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Abstract: To achieve high precision, stability, and good surface quality when producing micro-dimple
arrays on cylindrical surfaces, we propose a new processing method known as radial ultrasonic
rolling electrochemical micromachining (RUREMM) in this study. This method is based on the
electrochemical micromachining (EMM) and ultrasonic machining principle. The relevant simulation
model was created, and ANSYS researched the flow field characteristics of the electrolyte between the
array electrodes and the workpiece. Micro-dimple arrays were created on a SS304 cylindrical surface
with the consideration of the effects of the machining parameters, including ultrasonic amplitude
and applied pulse voltage. Compared with the EMM, the average width of the micro-dimples is
reduced by 24.5%, the aspect ratio of the dimple is increased by 108.0%, and the surface roughness
of micro-dimples is decreased by 59.7%. In addition, the localization and the surface quality of
micro-dimples by RUREMM can be improved when using appropriate machining parameters.

Keywords: radial ultrasonic rolling electrochemical micromachining (RUREMM); micro-dimple
arrays; electrochemical micromachining; ultrasonic amplitude; rolling velocity; localization

1. Introduction

Textured surfaces with specific micro-grooves, micro-dimples and other special mor-
phologies exhibit improved temperature resistance, corrosion resistance, lubrication perfor-
mance and friction for various mechanical components [1–3]. The fabrication of microstruc-
tures has drawn significant attention from scholars in the fields of tribology, air vehicle
manufacturing and industrial chemistry. For example, Walker et al. demonstrated a 37%
reduction in the coefficient of sliding friction in Al-Si cylinder liner material by applying
surface features [4]. Hao et al. [5] proposed that arrays of micro-concavities produced on the
planar and cylindrical inner surfaces of metal are conducive to increasing dynamic pressure
and decreasing resistance. In recent decades, non-traditional machining processes, in-
cluding laser machining (LSM) [6–9], micro-electrical discharge machining (EDM) [10–14],
and electrochemical micromachining (EMM) [15–18], have gained significant attention
for improving the surface properties of metals. EMM is considered a cutting-edge micro
manufacturing method that uses electrochemical anodic dissolution to remove material
from a workpiece. This approach offers numerous benefits, including a high material
removal rate, and the avoidance of residual mechanical stress on the workpiece [19–22]. In
recent years, EMM has developed and diversified, resulting in various methods, including
electrochemical jet machining (EJM). EJM is an electrochemical micromachining process
that employs a nozzle cathode to deliver the electrolyte, generating a jet that impinges onto
the anodic workpiece [23]. In addition, Wang et al. demonstrated that the electrochemical
jet apparatus not only removes material from a workpiece, but also performs localized
electro deposition to build complicated 3-dimensional structures. This is achieved by modi-
fying the cathode nozzle to dispense a deposition solution instead of an electrolyte [24].
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Through-mask electrochemical micromachining (TMEMM) is a process in which a substrate
is covered with a nonconductive, patterned mask. The mask allows the electrolytic solution
to selectively etch or deposit material only in areas where the mask is absent, thereby
creating a microstructure [25]. Patel et al. [26] utilized through-mask electrochemical mi-
cromachining (TMEMM) to fabricate micro-dimples on a stainless-steel substrate. They
were able to create a total number of 100 micro-dimples using this method, with an average
diameter and depth of 150 µm and 15 µm, respectively. Air-shielding electrochemical
micromachining (AS-EMM) is a novel technique for fabricating microstructures. It involves
the use of a coaxial gas jet to help shield the workpiece from the electrolyte, which can
improve the precision and quality of the microstructures produced. During AS-EMM, the
coaxial gas jet is used to provide a layer of shielding gas around the electrolyte jet, which
minimizes turbulence and prevents the hydraulic jump from occurring too close to the
impact area. This allows for more accurate machining and improved surface finish [27,28].

Despite the potential advantages of using techniques like AS-EMM for micro-dimple
processing, achieving optimal machining localization remains a major challenge. Due to the
small size of the high-pressure electrolyte stream used in the process, it can be difficult to
control the machining and achieve the desired location, leading to uneven surface finishes
and imperfect microstructures.

