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Abstract: Due to increased demands of production capacity and higher quality requirements, indus-
tries are automating at a fast pace. Industrial robots are an important component of the industrial
automation ecosystem. However, the selection of appropriate robots is a challenging task due to the
sheer number of alternatives present and their varied specifications. The various characteristics or
attributes of industrial robots that need due consideration before selection of an optimal robot for
a given application are found to be conflicting in nature. Thus, in this paper, several multi-criteria
decision-making (MCDM) methods are deployed to select an optimal robot depending on the appli-
cation. Three different industrial robot selection problems are solved in this paper by using Simple
Additive Weighing (SAW), the Technique for Order of Preference by Similarity to Ideal Solution (TOP-
SIS), the Linear Programming Technique (LINMAP), VIseKriterijumska Optimizacija I Kompromisno
Resenje (VIKOR), Elimination and Choice Translating Priority III (ELECTRE-III), and the Net Flow
Method (NFM).

Keywords: optimization; robots; MCDM; decision making; optimal selection

1. Introduction

A robot is a collaboration of interdisciplinary fields integrating together to provide
automatic or semiautomatic assistance to humans, and the study of these robots’ opera-
tion, design, and use is all about robotics. The term robot comes from the Czech word
robots, which means forced or slave laborer, as it performs the work that is programmed
accordingly or work that is assigned to it. According to the International Organization
for Standardization, a robot is an automatically controlled, reprogrammable multipurpose
manipulator that is programmable in three or more axes [1,2], which can be either fixed in
place or mobile for use in industrial automation applications. Industries are moving toward
robotic functions because of the repeated and continuous work needed to be carried out
with more precision and accuracy [3]. The advancement in robotics has helped researchers
and industries work in the hazardous and difficult environments where human operations
are dangerous to perform. Robots are performing repetitious, difficult, and hazardous tasks
with precision [4]. Robots are also playing a vital role in different segments of industries,
for example, machining [5], hospitality [6], space science [7], automotive industries [8],
medical [9], and sports segments [10]. Different robots have different types of autonomy
as per human intervention ranging from fully human-controlled robots, to an assisting
robot helping in reducing human work, to a fully autonomous one that does not require
any external help. Day by day, increasing demands and increasing competitions in the
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market can be a suitable area in which robots will play an important role by increasing
productivity and quality.

Booth et al. [11] carried out an evaluation and selection of robots on the basis of envi-
ronmental condition, performance, and cost of the robots. Chatterjee et al. [12] mentioned
the various attributes of robot selection, i.e., subjective and objective attributes. Subjective
attributes can be defined as qualitative attributes such as material quality and serviceability,
and objective attributes are those that are quantitative parameters such as load capacity,
reach, and memory capacity. These attributes can also be categorized as beneficial and
non-beneficial attributes. Beneficial attributes are those in which higher values are always
desirable, for example, load capacity, reach, maximum top speed, and memory capacity.
Non-beneficial attributes, which are also referred to as cost attributes in the literature, are
those in which lower values are preferable, for example, economic cost, repeatability error,
weight, and power consumption. Table 1 lists several attributes that are often considered in
robot selection. The definition and utility of these attributes are also discussed in Table 1.

Table 1. Various attributes of industrial robots.

Attribute Type Definition

Economic cost Non-beneficial The initial set-up cost including purchase, installation, and training cost
Load capacity Beneficial Maximum load the manipulator arm can carry without affecting its performance
Repeatability error Non-beneficial Error associated with the robot’s inability to return back to its initial fixed position
Top Speed Beneficial The maximum speed that the robot arm tip can attain
Kinematic structure
(degree of freedom) Beneficial Number of independent actuators that can be controlled to position the robotic arm

Vertical reach Beneficial Maximum vertical distance that the manipulator arm can reach to grasp objects
Horizontal reach Beneficial Maximum horizontal distance that the manipulator arm can reach to grasp objects
Memory capacity Beneficial Number of steps/points that a robot can store while in operation
Weight Non-beneficial Weight of the structure in kg
Power consumption Non-beneficial Total power requirement per unit time by the robot in KWh

