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Abstract: This paper proposes a fault detection and isolation (FDI) scheme for a wind turbines subject
to actuator faults in both the pitch system and the drive train system. The proposed scheme addresses
fault detection and isolation problems using a fault estimation approach. The proposed approach
considers the use of a particular class of sliding mode observers (SMOs) designed to maintain the
sliding motion even in the presence of actuator faults. The fault detection problem is solved by
reconstructing the actuator faults through an appropriate analysis of the nonlinear output error
injection signal, which is required to keep the SMO in a sliding motion. To ensure accurate fault
reconstruction, only two conditions are required, namely that the faults are bounded and they meet
the matching condition. A scheme based on a bank of SMOs is proposed to solve the fault detection
and isolation problem in the pitch system. For the drive train system, a scheme using only one SMO
is proposed. The performance of the proposed FDI scheme is validated by using a wind turbine
benchmark model subjected to several actuator faults. Normalized root mean square error (NRMSE)
analysis is performed to evaluate the accuracy of the actuator fault estimations.

Keywords: fault detection and isolation (FDI); sliding mode observer (SMO); wind turbines

1. Introduction

Nowadays, wind turbines contribute a large part of the world’s electrical energy
production from renewable sources. In 2022, their second-highest growth in history was
registered, with 93.6 GW of installed capacity added, which is only 1.8% below the historical
record reached in 2020. The addition in 2022 carries the global cumulative installed capacity
of wind energy to 837 GW, which, on average, represents a growth of 12% per year [1].
The remarkable growth that wind turbines have experienced has led to a growing demand
for greater efficiency and reliability. However, the size, the complexity of the components,
and the stochastic behavior of the wind present significant challenges when trying to
maintain an operation with a preset efficiency [2]. Furthermore, wind turbines, like any
complex system, are susceptible to faults. Various factors including environmental factors,
manufacturing defects, and lack of maintenance can cause wind turbine faults, leading to
significant damage and operational disruptions. Additionally, wind turbines are installed
in remote and isolated locations, which complicates preventive and corrective maintenance
actions, whereby the incidence of a fault can trigger breakdowns or even the destruction of
the turbine if it is not detected [3]. This situation has generated interest in the application
of fault detection and isolation (FDI) methods in wind turbines, especially in critical wind
turbine components such as the pitch and drive train systems [4].
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FDI is crucial for ensuring the reliable and safe operation of wind turbines. The primary
objective of an FDI scheme is to generate a warning when an unusual situation occurs in
the operation of the system and then to find its source and location [5]. Overviews and
surveys of FDI methods for wind turbines appear in [6–9]. Most of the works reported in
the literature can be divided into two large groups: data-driven and model-based methods.
Many data-driven techniques have been developed to detect faults in wind turbines based
on fuzzy systems and neural networks [10], kernel methods [11], deep neural networks
(DNN) and principal component analysis (PCA) [12], classifier fusion [13], and condition
monitoring systems [14]. Of these data-driven approaches, condition monitoring systems
are the most effective because they provide substantial information about irregularities in
the system. However, one drawback of most condition monitoring methods is the slow
and tedious data collection and interpretation.

Model-based FDI methods utilize mathematical models of the wind turbine system
to simulate its behavior under normal and faulty conditions. These methods rely on
comparing the model predictions with sensor measurements to detect and isolate faults [15].
One of the most common methods of model-based FDI schemes is the observer-based
method. This method involves designing observers, also known as estimators or filters, to
estimate the internal states of the wind turbine based on signals measured by sensors. By
comparing the estimated states with the measured states, deviations can be detected and
attributed to specific faults [16]. Many observer-based FDI schemes have been developed
for wind turbines. In [17], an adaptive observer FDI scheme is proposed. The observer is
used to estimate both sensor and actuator faults in the benchmark model proposed in [18].
An algorithm for detecting pitch actuator faults using interval observers is proposed in [19].
The algorithm is trained with healthy parameters of the system, and it is assumed that in
the presence of faults, the values of the parameters do not stray too far from their fault-
free condition, which is unrealistic. A model-based FDI scheme for the pitch system was
proposed in [20]. The scheme uses an extended Kalman filter to detect faults. The Kalman
filter applies multiple model-adaptive estimators to approximate the states of the pitch
system. A scheme to detect both actuator and sensor faults in a wind turbine benchmark
model based on an unknown input observer is proposed in [21]. For fault detection, it
employs residual signals; for fault isolation, it utilizes estimating states, output signals, and
control signals.

The vast majority of proposed FDI schemes for both sensor and actuator faults in wind
turbines use a residual generation approach. In a residual-based approach, residuals are
ideally expected to be zero during fault-free operation and non-zero in a failed operation [22].
However, since a wind turbine is subject to disturbances, parameter uncertainty, and mis-
matches between the mathematical model and the actual system, these discrepancies can
produce non-zero residuals even in a fault-free operation, creating a false alarm problem.
The false alarms can affect FDI performance to such an extent that it may become useless.
To overcome these difficulties, the model-based FDI scheme must be made insensitive to
modeling uncertainty but sensitive to faults, which is called a robust FDI scheme [23].

A robust FDI scheme is proposed in [24]. The scheme considers actuator and sensor
faults in both the pitch and drive train systems. Robustness is achieved by decoupling the
faulty dynamics from the system using coordinate transformations.