Currently, there is a growing awareness among scholars about the potential benefits of
incorporating ultrasound assistance in various machining processes [29,30]. Wang et al. [31]
have demonstrated that the use of ultrasonic energy fields can significantly enhance ma-
chining efficiency and stability. By introducing ultrasonic vibrations, they were able to
fabricate micro-holes with an aspect ratio of 12.3. Wu et al. [32] demonstrated that hy-
brid ultrasonic vibration is effective in reducing grinding forces and chip adhesion on
the grinding wheel. Moreover, this technology improves surface quality and the material
removal ratio. Goel et al. [33] observed that increasing the ultrasonic vibration time in the
ultrasonic-assisted jet electrochemical micro-drilling process resulted in an increase in the
material removal rate of the workpiece, while the hole taper decreased. Singh et al. [34]
conducted research that demonstrated the beneficial effects of combining high electro-
chemical discharge energy with ultrasonic assistance in achieving higher material removal
rates and depth-to-diameter ratios. This is due to the parallel provision for the evacuation
of sludge/debris and electrolyte replenishment in the machining zone. Zhao et al. [35]
proposed that the ultrasonic modulating compound electro-discharge and electrochemical
mine fine machining system works reliably, and can effectively enhance gap management.
Li et al. [36] discovered that using optical parameters in ultrasonic-assisted electrochemical
drilling yields a higher degree of accuracy and removes more materials.

In view of the electrochemical micromachining and ultrasonic machining principle,
radial ultrasonic rolling electrochemical micromachining (RUREMM) was presented to
machine micro-dimples on a SS304 plate. A simulation model was developed to examine the
flow field characteristics of the electrolyte between the array electrodes and the workpiece
during the RUREMM process. The analysis of the flow field characteristics was carried
out using ANSYS FLUENT software [37,38]. Micro-dimple arrays were created on a
cylindrical surface, taking into consideration the effects of the machining parameters,
including applied pulse voltage and ultrasonic amplitude. Furthermore, this study provides
a comprehensive discussion on the localization and surface quality achieved through
RUREMM, in comparison to the performance of electrochemical micromachining (EMM).

2. Principle of the EMM and the RUREMM

In RUREMM, the cathode includes an ultrasonic transducer with micro-protrusions on
its surface, while a cylindrical workpiece made of SS304 serves as the anode, as illustrated
in Figure 1. The ultrasonic transducer (cathode) and the workpiece (anode) are clamped
on different spindles of the machine tool, respectively, which has the same linear velocity
during machining. The conductive electrolyte is pumped into the machining zone by the
nozzle, serving as the medium [37]. Micro-dimples are formed on the workpiece surface
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when the power is connected, and the radial ultrasonic transducer produces an array of
micro protrusions that vibrate to assist in the machining process.
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Figure 1. The schematic diagram of RUREMM.

Figure 2a demonstrates the anodic dissolution pits formed on the surface of the
anode with varying depths. These pits result in a decrease in surface roughness and the
accumulation of electrolytic products. In contrast, Figure 2b shows that ultrasonic cavitation
initiates a chain reaction of cavitation bubbles that collapse and break the passive layer on
the workpiece surface. This results in the formation of plastic micro-pits and micro-jets on
the metal surface, along with convex peaks surrounding the pits in the machining gap. As
a result, the plastic peaks serve to amplify the impact of the electric field in the machining
gap, leading to a smoother and better surface finish [39].
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Figure 2. Schematic model of material anodic dissolution. (a) EMM, (b) RUREMM.

3. Mathematic Model

During RUREMM, the tool undergoes rapid vibrations at the equilibrium position,
while the frontal machining gap undergoes periodic variations. Additionally, the gap
between the micro-protrusions on the tool and the workpiece can be described as the
frontal gap,

∆z = ∆b + Acos(ωt+ϕ) (1)

where ∆z is the equilibrium gap, ω is the angular velocity and ϕ is the phase symbol. In
EMM, the material removal on the anode can be computed based on Faraday’s law,

va = ηωκE = ηωκ
∆U
∆b

(2)

where η is the current efficiency of anodic dissolution, ω is the electrochemical equivalent
of the workpiece material, κ is the electrolyte conductivity with tool vibration, E is the
electric field intensity, ∆U is the total overpotential between cathode and anode, and ∆b
is the frontal gap. In EMM, the conductivity of the electrolyte plays a crucial role in the
distribution of the electric current within the interelectrode gap. However, this conductivity
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can be significantly impacted by the byproducts that form in the narrow machining gaps,
such as hydrogen and sludge [27],