Multi-criteria decision making has widespread applications [13,14]. Its application
ranges from stock selection [15] to manufacturing and construction [16] to Industry 4.0 [17].
Various methods have been proposed to determine an optimal robot for a given application.
Owing to the presence of several criteria that must be analyzed before selecting an optimal
robot, robot selection is a non-trivial problem. Moreover, since the criteria often conflict with
each other, multi-criteria decision-making (MCDM) methods are especially apt for such
applications. In the literature, different MCDM methods have been used by researchers to
solve such robot selection problems. Bhalaji et al. [18] used DEMATEL (decision-making
trial and evaluation laboratory) to analyze the risk factors influencing the human–robot
interaction and found that automation level and reliability of the robot are the major
factors that need to be carefully checked to reduce the risk factor for efficient assembly.
Parameshwaran et al. [19] worked on an integrated fuzzy MCDM-based approach for robot
selection considering objective and subjective criteria. Fu et al. [4] used MCDM for group
decision making for handling the multiple criteria for selection and focused on three main
procedures: identifying the experts, implementing the MCDM method, and achieving
a group consensus. Further, they used two MCDM methods called VIseKriterijumska
Optimizacija I Kompromisno Resenje (VIKOR) and Elimination and Choice Translating
Priority II (ELECTRE II) for demonstrating the effectiveness and validity of the methodology.
Zhou et al. [20] developed fuzzy extended VIKOR to choose the best robot with different
specifications with respect to multiple conflicting criteria. Liu et al. [21], too, tackled robot
section by using a MCDM framework. In this regard, they presented a robot selection
model integrating quality function development (QFD) for the determination of criteria
weight and the qualitative flexible multiple criteria method (QUALIFLEX) for generating
the ranking of alternative robots. Tian et al. [22] used surrogate model for expensive
optimization problems. Ghorabaee et al. [23] worked on developing a MCDM framework
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where the VIKOR method with an interval type-2 fuzzy number was proposed for robot
selection. Table 2 presents a comprehensive literature review of applications of MCDMs in
robot selection in the last few years (2019–2023).

Table 2. Literature on application of MCDMs in robot selection (2019–2023).

Source MCDM Method Robot Application Weight Used

Fu et al. [24]
Stochastic multicriteria

acceptability analysis (SMAA)
-

Entropy, Criteria importance
through intercriteria correlation

(CRITIC)
Liu et al. [25] QUALIFLEX - Extended QFD method

Mecheri and Christopher [26]
Analytical hierarchical process

(AHP)
Collaborative robots -

Narayanamoorthy et al. [27] VIKOR Industrial robots
Interval-valued intuitionistic

hesitant fuzzy entropy

Yalçin and Nusin [28]
Evaluation based on distance
from average solution (EDAS)

Industrial robot -

Ahmad et al. [29]
Multi-attributive border

approximation area comparison
(MABAC)

Pick-and-place robot CRITIC

Banerjee et al. [30] De Novo approach Material handling
Aggregate fiscal Terminal Value,

Specific Benefit

Nasrollahi et al. [31]
Preference Ranking Organization

Method for Enrichment of
Evaluations (PROMETHEE)

Industrial robots Fuzzy Best–Worst Method

Agarwal et al. [32] MABAC Arc welding robots Rough entropy method

Ali and Rashid [33] - Industrial robots
Objective weights, best–worst

method

Goswami et al. [34]

TOPSIS- Additive Ratio
Assessment (ARAS); Complex

Proportional Assessment
(COPRAS)-ARAS

- CRITIC

Jagtap [35]
m-Polar fuzzy ELECTRE-I

method
- -

Rashid et al. [36] EDAS Industrial robot Best–worst method

Rashid et al. [37] TOPSIS; VIKOR Industrial robots
Generalized interval-valued
trapezoidal fuzzy weights

Singh et al. [38] Fuzzy inference engine Social robots

Zhao et al. [39]
Multiple-criteria group decision

making with individual
preferences (MCGDM-IP)

Industrial robots Entropy, CRITIC,

Bairagi [40] TOPSIS Industrial robot -

Bairagi [41]
Technique of Accurate Ranking

Order (TARO)
Material handling Entropy

Chodha et al. [42] TOPSIS Arc welding robot Entropy
Garg and Sharaf [43] EDAS Industrial robots Spherical fuzzy

Kaya et al. [44]
DEMATEL, analytic network

process (ANP), TOPSIS
Social robots

interval-valued Pythagorean
fuzzy sets

Kumar et al. [45]
Combined compromise solution

(CoCoSo)
Spray painting robot

Step wise weight assessment ratio
analysis (SWARA)