Sliding mode techniques have historically demonstrated robustness properties for a
certain class of matched uncertainties [25]. In particular, sliding mode observers (SMOs)
have been used for both fault detection and isolation as well as fault-tolerant control (FTC)
schemes [26]. Alternatives to taking advantage of the inherent robustness of the SMO for
fault detection and isolation problems have been explored in wind turbines. A model-based
FDI scheme for simultaneously detecting sensor and actuator faults is presented in [27].
The proposed scheme uses an adaptive SMO to accurately estimate both system states and
disturbances as part of an active FTC system. An FDI scheme using SMOs is designed
in [28]. The SMOs are combined with a residual signal generator for detecting sensor
faults in both the pitch and drive train systems in a wind turbine benchmark model. The
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proposed schemes require the designer to know the behavior of the fault to establish an
adequate threshold to be able to perform fault detection. However, this is an impractical
approach since fault behavior is continually changing [29]. Thus, an FDI scheme using an
observer-based approach can only detect faults considered in the fault propagation analysis
of the system for which a detection threshold is established. Recently, fault diagnosis
methods that not only detect and isolate faults but are also capable of making a complete
estimate of faults have attracted great interest. Complete fault information is crucial to an
FTC system that can effectively mitigate fault effects, enabling the wind turbine to operate
safely and with reduced downtime [30]. A fault estimation approach using adaptive and
parameter estimation schemes for a wind turbine is proposed in [31]. The parameter
estimation scheme is utilized to estimate the values of specific parameters that may be
affected by faults or abnormalities in the wind turbine. A robust actuator multiplicative
fault estimation method with unknown input decoupling is presented in [32]. The method
employs a multiplicative fault model and an unknown input decoupling technique to
mitigate the influence of unknown inputs on the fault estimation process. Although some
effective fault estimation techniques for wind turbines have been presented, most of them
have focused on parametric faults, leaving the application of fault estimation techniques in
critical components of the wind turbine, such as the pitch and drive train systems, as an
unresolved issue.

This paper addresses the problem of designing an FDI scheme for actuator faults in
the pitch and drive train systems of a wind turbine using a fault estimation approach.
The proposed method can detect and isolate the source of actuator faults. In addition, it
provides a complete reconstruction of the faults. Therefore, the fault estimation method
provides a direct estimate of the size and severity of the faults, which can be crucial for
FTC schemes.

The main contributions of this paper are as follows:

• An FDI scheme for both the pitch and drive train systems that does not require explicit
information from the fault. The only fault information required is the fault to be bounded.

• In contrast to the works reported in [20,23], the proposed FDI scheme employs the
concept of an equivalent output error injection term. This allows a complete recon-
struction of actuator faults while providing accurate estimates of states, regardless of
fault occurrence.

• A simple method for actuator fault reconstruction using a low-pass filter (LPF) that an-
alyzes the so-called nonlinear output error injection, in contrast to the works presented
in [20,23], which use more complex methods.

This paper is organized as follows. The wind turbine model, the design methodology
of an SMO for actuator fault reconstruction, and the proposed actuator FDI scheme for
both the pitch and the drive train systems are presented in the Section 2. Simulation results
of the proposed FDI scheme are presented in the Section 3. A discussion of the results is
presented in the Section 4. Finally, conclusions are presented in the Section 5.

2. Materials and Methods
2.1. Mathematical Model of the Wind Turbine

A wind turbine converts wind energy into electrical energy by using the aerodynamic
force of the turbine rotor blades. The input to the system is the wind speed, which causes
the rotation of the turbine blades. This motion spreads through the turbine rotor. The drive
train couples this motion with the generator shaft. In turn, the generator is responsible for
transforming mechanical energy into electrical energy. The electrical power generated by
the system is controlled by modifying the aerodynamics of the turbine, adjusting the angle
of inclination of the blades, or modifying the speed of rotation of the generator shaft. In any
case, the objective of the control system is to maintain the required electrical power. Figure 1
shows the interconnection of different subsystems that make up a wind turbine and their
interaction with the control used to regulate electrical power. This model addresses the
wind turbine at a system level and provides mathematical models with simplicity and
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sufficient accuracy for all subsystems. The variables associated with Figure 1 are defined
as follows: vω is the wind speed, τr is the rotor torque, τg is the generator torque, ωr is
the rotor speed, ωg is the generator speed, Eg is the electrical power, τg,re f is the reference
torque of the generator, β is the pitch angle, and βre f is the reference angle of the pitch.
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For a more detailed description of the different subsystems of the wind turbine bench-
mark model and its internal connection, see [18]. The subsystems models are briefly
described below.

2.1.1. Blade and Pitch Model

This system combines both aerodynamic and hydraulic pitch models. The wind
turbine’s nonlinear aerodynamic is modeled as a torque acting on the blades. The torque is
given as

τr(t) =
1
2

πρr3v2
ω(t)S(λ, β) (1)

where S(λ, β) represents a mapping of the coefficients, which depends on the tip speed
ratio λ and the pitch angle β. r is the rotor ratio, ρ is the density of the air, and vω is the wind
speed. Since the pitch system is composed of three identical subsystems its aerodynamics
are stated as follows:

τr(t) = ∑
1<i≤3

πρr3v2
ω,i(t)S(λ, βi)

6
(2)

It is important to highlight that this model is valid for small differences between the
pitch angles.

The hydraulic pitch system is modeled as a closed-loop second-order transfer function
described as

β(s)
βre f (s)

=
ψ2

s2 + 2ξψs + ψ2 (3)

where β is the measurement pitch position angle and βre f is the reference input provided
by the wind turbine controller. ξ is the damping factor and ψ is the natural frequency.

2.1.2. Drive Train Model

The drive train system uses a simple two-mass model. Therefore, the nominal dynam-
ics of the drive train system can be represented by

jr
.

ωr(t) = τr(t)− kdtθ(t)− (hdt + br)ωr(t) +
hdt
Ng

ωg(t) (4)

jg
.

ωg(t) =
ηdtkdt

Ng
θ(t) +

ηdthdt
Ng

ωr(t)−
(

ηdthdt
N2

g
+ bg

)
ωg(t)− τg(t) (5)
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.
θ(t) = ωr(t)−

1
Ng

ωg(t) (6)

where ωr(t) and ωg(t) are the rotor and generator speed and θ(t) denotes the torsion
angle of the drive train system. The inputs τg(t) and τr(t), represent the torque of the
rotor and generator, respectively. Jr and Jg are the moment of inertia of the low- and high-
speed shafts, respectively. br and bg are the viscous frictions of the low- and high-speed
shafts, respectively. kdt is the torsion stiffness of the drive train system, hdt represents the
torsion damping coefficient of the drive train, Ng is the gear ratio, and ηdt is the efficiency
percentage of the drive train system.

2.1.3. Generator and Converter Model

The dynamics of the generator and converter can be modeled as a first-order transfer
function because the frequency range used in the benchmark model is much smaller than
the speed of the electrical subsystem and its controllers. The joint dynamics of the converter
and generator are given by

τg(s)
τg,re f (s)

=
γ

s + γ
(7)

where τg,re f is the reference value and γ is the cutoff frequency. The electrical power
produced by the generator is given by

Eg(t) = ηgωg(t)τg(t) (8)

where Eg is the power produced by the generator and ηg is the efficiency of the generator.