κ = κ0[1 + 0.016(T(x)− T0)][1 − β]1.75 (3)

where κ0 is the original value of electrolyte conductivity, T0 is the original temperature and
β is the void fraction of gas in the machining gap. According to the theoretical model that
considers the influence of the electric field and the first law of Faraday on the machining
gap during RUREMM, the material removal rate (MRR) can then be determined as follows,

MRR =
ηMI
nF

=
ηMκ∆US

nF∆Z
=

ηM∆USκ0[1 + 0.016(T(x)− T0)][1 − β]1.75

nF(∆b + A cos(ωt + ϕ))
(4)

where I is the current density in the machining gap, M is the molar mass, n is the valence
of substance, F is the Faraday constant, and S is the machining area. In addition, the
ultrasonic vibration of the cathode can significantly alter the liquid flow field. As a result,
the theoretical material removal rate of the workpiece can be obtained, which is observed
to increase with the tool vibration during RUREMM.

4. FEM Simulation

In order to get the flow field velocity in the interelectrode gap, the relevant simulation
model was created, and Fluent was employed to analyze the flow field characteristics of
the electrolyte between the array electrodes and the workpiece.

4.1. Model Description

Figure 3a describes the developed physical model during processing. The electrolytic
aqueous solution is ejected on the machining area between the vibrating electrode and
workpiece from the right location, exiting through the model boundary without backflow.
The relevant parameters are listed in Table 1.
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Table 1. Boundary conditions of the numerical model.

Item Parameter

Height of inlet (H1)/(µm) 300
Height of outlet (H2)/(µm) 800
Machining gap (d)/(µm) 50
Distance of the sidewall (L)/(µm) 800
Width of the sidewall (D1)/(mm) 2
Width of the inlet (D2)/(mm) 2.5

When applying the ultrasonic energy field, the flow field in the machining gap is
unstable, whereas the flow around the boundary is gentle. Therefore, the local mesh was
refined from dense to sparse from the flow center to the boundary [40–42]. This can improve
computational efficiency and ensure accuracy, as shown in Figure 3b. According to the
previous research, the initial velocity of the electrolyte is assumed to be 3 m/s.
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4.2. Simulation Result

Figure 4 depicts the complete velocity vector of the liquid in an axonometric draw-
ing, with the aqueous solution entering from the right side. The figure shows that the
electrolyte from the nozzle flows effectively through the machining gap, with a relatively
uniform distribution.
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During EMM, the flow velocity of the electrolyte decreases due to the resistance effect
of square electrodes, as evidenced in the decreasing flow arrows in Figure 4a. However,
the bottom flow field remains relatively stable. Furthermore, Figure 4b illustrates an
increasing machining gap, as well as a distinct blue reflux zone formed by the rapid upward
displacement of the ultrasonic transducer. In addition, the velocity of the electrolyte is
increased, which has the same direction as the flow field, and the other region has the lower
velocity which decreases with the opposite direction. Once the cathode has reached its
furthest possible position in relation to the workpiece surface, and the machining gap has
been minimized during the machining process, this indicates that the cathode has made its
closest approach to the workpiece. In Figure 4c, it can be observed that the flow rate of the
electrolyte surrounding the tool electrode experiences a significant increase as a result of
the powerful, instantaneous impact generated by the tool electrode. This impact causes the
electrolyte to be continuously flushed out. Furthermore, the velocity of the electrolyte is
simultaneously reduced in the opposite direction to the tool electrode’s movement.

According to Figure 5, the variation in flow field velocity within the machining gap
is depicted. When there is no vibration, the velocity of the electrolyte experiences an
increase of approximately 152.0% and 246.8%, ranging from 2.52 m/s to almost 6.35 m/s,
and 8.74 m/s when the cathode rapidly moves both upward and downward. Based on
these results, it can be inferred that the flow rate of the electrolyte in the machining gap is
substantially improved through the introduction of the ultrasonic energy field, which can
promptly renew the electrolyte, and thus significantly enhance machining accuracy.
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5. Experimental System and Design
5.1. Experimental Equipment