Shanmugasundar et al. [46]
Combinative Distance based

ASsesment (CODAS), COPRAS,
CoCoSo, MABAC, VIKOR

Spray painting robot
Method based on the Removal

Effects of Criteria (MEREC)

Dhumras and Bajaj [47] EDAS Robotic agrifarming Dombi aggregation operators
Garg et al. [48] CoCoSo Automobile manufacturing Bonferroni function; SWARA

Sampathkumar et al. [49]
COPRAS- Weighted Aggregates

Sum Product Assessment
(WASPAS)

Manufacturing robots Intuitionistic dense fuzzy entropy

Soltan et al. [50]
Fuzzy–AHP–QFD–TOPSIS

(FAQT-2)
Industrial robot (pharmaceutical) -

Oyama et al. [51] - Pick-and-place robot -

Kang et al. [52]
Multi-attribute utility theory

(MAUT)
Medical service Best–worst method

Dodevska et al. [53]
Hesitant intuitionistic fuzzy sets

(HIFS)
- Cross-entropy
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The rapid expansion of industrial automation has witnessed an increased demand
for the use of industrial robots. However, the challenge lies in the selection of the most
appropriate robot for a specific task from a vast range of alternatives, each with varied
specifications. The complexity of this selection process is the research problem that this
study aims to address. In pursuit of solutions to this problem, the study intends to find the
answers to the following research questions:

• How can multiple Multi-Criteria Decision-Making (MCDM) methods be effectively
applied to industrial robot selection problems?

• What are the comparative results and performance metrics when these methods are
applied to the selection problem?

• What is the potential impact of different weight allocation strategies on the robot
selection outcome?

Guided by these research questions, this study develops the following hypotheses:

• Different MCDM methods, including Simple Additive Weighing (SAW), the Technique
for Order of Preference by Similarity to Ideal Solution (TOPSIS), the Linear Program-
ming Technique (LINMAP), VIseKriterijumska Optimizacija I Kompromisno Resenje
(VIKOR), Elimination and Choice Translating Priority III (ELECTRE-III), and the Net
Flow Method (NFM), can be effectively applied to solve industrial robot selection
problems.

• A comprehensive comparison of these methods will reveal distinct patterns of results
and performance.

• Different weight allocation strategies, including the mean weight method, standard
deviation, and entropy method, significantly influence the selection outcome.

To test these hypotheses and answer the research questions, this study presents three
case studies employing six different MCDM methods. Each method is analyzed in an
objective weight scenario. Besides the commonly used mean weight method, the standard
deviation and entropy method for determining the criteria weights are also utilized. Further,
each of the six MCDM methods is hybridized with the Preference Selection Index (PSI)
method. The results of this hybrid approach are then compared with those obtained from
the other three objective weight allocation methods.

2. Methodology
2.1. Weight Allocation Methods
2.1.1. Mean Weight Method (MW)

Equal weights are assigned to each criterion in this approach to give equal importance
to each criterion. For example, if n alternatives are evaluated based on m criteria, then the
weight allocated to each criteria is 1/m.

2.1.2. Standard Deviation Method (SDV)

The standard deviation allocates weights to each criterion in an unbiased manner.
It is based on the standard deviation between performance ratings for criteria under
consideration across all the alternatives. Since it is based on statistical analysis of the data,
it significantly improves the decision-making process by minimizing the personal bias
involved in decision making. Steps involved in this process are elucidated as follows:

Step 1: Normalization is carried out using Equation (1) before the calculation of
weights by the SDV method.

Bij =
xij −min(x)ij

max(x)ij −min(x)ij
(1)

where Bj is the average of the values for the ith measure, where j = 1, 2, 3.
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Step 2: The standard deviation across alternatives is calculated using Equation (2).

SDVJ =

√
∑m

i=1
(

Bij − Bj
)2

m
(2)

Step 3: The weight of each criterion is then calculated as shown in Equation (3).