2.1.4. Faults in Wind Turbines

In general, a fault refers to an error or defect in something that causes it to not work
properly or function as intended [33]. In the context of wind turbines, a fault typically
refers to a malfunction or failure in the wind turbine’s components, systems, or operations
that can lead to reduced performance, downtime, or even safety risks. The faults can occur
in various parts of the wind turbine, including the pitch system, the drive train system,
the generator, the electrical system, and the control system [34]. In addition, wind turbine
faults can occur in both the actuators and sensors of any of the systems that make up the
wind turbine. However, in this paper, we only focus on actuator faults in the pitch and the
drive train systems.

According to a report published by the National Renewable Energy Laboratory (NREL)
in the US, the most common faults in wind turbines include electrical system faults, blade
damage, and mechanical faults [35]. Faults in wind turbines can have several consequences
affecting the performance and safety of the wind turbine. Two critical components in the
wind turbine are the pitch and the drive train systems. If a fault in any of these components
is not detected on time, this can cause severe consequences for the wind turbine, such
as reduced energy generation, increased downtime, higher maintenance and repair costs,
and safety risks. Early detection and isolation in the pitch system as well as the drive
train system are crucial for ensuring the optimal performance, reliability, and safety of
the wind turbine [36]. Therefore, in this paper, we focus on the problem of fault detection
and isolation in the pitch and drive train systems. It is worth noting that simultaneous
faults in wind turbines can occur, although they are relatively rare. Accordingly, the case of
simultaneous faults is not considered.

The severity of actuator faults in wind turbines can vary depending on the specific fault
and its impact on the wind turbine’s operation. Based on their severity, actuator faults are
classified as abrupt, incipient, and intermittent faults. These actuator faults can be modeled
using signal models that include the effect of the fault on the output of the actuator.

In normal wind turbine operation, the output of the actuator increases smoothly in
response to the input. However, during an abrupt actuator fault, the output of the actuator
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may experience sudden changes or fluctuations, leading to a non-smooth response. Hence,
to model an abrupt actuator fault, a square signal model is used. In contrast, an incipient
actuator fault in a wind turbine is a fault that is just beginning to develop, and its behavior
is characterized by subtle changes in the actuator’s output. Over time, the behavior of an
incipient fault may become more pronounced, with the output of the actuator becoming
increasingly irregular or unstable. Then, an incipient fault can be modeled using a time-
varying signal model that allows for the characterization of the actuator’s output over
time [37]. Therefore, to simulate an incipient actuator fault, both sinusoidal and sawtooth
signal models are proposed.

2.2. Design of Sliding Mode Observers for Actuator Fault Reconstruction

In recent years, SMOs have been successfully applied to solve the problem of estimat-
ing the states in dynamical systems. One of their most interesting properties, which has
been used most in the literature, is robustness. This allows an SMO to successfully solve the
estimation problem despite the presence of disturbances or uncertainties bounded within
the system. In essence, an SMO is a mathematical replica of the system fitted by means of
feedback of the output estimation error through a nonlinear function, which provides an
interesting solution to this issue. The SMO can force the output estimation error to zero in
finite time by determining the bound on the magnitude of the disturbance acting on the
system. Consequently, the observer states converge asymptotically to the system states.
Under this condition, it is said that a sliding motion takes place [38].

During the sliding motion, the nonlinear output estimation error contains information
about unknown signals affecting the system. By suitably filtering the nonlinear output
estimation error, unknown signals can be obtained. Therefore, by modeling faults as
unknown signals, it is possible to use an SMO to reconstruct and, thus, detect and isolate
these faults. The SMO design methodology is described below.

Consider the linear dynamical system subject to actuator faults described by

.
x(t) = Fx(t) + Gu(t) + M fa(t, x, u) (9)

y(t) = Hx(t) (10)

where F ∈ Rn×n, G ∈ Rn×m, H ∈ Rp×n, and M ∈ Rn×q with p ≥ q. Assume that the
matrices G, H, and M are the full rank, and the function fa : R+ × Rn × Rm → Rq is deemed
to represent an actuator fault that is assumed to be bounded so that ‖ fa(t, x, u)‖ ≤ α with
α ∈ R+.

In addition, consider that the dynamical system given in Equations (9) and (10) satisfies
the following two conditions:

• rank(HM) = q;
• the invariant zeros of the system represented by the triple (F, G, H) must lie in C−.
• Under these conditions, there is a linear change of coordinates T, such that the new

coordinate the system can be written as

.
x1(t) = F11x1(t) + F12x2(t) + G1u(t) (11)

.
x2(t) = F21x1(t) + F22x2(t) + G2u(t) + M2 fa(t, x, u) (12)

y(t) = Cx(t) (13)

where x1 ∈ Rn−p, x2 ∈ Rp, and F11 has stable eigenvalues. The coordinate system
described above is used as a platform for the design of an SMO. The SMO structure
that will be considered can be written in the form

.
x̂1(t) = F11 x̂1(t) + F12 x̂2(t) + G1u(t)− F12ey(t) (14)
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.
x̂2(t) = F21 x̂1(t) + F22 x̂2(t) + G2u(t)− (F22 − Fs

22)ey(t) + w(t) (15)

where Fs
22 is a stable design matrix, and the discontinuous function w(t) is defined as

w(t) =

−σ‖M2‖
P2ey(t)
‖P2ey(t)‖ if ey(t) 6= 0

0 otherwise
(16)

where P2 ∈ Rp×p is a symmetric positive definite Lyapunov matrix for Fs
22. If the state

estimation error and the output estimation errors are defined as e1(t) = x̂1(t)− x1(t)
and ey(t) = x̂2(t)− x2(t), respectively, it is straightforward to show that the dynamical
of the error is given by

.
e1(t) = F11e1(t) (17)

.
ey(t) = F21e1(t) + Fs

22ey(t) + w(t)−M2 fa(t, x, u) (18)

It is shown by Edwards and Spurgeon in [38] that the dynamical of the error in
Equations (17) and (18) is quadratically stable, and a sliding motion is achieved in finite time,
forcing both ey(t) and

.
ey(t) to zero. Therefore, the dynamical system in Equations (14) and (15)

can be considered as an SMO for the dynamical system in Equations (11)–(13). However, it
is more convenient to express it in terms of the original coordinates system as