Figure 6 shows a schematic view of the experimental equipment. The experimental
configuration comprises the ultrasonic generation system, electrolyte recycle, pulse power
supply, and the machine tool control system. The ultrasonic transducer is a crucial compo-
nent of the ultrasonic generation system. It converts electrical energy into ultrasonic waves;
the ultrasonic waves cause the tool to vibrate radially, which helps to improve the efficiency
and effectiveness of the electrochemical machining process. A radical vibration transducer
with micro protrusion on its outside surface is used as the cathode, which is fixed on
the different revolving stage. The electrolyte module provides the electrolyte solution
at a specific pressure that can be adjusted using valves, pumps, and filters. This system
effectively controls the velocity and flow of the electrolyte solution within the processing
loop. Power supply units supply the machining current at different parameters: voltage
and duty ratio (USIMU, TP3030). The computer system precisely controls the motion of
the XYZ axes connected to three servomotors through a motion control card. In addition, a
high-speed camera (Keyence, VW6000) is applied to detect the machining gap. This ensures
that the inter-electrode gap is maintained within specified tolerances, resulting in accurate
and efficient electrochemical machining.
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Figure 6. Experimental equipment of RUREMM.

The experiment parameters are listed in Table 2. The cathode has the same linear
velocity as the anode, EMM and RUREMM can be carried on.

Table 2. Experimental conditions.

Item Parameter

Electrolyte concentration 10% (wt%), NaNO3
Electrolyte temperature (Te) 25 ◦C
Electrolytic velocity (Ve) 3 m/s
Ultrasonic amplitude (A) 5 µm, 10 µm, 15 µm, 20 µm
Pulse voltage (U) 6 V, 8 V, 10 V, 12 V
Pulse frequency (f 1) 12 kHz
Protrusion size 200 µm × 200 µm
Rotation speed (Vr) 0.006 r/min
Ultrasonic vibration frequency (f 2) 28 kHz
Inter-electrode gap (∆) 50 µm
Machining time (t) 10 min
Workpiece diameter (D) 50 mm
Cathode material SS 304
Workpiece material SS 304
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5.2. Experimental Design

The experiment was divided into three parts. In the first part, the localization, and
stability of the workpiece surface were compared to the same machining condition by EMM
and RUREMM. To ensure optimal efficiency and effectiveness of the machining process,
it is necessary to polish the stainless steel plate to remove any naturally formed oxide
films or other surface contaminants from the SS304 tube prior to machining. This can be
achieved by finishing the outer wall of the tube using a mechanical or chemical process.
The second part of the study focused on investigating the impact of machining parameters,
such as ultrasonic amplitude and applied pulse voltage on the width, aspect ratio, and
surface roughness of the dimples. Through comprehensive experiments and analysis, the
researchers were able to establish clear rules outlining the influence of these parameters on
each of the target characteristics. In the third part of the study, the optimized parameters
that were identified in part II were used to fabricate an array of micro-dimples on the
surface of a cylindrical SS304 tube.

6. Experimental Results and Discussion
6.1. Basic Experimental Results and Analysis by EMM and RUREMM

To compare the localization and stability of workpieces machined using EMM and
RUREMM, a series of basic experiments were conducted. The ultrasonic amplitude is
10 µm and the pulse voltage is 10 V, as shown in Figures 7 and 8. The morphology and
dimensions of the machined array dimples were analyzed using two different techniques:
scanning electron microscopy (SEM) (Hitachi, Regulus 8100) and optical profiler (KLA,
Zeta-300). In the field of electrochemical micromachining (EMM), it is observed that the
surface of micro-dimples often has blurred boundaries with the rough bottom. This is
because the electrochemical process can result in uneven removal of material from the
surface, leading to an irregular shape of the dimple. Based on the micro-dimples processed
using RUREMM, as shown in Figures 7b and 8b, it seems that there is a more uniform
corrosion on the surface of the micro-dimples. This might be because RUREMM combines
the benefits of rotary ultrasonic machining and electrochemical machining, resulting in
a more uniform and controlled material removal. Moreover, the absence of any unre-
moved material in the central area of the dimple indicates that the machining process
is more precise and controlled. Overall, RUREMM shows promise as a micromachining
technique for producing high quality micro-dimples with improved surface quality and
dimensional accuracy.
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The 3D morphology and cross-sectional profile curves of micro-pits are captured
in Figures 9 and 10. In comparison to EMM, RUREMM offers several advantages. It
provides clearer fringing, larger dimple taper, and smoother profile curve, resulting in
improved control over dispersive corrosion, better localization, and increased accuracy
in measurement. The reason for these results is due to the continuous impacting effect
of the micro-jets, which is achieved through the excitation of ultrasonic vibrations. This
continuous impact of the micro-jets causes the micro-dimples to become deeper, resulting
in the improved characteristics of RUREMM.
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Figure 10. Cross-sectional profile curves during EMM and RUREMM.