Wj =
SDVj

∑n
j=1 SDVj

(3)

2.1.3. Entropy Method

This is derived from the concept of entropy in information theory. The entropy
function is based on the discrete probability distribution and measures the degree of
uncertainty contained in the information being presented. Since the criterion with the
highest uncertainty has the most significant influence on the decision-making process, the
entropy concept has been used by numerous past researchers to determine the weight
of criteria in the MCDM procedure. The objectivity of the weight calculated using the
entropy method ensures that the weights are free from any biases of the decision maker.
The following steps are followed to calculate the objective weights of criteria using the
entropy method:

Step 1: The entropy of each criterion is calculated by using Equation (4) shown below.

ej =
−1

ln(m)

m

∑
i=1

nij ln
(
nij
)

(4)

Step 2: The degree of diversity (d) possessed by each criterion is evaluated:

dj = 1− ej; j = 1, 2, 3 . . . n (5)

Step 3: The objective weight for each criterion is given by

Wj =
di

∑n
i=1 di

(6)

2.1.4. Preference Selection Index (PSI) Weights

The PSI method [15] begins by expressing the MCDM problem in terms of Equation (1).
If the response is of benefit-type, i.e., larger values are desired, then the normalization is
performed using Equation (7).

nij =
xij

xj
max (7)

If the response is of cost-type, i.e., smaller values are anticipated, then the normaliza-
tion is performed using Equation (8).

nij =
xj

min

xij
(8)

The mean value of each normalized value of each response is calculated as

N =
∑n

i=1 nij

n
(9)

Next, a preference variation value among each response is calculated as

φj =
n

∑
i=1

[
nij − n

]2 (10)
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The variation in the preference value for each response is calculated as

Ωj =
[
1− φj

]
(11)

Then, the overall preference value is obtained for individual responses by

ωj =
Ωj

∑m
j=1 Ωj

such that
m

∑
j=1

ωj = 1 (12)

2.2. Multi-Criteria Decision-Making Methods

This study employs six different MCDM methods, namely Simple Additive Weighing
(SAW), the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), the
Linear Programming Technique (LINMAP), VIseKriterijumska Optimizacija I Kompro-
misno Resenje (VIKOR), Elimination and Choice Translating Priority III (ELECTRE III), and
the Net Flow Method (NFM). The rationale for the selection of these specific methods and
their distinctive features are discussed below:

• The SAW method is chosen for this study because it is one of the most straightforward
and widely used MCDM methods. This method is simple in its computation and can
handle large datasets efficiently.

• The TOPSIS method is chosen for this study because it is a popular MCDM method
known for its strength in identifying solutions that are closest to the ideal and farthest
from the negative-ideal solution. It is particularly suited to problems where trade-offs
between criteria must be considered.

• LINMAP is chosen for its ability to handle complex decision-making scenarios that
involve linear trade-offs. It is especially useful when the relationship between criteria
is linear.

• The VIKOR method is included due to its unique approach of ranking alternatives
based on the concept of compromise solutions. It is well suited for decision problems
with conflicting and non-commensurable (different units) criteria.

• ELECTRE III is chosen for its distinct ability to handle uncertainty and imprecision in
decision-making problems. It is also known for its capability of capturing complex
preference structures among alternatives.

• NFM is included for its application in decision-making problems where the ranking of
alternatives is required. It provides a holistic ranking of options, making it suitable for
our study.

Each of these methods is selected for their unique characteristics and applicability to
the problem of industrial robot selection. The distinct features of each method, including
their treatment of criteria weights and ranking mechanism, contribute to a more thorough
analysis of the selection problem, thus leading to more robust conclusions.

2.2.1. Simple Additive Weighting (SAW)

Simple Additive Weighing is a simple but useful tool in MCDM problems when the
nature of the problem is not very complicated. It was proposed by Hwang and Yoon in 1982
to solve decision-making problems. It combines the weighted normalized performance
rating values across all criteria to assign a performance index to all alternatives. The
procedural steps involved in SAW are listed below.

Step 1: Linear normalization of the decision matrix is performed using Equations (13)
and (14) for benefit- and cost-type criteria, respectively.

Fij =
fij

f+j
f or maximization criterion, where f+j = Maxi∈n fij (13)

Fij =
f−j
fij

f or minimization criterion, where f−j = Mini∈n fij (14)
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Step 2: The normalized decision matrix is transformed to a weighted matrix by
multiplying criteria weights corresponding to each criterion using Equation (15).

vij = Fij × wj (15)

Step 3: The aggregate score for each alternative is calculated by summing up the
weighted performance rating under all criteria using Equation (16).

Ai =
n

∑
j=1

vij (16)

Step 4: The alternatives are ranked from best to worst in decreasing order of aggregate score.