.
x̂(t) = Fx(t) + Gu(t)− Kley(t) + Knlw(t) (19)

where Kl and Knl are the linear and nonlinear gain matrices given by

Kl = T−1
[

F12
F22 − Fs

22

]
, (20)

and

Knl = ‖M2‖T−1
[

0
Ip

]
(21)

The output estimation error injection term, which is a nonlinear discontinuous signal,
is defined as

w(t) =

{
−σ‖M2‖ P2 Hex(t)

‖P2 Hex(t)‖ if Hex(t) 6= 0

0 otherwise
(22)

where the state estimation error is defined as ex(t) = x̂(t)− x(t) and the scalar σ is chosen
so that σ > ‖ fa(t, x, u)‖. It is important to note that even when the model considered for the
design of the SMO has actuator fault signals, the dynamics of the observer do not depend
on the faults. Therefore, the convergence of the observer is achieved even in the presence
of actuator faults. The SMO design methodology described in this part is applied in the
next subsection to develop an actuator FDI scheme for a wind turbine benchmark model.

2.3. Actuator FDI Scheme Based on Sliding Mode Observers

The traditional approach to FDI schemes using SMOs ensures that the sliding mode
is interrupted when a fault occurs in the system, and the fault information is obtained
by analyzing the residual signals. Under nominal fault-free conditions, the residuals are
expected to be zero or nonzero when a fault occurs. In addition, most approaches that
use residual generation can detect and isolate faults, but they do not provide information
about the faults. In contrast to the traditional FDI methods, this paper addresses the fault
detection and isolation problem by using a fault estimation approach based on the analysis
of the nonlinear output error injection signal. One of the benefits of this approach compared
to other SMOs based on FDI schemes is that the sliding motion is not broken, even when a
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fault appears. This allows the use of the SMO as a state estimator and, most importantly, as
an estimator of faults in the system.

Figure 2 shows the proposed architecture for actuator fault reconstruction using an
SMO. The scheme is based on a mathematical model of the system, which describes the
dynamics of the plant, actuators, and sensors. The model includes the fault description in
the actuator, which is modeled as an additive signal. Then, an SMO is designed to achieve
asymptotic convergence of the estimation error to zero. The SMO uses the plant outputs,
inputs, and the difference between the system’s outputs and the observer’s outputs, named
output estimation error. The output estimation error signal is fed back into the observer via
a nonlinear function, which provides two advantages. Firstly, the SMO can force the output
estimation error to zero in finite time, even in the presence of actuator faults acting in the
system. This is possible because the nonlinear output error injection signal compensates for
the effect of actuator faults throughout the system to maintain the sliding motion. Therefore,
the observer states converge asymptotically to the system states.
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Secondly, once the output estimation error is forced to zero, it is said that a sliding
motion takes place. During the sliding movement, the nonlinear output estimation signal
injected into the SMO contains information about the faults affecting the system actuator.
Then, by applying a suitable filtering process to the nonlinear output estimation error, the
actuator fault can be reconstructed.

The idea behind this approach is to take advantage of the properties of the sliding
motion and use the nonlinear output estimation error injection signal to reconstruct the
actuator faults. Once a sliding motion is attained, ey(t) = 0 and

.
ey(t) = 0 are forced to zero

in finite time, so the dynamics of the output estimation error in Equations (17) and (18) can
be written as

0 = F21e1(t) + w(t)−M2 fa(t, x, u) (23)

Given that F11 is stable, it follows that e1(t)→ 0 and, therefore, w(t) = M2 fa(t, x, u).
That is, the fault information is contained in the nonlinear injection signal w(t). Since the
signal w(t) switches at a very high frequency, one way to estimate the actuator fault is
using a low-pass filter (LPF). The key point here is that to achieve a sliding motion in the
presence of faults, it is only required that the magnitude of the fault is bounded and that it
meets the matching condition, namely that the fault lies within the range space of the input
distribution matrix of the system. However, the sliding motion cannot be maintained if the
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condition σ > ‖ fa(t, x, u)‖ is not satisfied for t0 > 0, where t0 represents the time at which
the sliding motion is achieved.

2.3.1. Actuator FDI Scheme for the Pitch System

The pitch actuator is an important component of a wind turbine and is responsible for
controlling the position and orientation of the turbine blades to optimize energy capture
and maintain safe operation. If a fault in the pitch actuator is not detected on time, it can
have serious consequences for the safe and efficient operation of the wind turbine.

For example, a pitch actuator fault can cause the turbine blades to become misaligned.
This can cause stress and damage to other components of the turbine, such as the drive
train and the generator. Over time, this can lead to more serious damage and the need for
costly repairs or replacements.

There are several potential causes for pitch actuator faults, which can be classified
into external (environmental factors) and internal causes. Environmental factors, such
as exposure to wind, rain, and saltwater, can cause corrosion, erosion, or damage to
actuator components. On the other hand, the internal sources of pitch actuator faults are
the hydraulic system and the electrical motor in charge of turbine blade movement. For
example, wiring issues or power surges can cause damage to the electrical components
of the actuator, while hydraulic fluid leaks or clogs can impair the function of hydraulic
actuators [39].

Figure 3 shows the proposed architecture for actuator fault detection and isolation in
the pitch system. The proposed scheme consists of a bank of three SMOs to estimate the
outputs of each of the three pitch subsystems. As each pitch subsystem is independent of
the others, one observer receives only the input upb and output ypb signals from a single
pitch subsystem, that is, the observer is sensitive only to the faults of the monitored pitch
subsystem, which ensures a solution to the fault isolation problem once a fault is detected.
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Since the nonlinear output estimation error injection signal compensates for the effect
of faults in the SMO in order to maintain the sliding motion, fault detection is performed
through the reconstruction of fault signals by filtering the nonlinear output error injection
signal of each pitch subsystem.

