986 to 2015, the annual rainfall changed significantly, especially in summer (July to
October). Except for 2000, there were peaks in the summers of the 1986–2015 period, and
the summer rainfall in 2000 was significantly lower than the summer rainfall in the other
years. At the same time, it can be observed that the changes in the RSEI and the rainfall
from July to October of the 1986–2015 period were consistent, with the lowest average
rainfall values in 2000 and 2005, and the corresponding value of the RSEI was also low.
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Therefore, we can consider that rainfall is the main factor affecting the ecological status of
the study area.
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5.1.2. Coal Mining Intensity

There are more than ten coal mines concentrated in the research area, with the mining
area accounting for 55.15% of the entire research area (Figure 1). Scholars have shown
that coal mining activities are one of the factors affecting the quality of the ecological
environment in mining areas [42,43]. From 1985 to 2022, coal mining in Ordos City, Inner
Mongolia, and Yulin City, Shaanxi Province, experienced a period of vigorous development
(Figure 17), with raw coal production increasing 265 times and 290 times, respectively.
Due to the special geographical location of the Shendong Mining Area, it is the main coal
production area of the two cities. Specifically, from 1985 to 2000, it was in the initial and
exploratory stage, with a growth of 38 million tons in raw coal production over the past
15 years. From 2000 to 2008, it was in the stage of innovation integration, with a significant
increase in productivity. Over the past 8 years, the production of raw coal increased by
377 million tons. The period from 2008 to 2022 belongs to a leapfrog development period,
with a 14-year increase in raw coal production of 941 million tons. From the perspective
of the RSEI in the research area, the overall trend showed a fluctuating increase from
1986 to 2022. Compared with the RSEI in 1986, the RSEI in 2022 increased by 67.22%,
indicating that the mining of coal resources did not have a serious negative impact on the
ecological environment.
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5.1.3. Policy and Technology

Ecological restoration is the main reason for the improvement in the ecological en-
vironment of the Shendong Mining Area. Since the 1980s, the Chinese government and
relevant departments have formulated a series of policies and regulations to deal with the
degradation of the ecological environment. For example, the Provisions on Land Recla-
mation was officially implemented on 1 January 1989; the Notice on the Strengthening
of Land Reclamation Management for Production and Construction Projects was issued
in 2006; and the Land Reclamation Regulations was issued by the State Council in 2011.
From the implementation of the Provisions on Land Reclamation to the end of 2015, the
ecological restoration rate of China’s mining areas rose from 2% to 48% [44,45]. The results
of ecological restoration in the mining area were also reflected in Shendong Mining Area.
As of 2015, the Shendong Mining Area has invested a total of CNY 1.45 billion in ecological
construction funds. In the early stages of development in 1985, the vegetation coverage
rate was between 3% and 11%, which has now increased to over 60%, and the ecological
construction governance area has reached 245 km2, which is 1.5 times the coal mining
area at that time [46]. It is worth noting that the RSEI of the Shendong Mining Area has
significantly improved during the two stages of the 2005–2010 and 2010–2015 periods,
which is related to the strong measures implemented in China in 2007, such as the formal
inclusion of land reclamation in mining permits and land use approvals [47]. Research
showed that the land reclamation area in the Shendong Mining Area had increased by
63%, and the land types in the mining area had significantly improved. The damaged land
areas such as collapsed land, accumulated land, and mining land had decreased, while the
agricultural land, construction land, and forestry land in the mining area had increased [48].

In addition, technological progress has also promoted the improvement of ecological
quality in mining areas. Since 2005, the Shendong Mining Area has implemented artificial-
assisted restoration technology, sealing and restoration technology, and ecological function
optimization technology in subsidence areas. The Shendong Mining Area has carried
out research on technologies such as management and protection, fertilization, and pest
control and proposed an active ecological environment prevention and control model for
“large-scale ecological environment prevention and control, controlling local desertification
caused by mining subsidence” in desert areas [49]. Therefore, driven by policy support and
technological progress, the ecological quality of the Shendong Mining Area has gradually
shifted from poor to good, achieving positive succession of the ecosystem.