2.2.2. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS is among the first few MCDM methodologies developed by Hwang and Yoon
in 1981 to incorporate the scientific method in decision making. It is based on the principle
that the alternative that is closest to the ideally best alternative and farthest from the ideally
worst solution is preferred. The Euclidean distance is used as the measure of closeness and
farness from the best and worst solution, respectively, in the TOPSIS methodology. The
steps involved in the TOPSIS method are listed below:

Step 1: Normalization of the decision matrix is performed using Equation (17) shown below.

Fij =
fij√

∑m
i=1 f 2

ij

(17)

Step 2: The weighted normalized decision matrix is calculated using Equation (18).

vij = Fij × wj (18)

Step 3: Positive and negative ideal solutions for each criterion are identified across all
alternatives using Equations (19) and (20).

A+ =
{(

Maxi
(
vij
)
∀ j ∈ J

)
,
(

Mini
(
vij
)
∀ j ∈ J′

)
Ii ∈ 1, 2, . . . , m

}
=
{

v+1 , v+2 , v+3 , . . . v+j , . . . v+n
}

(19)

A− =
{(

Mini
(
vij
)
∀ j ∈ J

)
,
(

Maxi
(
vij
)
∀ j ∈ J′

)
Ii ∈ 1, 2, . . . , m

}
=
{

v−1 , v−2 , v−3 , . . . v−j , . . . v−n
}

(20)

where J and J′ are beneficial and cost criteria, respectively.
Step 4: The Euclidean distances from the positive and negative ideal solutions are

calculated using Equations (19) and (20), respectively.

Si+ =

√√√√ n

∑
j=1

(
vij − vj

+
)2 i = 1, 2, 3 . . . , m (21)

Si− =

√√√√ n

∑
j=1

(
vij − vj

−)2 i = 1, 2, 3 . . . , m (22)

Step 5: The alternatives are ranked based on the closeness coefficient calculated
using Equation (21). The ranking is performed from best to worst in increasing order of
closeness coefficient.

Ci =
Si−

Si− + Si+
(23)
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2.2.3. Linear Programming Technique (LINMAP)

The LINMAP technique was proposed by Srinivasan and Shocker as a tool to solve
MCDM problems. In LINMAP, the decision matrix is represented as linear equations. The
ideal solution is then calculated by solving those linear equations. The Euclidian distances
from the positive ideal solution are then computed such as in case of TOPSIS and this score
is used to rank the alternatives. The solution closest to the ideal positive will be ranked
more preferable by this technique. The procedural steps involved in this method are stated
as follows [54]:

Step 1: A hybrid decision matrix S is created using Equation (24).

S = {(K, L)} : K, L ε A (24)

Step 2: The following linear programming problem is solved within the given con-
straints to find the ideal solution.

min

 ∑
(k,l)εS

Zkl

 (25)

Subject to :
n

∑
j=1

Wj ∑
(k,l)∈S

(
x2

Lj − x2
Kj

)
− 2

n

∑
j=1

Vj ∑
(k,l)∈S

(
xLj − xKj

)
= h

n

∑
j

Wj

(
x2

Lj − x2
Kj

)
− 2

n

∑
j

Vj
(

xLj − xKj
)
+ Zkl > 0; (k, l) ∈ S

∑
j

Wj = 1 Zkl ≥ 0 (k, l) ∈ S

The product of weight and r* is an appropriate representation of the jth index Vj,
which is represented as Equation (26).

Vj = Wjr∗j (26)

Step 3: Euclidean distances from the ideal solution are calculated using the following
equation and alternatives are ranked in descending order of Si.

Si

n

∑
j

Wj

(
xij − r∗j

)2
(27)

2.2.4. VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR)

VIKOR was proposed by Opricovic and Tzeng to find a compromise optimal solution
for decision-making problems. The method is based on finding a compromise solution by
identifying an ‘ideal’ solution in the solution space and measuring the distances from the
ideal solution in that space. Manhattan and Chebyshev distances are considered in the
VIKOR technique for the evaluation of distances from ideal solutions. The procedural steps
are as follows [55]:

Step 1: Calculate the Manhattan distance from the ideal solution using Equation (28),
which is a sum of all the row elements (across all criteria) of the weighted normalized
decision matrix, i.e.,

Si =
n

∑
j=1

wj

(
F+

j − fij

F+
j − F−j

)
(28)
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Step 2: Calculate the Chebyshev distance from the ideal solution using Equation (29),
which is the maximum element among all the row elements (across all criteria) of the
weighted normalized decision matrix, i.e.,

Ri− = Maxj∈n

[
wj

(
F+

j − fij

F+
j − F−j

)]
(29)

Step 3: Rank the alternatives based on an aggregated Q value calculated using
Equation (30). Alternatives are ranked in ascending order of Q values.