As the pitch system is composed of three independent and identical subsystems, the
SMO design presented in this section is applied identically to the other two subsystems.
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The design of the SMO for one of the pitch subsystems considers the state space model
given by

.
xpb(t) = Fpbxp(t) + Gpbupb(t) + Mpb fa(t) (24)

ypb(t) = Hpbxpb(t) (25)

where xpb ∈ R2 is the state vector, ypb ∈ R2 is the output vector, upb ∈ R is the input vector,
fa(t) is any actuator fault signal, in this case of one dimension, and the matrices Fpb, Gpb
and Hpb are defined as follows:

Fpb =

[
0 1
−ψ2 −2ξψ

]
, (26)

Gpb =

[
0

ψ2

]
, (27)

and

Hpb =

[
1 0
0 1

]
. (28)

From Equation (19), an SMO for each pitch subsystem can be written as

.
x̂pb(t) = Fpb x̂pb(t) + Gpbupb(t)− Kley(t) + Knlwpb(t) (29)

ŷpb(t) = Hpb x̂pb(t) (30)

where x̂pb(t) and ŷpb(t) denote the estimated states and outputs, respectively. Kl and Knl
are fixed appropriate gain matrices selected to ensure the stability and convergence of
the error dynamics. wpb(t) represents a discontinuous switched output estimation error
injected into the SMO to induce a sliding motion and is given by

wpb(t) =

−σ‖M2‖
P2 Hpbex(t)

‖P2 Hpbex(t)‖
if Hpbex(t) 6= 0

0 otherwise
(31)

To verify the convergence of the SMO, the simulation diagram shown in Figure 2 is
used. The parameters used to simulate the pitch system model are listed in Table 1.

Table 1. Parameters of the wind turbine model.

Symbol Description Value

br viscous friction of the low-speed shaft 7.11 Nms/rad
bg viscous friction of the high-speed shaft 45.6 Nms/rad
ξ damping factor 0.6
ψ natural frequency 11.11 rad/s

hdt torsion damping coefficient 775.49 Nms/rad
kdt torsion stiffness 2.7× 109 Nm/rad
Jr moment of inertia of the low-speed shaft 55× 106 Kg.m2

Jg moment of inertia of the high-speed shaft 390 Kg.m2

Ng gear ratio 95
ηdt efficiency of the drive train 0.97

For simulation purposes, the input to the pitch system is set as a step signal of
magnitude 10 and it is considered fault-free, that is, fa(t) = 0, and the fault coupling
matrix is set as Mpb = [0, 0]T . The SMO initial conditions are set as zero, while the initial
conditions of the states of the pitch system are set as 5 and −10, respectively. The linear
and nonlinear gain matrices of the SMO are given as:
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The linear and nonlinear gain matrices of the SMO are given as

Kl =

[
5 1

−123.43 −9.332

]
(32)

and

Knl =

[
1 0
0 1

]
. (33)

The Lyapunov design matrix P2 for the switched signal is defined as

P2 =

[
0.1 0
0 0.125

]
(34)

the design matrix M2 = 1, and the scalar σ = 6.
The results of the SMO convergence are shown in Figures 4 and 5. Figure 4 shows

both the pitch angle estimation and the pitch angle estimation error. It can be seen that
the observer estimate converges asymptotically to the system state even if their initial
conditions are different; therefore, the convergence of the SMO is assured. It can be
observed that after 0.5 s, a sliding motion takes place, i.e., the estimation error is forced to
reach and subsequently remain on the sliding surface and, thus, a sliding mode motion is
said to take place.
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Figure 4. Convergence of the pitch angle estimation.

Figure 5 shows both the pitch speed estimation and the pitch speed estimation error.
It can be seen that the estimated state converges asymptotically to the system state after
approximately 0.6 s. This is indicative that a sliding motion is taking place on the sliding
surface. It is important to mention that the difference in the speed of convergence in the
estimation of each state variable is due to the fact that the initial conditions of the state
variables are different.
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2.3.2. Actuator FDI Scheme for the Drive Train System

Actuator faults in the drive train system of a wind turbine can have significant con-
sequences for the safety and operation of the wind turbine. Actuator faults in the drive
train can be caused by various factors, including mechanical wear and tear, electrical faults,
and environmental factors such as temperature and moisture. One common actuator fault
in the drive train is caused by gear tooth damage, which inevitably results in gear ratio
changes. The friction coefficient in the drive train changes slowly with time and can evolve
over months or years. This change can also result in changes in the dynamics of the drive
train system. The drive train system bearings are also likely to be faulty. Fatigue and
wear due to heavy loads are inevitable. Moreover, pitting and impending cracks are also
causes of faults. Generally, faults in the drive train system require time-consuming and
costly maintenance. In order to reduce the potential impact of these faults in the drive train
system, an effective fault diagnosis scheme is needed.

The drive train system connects the low-speed shaft to the high-speed shaft of the wind
turbine. From the mathematical representation of the drive train shown in Equations (4)–(6),
it can be observed that it has two input channels, namely, the rotor and the generator torque.
Actuator faults are considered to occur in both the rotor and generator torques. However,
since the case of simultaneous failures rarely occurs, we consider that only one actuator
fault occurs at a time; that is, the case of simultaneous faults is not considered. Actuator
fault signals are modeled as additive bounded signals acting in each input channel of
the drive train system. It is important to note that the rotor torque cannot be measured;
therefore, different approaches have been proposed to estimate it. Because the focus of this
study is on the design of an actuator fault reconstruction scheme and not on the actuator
itself, it is assumed that the rotor torque is known.

Figure 6 shows the proposed scheme for performing actuator fault detection and
isolation in the drive train system. It considers the design of a single SMO to estimate both
states and outputs. The difference between the measured drive train variables and the
observer outputs is injected into the SMO using a nonlinear function. This term forces the
output estimation error to zero in finite time and compensates for the effects of actuator
faults in the SMO to maintain a sliding motion. Because the drive train system has two
measured outputs, the nonlinear output error injection term is a two-dimensional vector.
Each component of this vector is injected into only one input channel of the drive train
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system in such a way that it compensates only the actuator fault acting on its corresponding
input channel. By independently filtering each component of the nonlinear output error
injection vector, both fault reconstruction and fault isolation in the drive train system
are achieved.
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The SMO methodology presented in previous sections is applied below to the drive
train system model. For the design of the SMO, it is considered that the drive train model
in state space is written as

.
xdt(t) = Fdtxdt(t) + Gdtudt(t) + Mdt fa(t) (35)

ydt(t) = Hdtxdt(t) (36)

where xdt(t) ∈ R3 is the state vector, u ∈ R2 is the input vector, ydt(t) ∈ R2, fa(t) is any
actuator fault signal, Mdt is a fault distribution matrix, and Fdt, Gdt, and Hdt are matrices
defined as