Future policy and technological guidance should focus on the following two aspects:
(i) Strengthen ecological environment monitoring in mining areas. The characteristics and
problem diagnosis of land and ecological environment damage in mining areas are key to
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ecological restoration. The combination of drone remote sensing and artificial intelligence
technology will provide strong technical support for ecological environment monitoring
and problem identification diagnosis in mining areas and can achieve precise and efficient
monitoring of the ecological environment in mining areas. (ii) Enhancing the stability of
the mining area ecosystem. According to the overall, systematic, and inherent laws of
the ecosystem, we should learn from nature and carry out systematic restoration. After
nearly 30 years of ecological restoration, the vegetation coverage of the ecologically fragile
Shendong Mining Area has significantly increased; however, the plant population is single
and the ecological stability is poor. Therefore, we should attach great importance to the
research of ecological stability improvement technology, natural landscape restoration
technology, and engineering governance technology to reduce disturbance in order to
achieve the improvement of ecological restoration from quantity to quality [47].

5.2. Limitations and Future Work

This paper uses the GEE platform, based on Landsat TM/OLI data, to analyze the
trend of ecological remote sensing index changes in the Shendong Mining Area from
1986 to 2022 using the RSEI and explores the main influencing factors that cause its changes.
Through research, it was found that the RSEI of the Shendong Mining Area showed
a fluctuating upward trend from 1986 to 2022, which is similar to the results of other
related studies [29,50]; so, the reliability of this method has been proven. From a global
perspective, research on using the RSEI for monitoring the ecological environment of
mining areas mainly focuses on China. Most foreign scholars still apply the RSEI to urban
ecological environment monitoring [51–53], with few applying it to ecological environment
monitoring in mining areas. This may be due to different coal mining methods in different
countries, resulting in different focus and research content [54,55]. This approach improves
accuracy and also reflects practical issues more objectively and quickly compared with
traditional methods.

This method has certain advantages but also has certain drawbacks. This method is
based on remote sensing technology and has certain requirements for the quantity and
quality of satellite data. In this research, we use LandsatTM/OLI data with a spatial
resolution of 30 m, which can meet the research requirements. However, the satellite
revisit period is 16 days, and satellite data with cloud cover greater than 20% are removed.
Ultimately, there are few satellite data that reflect the surface ecological quality in vegetation
growth season, and there may be situations where suitable data sources cannot be selected
in individual years. Therefore, multisource data fusion can be considered to improve the
temporal resolution of satellite data. In addition, the initial application scenario of the
RSEI is in cities, so the four indicators composed of greenness, humidity, dryness, and
heat can well reflect the ecological environment changes in urban areas. However, in
mining cities, there is a lack of consideration for mining area characteristic factors, such as
soil erosion, soil quality, groundwater resources, and other factors which were caused by
mining. Therefore, future research can combine the above factors to construct an improved
RSEI, which can further improve the monitoring accuracy of ecological environment quality
in mining areas.

6. Conclusions

This paper calculated the RSEI from 1986 to 2022 by using Landsat TM/OLI as the data
source and the Shendong Mining Area as the case study area, and the overall RSEI showed
an upward trend, indicating that the overall ecological situation of the study area showed a
trend of improvement from 1986 to 2022. By analyzing the impact of climate change, coal
mining intensity, policies, and technologies on the ecological environment quality of mining
areas, it can be found that although traditional concepts believe that coal mining will cause
certain damage to the ecological environment, under the promotion of policy support and
technological progress, the ecological quality of mining areas has gradually shifted from
poor to good, achieving positive succession of ecological environmental quality. This study
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can provide reference for how to further improve the ecological environment of mining
areas in the future, thereby ensuring the sustainable development of coal mining.
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