Qi = γ

(
Si − S+

S− − S+

)
+ (1− γ)

(
Ri − R+

R− − R+

)
Qi = 1, 2, 3, . . . m (30)

2.2.5. Elimination and Choice Translating Priority III (ELECTRE III)

ELECTRE-III works on the principle that one alternative is better than the other
alternative by the degree to which the alternative outranks the other. While ELECTRE-II
was proposed earlier with different equations to evaluate the concordance and discordance
matrices, ELECTRE-III relies on a different and improved method to evaluate the same.
ELECTRE-III begins by converting a minimization problem to a maximization problem for
all cost criteria. Three indices, the indifference threshold (Q), preference threshold (P), and
veto threshold (V), are decided by the decision maker. The procedural steps involved in
ELECTRE-III are as follows:

Step 1: Performance ratings are converted to suit maximization criteria as discussed in
Equation (31).

For Maximization; Fij = fij
For Minimization; Fij = − fij

(31)

Step 2: The three threshold values are chosen and a concordance matrix C(a, b) =
n
∑

j=1
wjCj (a, b) is formulated such that:

Cj(a, b) =


1 i f Fj(b)− Fj(a) ≤ Qj
0 i f Fj(b)− Fj(a) > Pj

Pj−[Fj(b)−Fj(a)]
Pj−Qj

i f Qj < Fj(b)− Fj(a) ≤ Pj

 (32)

Step 3: A discordance matrix is also formulated using Equation (33) below

Dj(a, b) =


1 i f Fj(b)− Fj(a) > Vj
0 i f Fj(b)− Fj(a) ≤ Pj

Fj(b)−Fj(a)−Pj
Vj−Pj

i f Pj < Fj(b)− Fj(a) ≤ Vj

 (33)

Step 4: Credibility matrix Sij is formulated from the concordance and discordance
matrices based on Equation (34).

S(a, b) =


C(a, b) i f Dj(a, b) ≤ C(a, b)∀ j

C(a, b) ∏
jεJ(a,b)

1−Dj(a,b)
1−C(a,b) otherwise (34)

Step 5: An index calculated by subtracting the strength (sum of row) by the weakness
(sum of column) is used to rank the alternatives in descending order.

2.2.6. Net Flow Method (NFM)

The Net Flow Method was derived from ELECTRE-III with the objective to broaden
the scope of application and improve the decision-making process. The NFW is similar to
the ELECTRE-III method up until the formulation of the concordance matrix and then the
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discordance matrix is calculated using Equation (35). The following steps are discussed
in continuation:

D(a, b) =
n

∏
j=1

[1−
(

Dj(a, b))3
]

(35)

Where; Dj(a, b) =


1 i f Fj(b)− Fj(a) > Vj
0 i f Fj(b)− Fj(a) ≤ Pj

Fj(b)−Fj(a)−Pj
Vj−Pj

i f Pj < Fj(b)− Fj(a) ≤ Vj


Step 2: The credibility matrix is then calculated by multiplying each element of

the concordance matrix with the corresponding element of the discordance matrix using
Equation (36):

σ(a, b) = C(a, b)· D(a, b) (36)

Step 3: The ranking score is calculated as follows using Equation (37) and alternatives
are ranked in decreasing order of ranking score.

Si =
m

∑
k=1

σ(i, k)−
m

∑
k=1

σ(k, i) (37)

3. Results and Discussion
3.1. Case Study 1
3.1.1. Problem Description

In this case study, an industrial robot selection problem consisting of five different
robots (i.e., alternatives) is tackled. The selection is based on four different criteria—three
among which are beneficial while the last one is non-beneficial (i.e., cost). The beneficial
criteria are load capacity (LC), vertical reach (VR), and kinematic structure, i.e., degrees
of freedom (DF). The cost criterion is repeatability error (RE). The descriptions of each
of these properties are given in Table 1. The objective is to select the best robot among
those shown in Table A1 based on these criteria. Additionally, the effect that the weights of
criteria have on the selection outcome is also studied. A comparison is made between ranks
obtained using the MCDM techniques discussed earlier based on four different objective
weights—mean weight, standard deviation, entropy weights, and PSI weights.