In addition to making the micro-dimples deeper, the continuous impacting effect
of the micro-jets also causes plastic peaks to form around the edge of the pits. This, in
turn, creates a more concentrated electric field and an increase in the current density in
the machining gap, leading to a smoother surface finish. The plastic peaks act as barriers
to the discharge, helping to prevent the formation of micro-cracks and the re-erosion of
previously machined areas. Altogether, this results in an improved surface finish in the
RUREMM process. The roughness of the micro-dimples obtained at different conditions
by 3D profiler and the roughness of the smooth surface (Ra), is decreased by 59.7% from
0.549 µm to 0.221 µm compared to EMM.

In order to study the consistency of the array micro-dimples, the width and depth
of 12 dimples were measured one by one. Tables 3 and 4 present the dimensions (width,
depth), average value and the standard deviation. The standard deviation of width and
depth of all the dimples is shown in Table 4.

In EMM, the width and depth deviations (the maximum deletes the minimum) were
found to be 23.1 and 1.8 µm, respectively. Similarly, the diameter and depth deviations in
RUREMM were found to be 14.3 and 1.2 µm, respectively. Furthermore, compared to EMM
results, it was observed that the average width of the dimples decreased by 24.5%, and the
aspect ratio of dimple depth to width increased by 108.0%. Furthermore, it can be observed
that the population standard deviation has decreased. These findings indicate that the use
of RUREMM is effective in enhancing consistency and stability, while reducing variability
in dimple size.
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Table 3. Dimensions value list by EMM and RUREMM.

Items Parameters 1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

Width/µm 392.1
(Min) 395.4 396.8 402.6 394.5 394.1 410.3 415.2

(Max) 394.6 395.3 396.3 406.2

EMM Depth/µm 15.4 15.9
(Max) 15.6 15.5 15.3 15.6 15.3 14.8 14.8 15.2 14.1

(Min) 15.3

Aspect ratio 0.039 0.040 0.039 0.039 0.039 0.040 0.037 0.036 0.038 0.038 0.036 0.038

Width/µm 296.5 304.3 309.5
(Max) 296.5 295.2

(Min) 302.1 307.2 302.1 298.5 300.1 306.5 303.4

RUREMM Depth/µm 23.4
(Min) 23.9 23.6 23.5 24.1 23.4 24.6

(Max) 23.8 23.4 24.1 23.8 24.3

Aspect ratio 0.079 0.079 0.076 0.079 0.082 0.077 0.080 0.079 0.078 0.080 0.078 0.080

Table 4. Analysis of results by EMM and RUREMM.

Items Parameters Conditions Up Middle Down Population Mean Population
Standard Deviation

EMM Width Average/µm 396.7 403.5 398.1 399.5
Standard deviation 4.384 10.840 5.445 7.401

Depth Average/µm 15.6 15.3 14.9 15.2
Standard deviation 0.216 0.332 0.545 0.475

RUREMM Width Average/µm 301.7 301.7 302.1 301.8
Standard deviation 6.369 4.926 3.559 4.603

Depth Average/µm 23.6 24.0 23.9 23.8
Standard deviation 0.216 0.506 0.392 0.391

6.2. Effect of Machining Parameters on Array Micro-Dimple Dimensions

During RUREMM, ultrasonic vibration can effectively improve the flow field distri-
bution in the machining gap, and can quickly remove insoluble products and joule heat
generated during the processing. The ultrasonic amplitude is the essential factor required
to improve the machining accuracy and surface quality of micro textures. Figures 11 and 12
illustrates the morphology of array micro-pits and the effects of ultrasonic amplitude on
the width and depth. The ultrasonic voltage is 5, 10, 15 and 20 µm, the aspect ratio of micro-
dimples, respectively, which were generated by RUREMM. As the ultrasonic amplitude
increases, the stray corrosion phenomenon of micro-pits decreases, obviously while the
localization increases.
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Figure 11. Morphology of array micro-pits under different ultrasonic amplitude during RUREMM.
(a) 5 µm, (b) 10 µm, (c) 15 µm, (d) 20 µm.