Fdt =


− hdt+br

Jr

hdt
Ng Jr

−kdt
Jr

ηdthdt
Ng Jg

−ηdthdt
N2

g
−bg

Jg

ηdtkdt
Ng Jg

1 −1
Ng

0

, (37)

Gdt =


1
Jr

0
0 − 1

Jg

0 0

, (38)

and

Hdt =

[
1 0 0
0 1 0

]
(39)

From Equation (19), the sliding mode observer for the drive train system model can
be written as .

x̂dt(t) = Fdt x̂dt(t) + Gdtudt(t)− Kley(t) + Knlwdt(t) (40)
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ŷdt(t) = Hdt x̂dt(t) (41)

where x̂pb(t) and ŷpb(t) denote the estimate of state and output, respectively. Kl and Knl are
appropriate gain matrices selected to ensure the stability and convergence of the dynamics
of error, and wdt(t) represents a discontinuous switched component to induce a sliding
motion in the SMO. To verify the convergence of the SMO, the simulation diagram shown
in Figure 2 was implemented. The parameters used to simulate the drive train system
model are shown in Table 1. The linear and nonlinear gain matrices of the observer are
given as

Kl =

 10 −0.0035
0.0203 19.8829

1 −0.0095

 (42)

Knl =

1 0
0 1
0 0.0001

, (43)

and the nonlinear output error injection signal wdt(t) is given as

wdt(t) =

{
−σ‖M2‖ P2 Hdtex(t)

‖P2 Hdtex(t)‖
if Hdtex(t) 6= 0

0 otherwise
(44)

where the scalar σ = 6, the design matrix P2 = [0.1, 0; 0, 0.125], the matrix M2 = 1,
and the estate estimation error is defined as ex(t) = x̂dt(t)− xdt(t). For simulation pur-
poses, the two inputs of the drive train system are set as step-type signals of magnitude
10 and 100, respectively. For the time being, the system is considered fault-free, that is,
fa(t) = 0, and the fault coupling matrix Mdt = [0, 0, 0]T . The observer initial conditions
are considered to be zero, while the initial conditions for the drive train system are chosen
as xdt = [1,−1, 1]T . The results of both observer outputs and output estimation errors are
shown in Figures 7 and 8. Figure 7 shows that after approximately 1.2 s, a perfect tracking
between system output and observer output is achieved and, therefore, a sliding motion
takes place, i.e., the output estimation error is forced to reach and subsequently remain
on the sliding surface. It can be seen that once the sliding motion is achieved, the state
estimation errors evolve according to a first-order decay.
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3. Results

In this section, the results of the proposed SMO-based FDI scheme are presented. To
evaluate the effectiveness of the proposed FDI scheme, a set of different actuator faults on a
wind turbine benchmark model are employed. The test only considers actuator faults in
the pitch and the drive train systems. Bounded actuator faults modeled as additive signals
are considered. The actuator faults are applied to the input channels of both the pitch and
the drive systems. The faults are set as follows:

• Fault 1: A sinusoidal fault signal presented in pitch system 1 given by fa1 = 5× in(0.5t)
in the time period from 2.5133 to 47.7522 s.

• Fault 2: A sinusoidal fault signal presented in pitch system 2 given by fa2(t) =
5× sin(0.5t) in the time period from 0 to 50 s.

• Fault 3: A sinusoidal fault signal presented in pitch system 3 given by fa3(t) =
10× sin(0.5t) in the time period from 0 to 50 s.

• Fault 4: A square fault signal presented in the rotor torque of the drive train system
given by fa4(t) = 5× square(0.5t) in the time period from 6.2832 to 40.2100 s.

• Fault 5: A sinusoidal fault signal presented in the generator torque of the drive train
system given by fa5(t) = 5× sin(0.5t) in the time period from 1.2566 to 37.6991 s.

• Fault 6: A sawtooth fault signal presented in the generator torque of the drive system
given by fa6(t) = 5× sawtoot(0.5t) in the time period from 10.0531 to 43.9800 s.

3.1. Results of the FDI Scheme in the Pitch System

The problem of fault detection and isolation in the pitch system is solved by using
the architecture shown in Figure 3. Since the output error injection signal injected into the
SMO compensates for the dynamics added by the faults in the pitch system, the sliding
motion is not interrupted, even in the presence of actuator faults. The dynamic of these
faults is recovered using an LPF implemented through a first-order differential equation.
By choosing the time constant of the filter to be tiny, but larger than the sampling time used
on the computer to implement the LPF, the dynamics of the faults in the pitch system can
be reconstructed accurately.

To measure how much better the method is at reproducing the actuator fault in
the system, the normalized root mean square error (NRMSE) criterion is used, which
proportions a fit percentage value.

The simulation of the proposed FDI scheme in the pitch system is obtained considering
the initial conditions of the SMO to be zero, while the initial conditions of the pitch
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system states are set as xpb(t) = [2− 1]T . The system input has been arbitrarily set as a
step function of magnitude 10. The fault lock matrix for the pitch actuator is chosen as
Mpb = [0, 1]T and the scaling parameter of the nonlinear output error injection term is
chosen as σ = 6.

The results of the reconstruction of Fault 1 in pitch system 1 are shown in Figure 9. In
order to obtain the highest accuracy in the actuator fault reconstruction, a heuristic process
is performed to find the best choice of the LPF time constant. In Table 2, three different filter
time constants are presented. From the results obtained, it can be concluded that the best
fit is achieved by using a time constant of 0.06 s, with which a fit percentage of 82.9103%
is obtained.
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Table 2. Results of the actuator fault reconstruction in the pitch system.

Faults Time Constant
LPF 1 [s]

Time Constant
LPF 2 [s]

Time Constant
LPF 3 [s] Best FIT [%]

Fault1 0.050 0.06 0.065 82.9103
Fault2 0.085 0.09 0.095 82.8394
Fault3 0.020 0.03 0.040 67.1775

Figure 10 shows the results of the actuator fault reconstruction in pitch system 2. It
can be seen that the best-fit percentage is obtained with LPF 2, which is implemented with
a time constant of 0.09 s (see Table 2).
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It is important to underline that for a sliding motion to take place and, subsequently,
for it to be maintained in the presence of actuator faults, it is necessary to select the scalar
σ so that the inequality σ > ‖ fa(t)‖ is satisfied for all t0 > 0. Since Faults 1 and 2 satisfy
this condition, the sliding motion is maintained despite the dynamics introduced by the
actuator faults. This ensures that an accurate reconstruction of the faults can be performed,
as shown in Figures 9 and 10.