3.1.2. Optimal Robot Selection

A 5× 4 decision matrix is formulated using the data shown in Table A1. The weight of
each criterion is first calculated using the four methodologies discussed in earlier sections.
For mean weight allocation, 1/4 = 0.25 is considered as the weight of each criterion
based on the method discussed in Section 2.1.1. The standard deviation weight allocation
requires the user to calculate the standard deviation across alternatives using Equation (2)
after normalizing the decision matrix using the linear normalization method following
Equation (1). The standard deviations are then normalized to make the weights add up
to unity using Equation (3). The entropy of information is calculated using Equation (4),
which is then subtracted from unity to find the degree of diversity in the data. This is
then normalized using Equation (6) to calculate the entropy weights. To calculate the PSI
weights of the criteria, the decision matrix is first normalized using Equations (7) and (8)
for benefit and cost criteria, respectively. The mean normalized value is calculated for each
response using Equation (9) and this is used to calculate the preference value among the
responses from the normalized decision matrix using Equation (11). This is subtracted
from 1 to calculate the preference value of the criterion for each response using Equation
(12). The scaling of preference values is performed using Equation (13) to calculate the PSI
weights. These criterion weights are then used with six MCDM techniques for the selection
of robots.

The detailed procedure for decision making using all the MCDM techniques used
in this study is explained in Section 2.2. The ranking of alternatives using SAW involves
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normalization of the decision matrix using Equations (14) and (15) for cost and benefit
criteria, respectively, and formulating a weighted performance matrix using Equation (16).
An aggregate performance rating of all the alternatives is calculated using Equation (16)
and the ranks obtained using SAW are shown in Figure 1. It is worth noticing here that the
third robot is identified as the best alternative by the SAW method followed by robot 2 that
is ranked second. All weight allocation methodologies assign the same ranks to each robot,
suggesting very little sensitivity of the method to criteria weights.
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While SAW is a simple technique that demands very little computational effort for
decision making, TOPSIS is a slightly more elaborate method wherein the first step is to
normalize the decision matrix using Equation (18). The normalized decision matrix is
multiplied with the criteria weights to formulate a weighted normalized decision matrix.
The positive ideal and negative ideal for all criteria are identified depending on the type
of criteria following Equations (20) and (21). The Euclidean distances calculated using
Equations (22) and (23) from the positive and negative ideal solution, respectively, are
shown in Figure 2. This figure illustrates the differences in the robots’ performances very
nicely. While robots 1, 2, and 3 are very close to the positive ideal (hypothetically best-
performing robot), robots 4 and 5 are closer to the negative ideal and are among the worst
alternatives. We shall see in the discussions about other MCDM techniques that while all
the techniques are not consistent with choosing the best robot, it is always robots 1, 2, and
3 that are closest to the positive ideal solution. A closeness coefficient calculated using
Equation (24) is used to rank the best robot using the TOPSIS method.



Processes 2023, 11, 1681 12 of 22

Processes 2023, 11, x FOR PEER REVIEW 13 of 26 
 

 

 
Figure 2. Positive and negative distance of each alterative from the ideal solution in Case Study 1. 

The LINMAP technique relies on solving a linear programming problem for selecting 
the best alternative. A modified decision matrix formulated using Equation (24) is used to 
develop a linear programming model. The linear programming model shown as Equation 
(25) is solved to obtain the values of the ideal solution for each criterion. The Euclidean 
distance from the obtained ideal solution is calculated using Equation (27) and that is the 
criterion that is used to rank the alternatives from best to worst. The procedural resem-
blance with TOPSIS is also reflected in the high degree of correlation between ranks ob-
tained by LINMAP and TOPSIS. Three of the four weight allocation methods suggest that 
the second robot is the best robot using the LINMAP procedure. The dominance of the 
second robot is understandable as the LINMAP procedure relies only on the distance from 
the positive ideal, while TOPSIS considers both negative and positive ideal solutions for 
calculating the Euclidean distance. 

VIKOR is a three-step process that involves formulating a weighted normalized de-
cision matrix before beginning the selection process. The calculations of Manhattan and 
Chebychev distances are performed using Equations (28) and (29). An aggregated Q score 
calculated using Equation (30) based on these distances is used for ranking the alternatives 
from best to worst. A graphical representation of ranks obtained using VIKOR can be seen 
in Figure 1. The VIKOR method seems to show inconsistencies only to very significant 
differences in weights, as seen from the rank plot for entropy. It predicts the second robot 

Figure 2. Positive and negative distance of each alterative from the ideal solution in Case Study 1.