The change in ultrasonic amplitude has a great influence on the width and depth of the
dimples. According to Figure 12, it is evident that when the ultrasound amplitude increases
from 5 µm to 20 µm, the average width of the array microcavities decreases from around
315.2 µm to around 210.1 µm—a decrease of 105.1 µm, which is approximately 33.3%.
Meanwhile, the aspect ratio obviously increases with the ultrasonic amplitude. This is
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because the ultrasonic amplitude has a great effect on the intensity of the ultrasonic energy,
which can enhance the cavitation and the flow field distribution, and ultimately improve
the dissolution rate of the material. The higher ultrasonic amplitude makes the machining
quality unstable (Figure 11d), and frequently causes direct contact between electrodes and
a workpiece. The experimental results suggest an optimal ultrasonic amplitude is 15 µm.
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Figure 12. Effects of ultrasonic amplitude on array dimple dimensions during RUREMM. (a) Width,
(b) depth, (c) aspect ratio.

Figures 13 and 14 show the morphology and the relationship between pulse voltage
and dimensions of the array micro-dimples, respectively, under different pulse voltage
during EMM and RUREMM. During the RUREMM, the phenomenon of the stray corrosion
decreases, and the fringing is clearer with higher surface precision as the pulse voltage
increases. The change of pulse voltage has little influence on the width of the dimples, and
EMM and RUREMM have a similar variation in the same working conditions.
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Figure 14. Effects of pulse voltage on array dimple dimensions during EMM and RUREMM.
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As the pulse voltage increases, the depth and aspect ratio increase, while the width
decreases. These phenomena can be attributed to the ultrasonic energy field which is
capable of removing the electrolytic products, improving the whole current density, and
improving the localization effectively. In addition, it was observed that a lower voltage
failed to provide the required machining current density (as shown in Figure 13a,e), whereas
a higher voltage resulted in excessive secondary dissolution and a less distinct profile (as
seen in Figure 13d,h). However, increasing the voltage leads to a higher material removal
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rate, which can have a negative impact on the bottom surface quality. The experimental
results suggest an optimal applied pulse voltage is 10 V.

6.3. Array Micro-Dimples Fabrication by the Optimized Parameters

The micro-dimple arrays with good performance were generated by the optimized
parameters, as shown in Figure 15. Furthermore, 3D morphology of micro-pits and the
cross-sectional profile curve were obtained through optical profiling during RUREMM,
as shown in Figure 16. The analysis reveals that the average width is 215.8 µm, depth is
23.6 µm, aspect ratio is 0.1094 µm, and the roughness of the smooth surface is 0.218 µm,
confirming the effectiveness of the selected parameters.
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Figure 15. The diagram of experimental results with optimized parameters. (a) Overall appearance,
(b) array micro-pits.
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Figure 16. The three-dimensional diagram of array micro-pits. (a) Array micro-pits, (b) cross-
sectional dimension.

7. Conclusions

In this paper, the electrolyte flow characteristics between the ultrasonic transducer with
microprotrusion on its surface and a workpiece were simulated and analyzed. The surface
quality, accuracy, localization, and machining stability with RUREMM were discussed and
compared with EMM. The following conclusions can be drawn:

(1) In RUREMM, the ultrasonic vibration can change the electrolyte flow field close to the
workpiece surface to be a fluctuation in the machining gap. Therefore, the increase of
electrolyte velocity, which contributes to the elimination of sludge and the diffusion of
procession heat, theoretically reduces stray corrosion and machining accuracy during
the machining process.

(2) During RUREMM, the dispersive corrosion, localization, surface roughness, and
accuracy can be improved. The results show that RUREMM is able to ensure better
consistency and stability when processing micro-dimple arrays on a cylindrical surface
than EMM. The average width of micro-dimples is reduced by 24.5%, the aspect ratio
of dimples is increased by 108.0%, and the surface roughness of micro-dimples is
decreased by 59.7%.

(3) The array micro-dimples were generated using the predefined tool electrode. It was
confirmed that when the stray corrosion phenomenon of micro-pits decreases, more
materials are removed, and localization increases as the ultrasonic amplitude and
applied pulse voltage increases. In addition, the depth of the dimples is greatly
influenced by pulse voltage, and both methods have the bigger variation. The higher
ultrasonic amplitude and pulse voltage will deteriorate the bottom surface quality.
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In addition, the micro-dimple arrays with good performance were generated using
optimized ultrasonic amplitude (15 µm), pulse voltage (10 V) by RUREMM.
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