In the time intervals where inequality σ > ‖ fa(t)‖ is not fulfilled, two issues occur;
the first is that the sliding motion cannot be maintained and the second is that the matched
disturbance rejection property is lost and, therefore, it is not possible to perform the actuator
fault reconstruction.

Figure 11 shows the results of the actuator FDI scheme for Fault 3. It can be observed
that since the boundary of Fault 3 is greater than the scalar σ, the inequality σ > ‖ fa3(t)‖
cannot be verified for all t0 > 0. This impedes the achievement of an adequate reconstruc-
tion of Fault 3 in the intervals where the amplitude fault is greater than the scalar σ, as
shown in Figure 11.
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3.2. Results of the FDI Scheme in the Drive Train System

To solve the fault isolation problem in the drive train system, the proposed scheme
shown in Figure 6 is implemented. Two different LPFs are used to isolate the actuator
faults, acting on each one of the input channels of the drive train system. When an actuator
fault occurs in channel 1 of the system, the output of LPF 1 is expected to reconstruct the
fault while the output of LPF 2 remains at zero because the second input channel of the
system is free of fault.

The fault detection problem is solved using the estimation approach described earlier
(see Section 2). The main objective of the proposed approach is to maintain the sliding
motion even in the presence of actuator faults. The second objective is to recover the fault
dynamic through a filtering process of the output error injection signal, which is used to
keep the dynamic in a sliding motion. The filtering process is performed using an LPF,
which is implemented by a first-order differential equation. To evaluate the effectiveness of
the reconstruction, NRMSE analysis, which proportioned a fit percentage number, is used.

The simulation of the proposed FDI scheme for the drive train system has been
obtained considering the initial conditions of the SMO to be x̂(t) = [0, 0, 0]T , while the
initial conditions of the drive train system are established as xdt(t) = [1,−1, 1]T .

The fault lock matrix for rotor torque fault is set as Mdt = [1, 0, 0]T , while that for
generator torque fault is set as Mdt = [0, 1, 0]T . The scalar σ is chosen as 6. System inputs
and the SMO gains are selected as stated in Section 2.

Figure 12 shows Fault 4 acting on the first input channel of the system, which affects
the signal of the rotor torque. Since the sliding motion is maintained despite the presence of
a fault, by passing the nonlinear output error injection term of channel 1 through LPF 1, the
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fault reconstruction is achieved. From a heuristic process, the optimal filter time constant is
0.0150 s, with a fit of 90.6006%.
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As LPF 2 filters the output error injection term injected into channel 2 of the SMO
and it is free of fault, it can be seen that its output remains at zero. It is important to note
that the zero deviation in the output of LPF 2 at the start of the simulation is due to the
delay introduced by the filter. This delay is also present in the reconstruction of the fault. It
can be observed that after the delay introduced by the filtering process, fault isolation and
reconstruction are carried out precisely.

Figure 13 shows the fault reconstruction when Fault 5 is acting in the second input
channel of the drive train. Since the inequality σ > ‖ fa5(t)‖ is satisfied for all t0 > 0, by
applying an LPF with a time constant of 0.04 s, a fit of 90.1299% is achieved in the fault
reconstruction. It can be observed that during the time the fault remains active, the output
of LPF of channel 1 remains at zero, which indicates that the fault is present in channel 2 of
the system. Hence, it can be established that the fault is properly isolated.

Figure 14 shows the results of the reconstruction of sawtooth Fault 6. Since Fault 6 is
applied in the second input channel of the drive train system, by filtering the output error
injection term injected into channel 2 with an LPF whose time constant is 0.024 s, a fit of
87.2779% is obtained.
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From the output of the LPF applied to the output error injection term injected into
channel 1, it can be seen that it remains at zero during the time that the fault is active.
Therefore, it can be concluded that the fault occurred in channel 2 of the system. Table 3
presents the time constants used in the LPF for each of the faults in the drive train system,
as well as the best fit in percentage obtained when performing the fault reconstruction.

Table 3. Results of the actuator fault reconstruction in the drive train system.

Faults Time Constant LPF [s] Best FIT [%]

Fault 4 0.0150 90.6006
Fault 5 0.0400 90.1299
Fault 6 0.0200 87.2779

3.3. Factors Affecting the Fault Reconstruction Performance

Several factors can affect the performance of fault reconstruction using an SMO in
wind turbines. Here are some key factors to consider:

1. The characteristics of the faults themselves can impact the performance of fault
reconstruction. From the results presented in Section 3, it is noted that factors such as
fault magnitude, fault duration, and fault dynamics (e.g., abrupt or gradual changes)
affect the accuracy of the fault reconstruction. Different types of faults require specific
adaptations in both the SMO design (the σ-parameter) and the LPF time constant to
ensure effective fault estimation.

2. The design of the SMO, including its parameter selection and initial conditions, affects
the fault reconstruction performance. In order to implement the SMO-based FDI
scheme in a wind turbine, the initial condition of the observer must be assigned
prior to the beginning of the wind turbine operation. However, the issue of how
best to choose those initial condition values has apparently been completely ignored
in control engineering textbooks. As a consequence, observer initial conditions in
industrial applications are usually set to zero by default. A study of the effect of the
SMO initial conditions on the performance of the fault reconstruction was realized.
Table 4 shows Fault 5 reconstruction performance using different SMO initial condi-
tions, keeping the initial condition of the drive train system fixed. From the results, it
can be noted that for SMO initial conditions close to system conditions, reconstruction
performance improves, while for SMO initial conditions far from the initial conditions
of the system, the performance worsens. This is an expected result since the choice of
initial conditions impacts the transient behavior and convergence speed of the SMO.

Table 4. Effects of the SMO initial conditions in Fault 5 reconstruction.

Initial Conditions Time Constant LPF [s] Best FIT [%]

x̂ =
[
0 0 0

]T 0.0400 90.1299

x̂ =
[
0 0 1

]T 0.0400 92.2562

x̂ =
[
3 2 3

]T 0.0350 88.5118

x̂ =
[
5 5 4

]T 0.0350 87.5168

x̂ =
[
100 90 100

]T 0.0350 79.2138

The observer’s parameters should be appropriately chosen to achieve fast and accurate
estimation of both system states and fault signals. Improper observer design can result
in slow convergence, estimation errors, or undesirable oscillations in the reconstructed
fault signals. A study of the effect of the SMO σ-parameter on the performance of the
fault reconstruction was realized. Table 5 shows Fault 5 reconstruction performance using
different values of the σ-parameter. From the results, it is noted that for σ values less than
the magnitude of the fault, a substantial degradation in the reconstruction of Fault 5 is
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observed. However, increasing the σ value does not substantially improve the performance
of the fault reconstruction. Consequently, an appropriate selection of the σ value must
satisfy the condition σ > ‖ fa(t)‖.

Table 5. Effects of σ in Fault 5 reconstruction.

Parameter σ Time Constant LPF [s] Best FIT [%]

σ = 6 0.0400 90.1299
σ = 5 0.0350 89.8022
σ = 3 0.0350 66.5234
σ = 8 0.0400 90.5583

σ = 10 0.0450 90.7927
σ = 20 0.0800 90.9546

3. From the point of view of the implementation of the proposed scheme, factors such
as sampling rate and computational resources can affect the fault reconstruction
performance. The sampling rate at which sensor data are collected and processed
affects the temporal resolution of fault reconstruction. A higher sampling rate allows
for finer detection and tracking of fault dynamics, but it also increases computational
requirements. The sampling rate should be chosen carefully to balance the need for
accuracy with practical implementation considerations. Moreover, the computational
resources available for implementing the SMO influence its performance. A higher
computational capability enables faster calculations and can facilitate real-time fault
reconstruction. Insufficient computational resources may result in slower estimation
or limitations in the complexity of the observer algorithm.

4. The selection and quality of sensors used to measure the system outputs and inputs
also impact the performance of fault reconstruction. High-quality sensors with low
noise and suitable measurement range contribute to accurate state estimation.

4. Discussion

An observer-based FDI scheme that uses a particular class of SMO to identify and
isolate actuator faults using an estimation approach was presented. Fault detection and
fault isolation problems are solved by analyzing the nonlinear output error injection signal
required to keep the SMO in a sliding motion. The proposed actuator FDI scheme is
evaluated with six different actuator faults, and the accuracy of the proposed approach is
validated using the NRMSE method. In contrast to the works presented in [20,23] a simple
architecture using an LPF is shown be sufficient to perform an accuracy fault reconstruction,
with no false alarm or missed detection.

The proposed FDI scheme does not require explicit information from the fault. The
only fault information required is the fault to be bounded. Thus, the actuator fault recon-
struction signal is obtained online and without prior knowledge of the fault, which is of
vital importance for the FDI scheme to be implemented in real applications.

It is important to highlight, however, that the dynamics of faults, the filter time con-
stant, the observer initial conditions, and the σ value of the SMO affect fault reconstruction
accuracy. To find the optimal filter time constant, a heuristic process is used. However, a
method to automatically find the optimal filter time constant could be used. The initial
conditions of the SMO were shown to affect the fault reconstruction performance. A better
fault reconstruction performance is achieved with SMO initial conditions close to the initial
condition of the system.

The σ value was shown to have an impact on the fault reconstruction accuracy. If the
σ value is smaller than the upper bound of the fault, an accurate fault reconstruction is not
possible. However, values of σ much larger than the upper bound of the fault were not
shown to lead to a significant increase in the fault reconstruction precision. Furthermore,
high values of σ were shown to have a prejudicial effect on the accuracy of state estimation
due to the undesirable phenomenon known as chattering.
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5. Conclusions

In this paper, an actuator observer-based FDI scheme for the pitch and drive train
systems of a wind turbine is proposed. The proposed scheme employs a special class of
SMOs that have the capacity to drive the output estimation error to zero in finite time,
even in the presence of actuator faults. The approach adopted here uses the nonlinear
output estimation error signal to perform actuator fault reconstruction. This error signal
is used to drive the observer dynamics and converges the estimated output to the actual
output of the system. Thus, it compensates for fault dynamics in the SMO by switching at
high frequency as a function of the output estimation error. To reconstruct actuator faults
in both the pitch and drive systems, an approach using an LPF on the nonlinear output
estimation error signal is adopted. The actuator fault reconstruction signal is obtained
online and without prior knowledge of the fault and, thus, it is easy to implement in
real time. Factors such as the initial conditions and SMO settings were demonstrated to
influence the fault reconstruction performance. The simulation results and NRMSE analysis
have demonstrated the effectiveness of the proposed scheme for performing actuator fault
reconstruction. In future work, the SMO-based FDI scheme will be integrated with an
FTC system.
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Abbreviations
The following abbreviations are used in this manuscript:

SMO Sliding mode observer
FDI Fault detection and isolation
NEMSE Normalized root mean square error
DNN Deep neural networks
PCA Principal component analysis
LPF Low-pass filter
NREL National Renewable Energy Laboratory
FTC Fault-tolerant control
Nomenclature
Matrix
F System matrix
G Input matrix
H Output matrix
K Observer gain matrix
M Fault distribution matrix
P Symmetric positive define matrix
T Change of coordinates matrix
Vectors
u System input vector
e Estimation error vector
x System state vector
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x̂ Estimate of states vector
y System output vector
ŷ Estimate of output vector
w Nonlinear discontinuous function
Constants
b Viscous friction constant
h Torsion damping constant
j Moment of inertia constant
k Torsion stiffness constant
N Gear ratio constant
r Rotor ratio constant
n Real number
p Real number
m Real number
q Real number
Signals
f Fault signal
v Wind speed signal
E Power electrical signal
Greek letters
α Scalar
β Pitch angle
ξ Damping coefficient
η Efficiency
θ Torsion angle
σ Scalar
ψ Natural frequency
γ Cutoff frequency
λ Tip speed ratio
ρ Wind density
Subscripts
a Actuator
dt Drive train
g Generator
l Linear
nl Nonlinear
pb Pitch blade
r Rotor
ω Wind
x State
y Output
re f Reference
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