The LINMAP technique relies on solving a linear programming problem for select-
ing the best alternative. A modified decision matrix formulated using Equation (24) is
used to develop a linear programming model. The linear programming model shown as
Equation (25) is solved to obtain the values of the ideal solution for each criterion. The
Euclidean distance from the obtained ideal solution is calculated using Equation (27) and
that is the criterion that is used to rank the alternatives from best to worst. The procedural
resemblance with TOPSIS is also reflected in the high degree of correlation between ranks
obtained by LINMAP and TOPSIS. Three of the four weight allocation methods suggest
that the second robot is the best robot using the LINMAP procedure. The dominance of the
second robot is understandable as the LINMAP procedure relies only on the distance from
the positive ideal, while TOPSIS considers both negative and positive ideal solutions for
calculating the Euclidean distance.

VIKOR is a three-step process that involves formulating a weighted normalized
decision matrix before beginning the selection process. The calculations of Manhattan and
Chebychev distances are performed using Equations (28) and (29). An aggregated Q score
calculated using Equation (30) based on these distances is used for ranking the alternatives
from best to worst. A graphical representation of ranks obtained using VIKOR can be seen
in Figure 1. The VIKOR method seems to show inconsistencies only to very significant
differences in weights, as seen from the rank plot for entropy. It predicts the second robot
to be the best alternative 75% of the time. When entropy weights are considered, it loses
only to the third robot possibly because of the high weighting to repeatability error criteria
by the entropy method.

ELECTRE-III involves the conversion of all types of criteria to beneficial criteria by
introducing a negative sign in front of cost-type criteria performance ratings. The concor-
dance and discordance matrices are calculated using Equations (32) and (33), respectively.
The Qj, Pj, and Vj values are taken as 10%, 20%, and 80% of the ideal value for each criterion,
respectively. Equation (34) is then used to formulate a credibility matrix. The difference
between strengths and weaknesses of each alternative is calculated as discussed in step 5 of
Section 2.2.5 to formulate a rating. Alternatives are then ranked based on these ratings. It is
worth noting here that except for one of the weight allocation methods (entropy), all meth-
ods predict the second robot to be the best alternative. Entropy weights assign the first rank
to robot 3, and robot 2 is placed second after that. Interestingly, all the MCDM techniques
discussed so far rank the third robot as the best alternative when entropy weights are used.
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NFM is very similar to the ELECTRE-III method where the difference is in calculating
the discordance matrix and the steps thereafter. The discordance matrix is calculated
using Equation (35). This discordance matrix is then multiplied with the concordance
matrix using Equation (36) to construct the credibility matrix. It should be noted that the
multiplication is element-to-element and not a matrix multiplication. The Si calculated
using Equation (37) from the credibility matrix is used to rank the robots from highly
desirable to not desirable. The similarity between NFM and ELECTRE-III in procedural
steps is reflected in the ranking obtained in the two. NFM seems to be very slightly sensitive
to the criteria weights with a 100% overlap between all the weight allocation strategies. It
ranks robot 2 as the most desirable alternative and robot 5 as the least desirable one among
the five robots considered for this study.

The correlation matrix showing inter- and intra-weight comparisons among all the
MCDM techniques employed in this study is shown in Figure 3. A very high correlation
between most of the comparisons validates the process and results of this study. It can be
safely concluded that robots 2 and 3 are the best alternatives among the robots compared,
while robot 5 is the most poorly performing from the lot. The selection between robot 2 and
3 primarily depends on the weighting that the decision maker gives to each criteria and
hence a subjective weight might be considered in the future for the current robot selection
problem to include the interest of the decision maker.
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3.2. Case Study 2
3.2.1. Problem Description

In this robot selection problem, we consider seven robots for simple pick-and-place
applications in industries. The selection is based on five conflicting criteria out of which
one of them—repeatability—is a cost criterion and the rest, i.e., Load Capacity, Tip Speed,
Memory, and Reach, are beneficial criteria. The objective of the current work is to solve a
robot selection problem using MCDM techniques discussed earlier and draw a comparison
and correlation between the different methods used. Using multiple methods for decision
making and weight allocation also helps to validate the study.

3.2.2. Optimal Robot Selection

A decision matrix for the current problem is formulated using Table A2 shown in
the appendix section of the paper. The first step in solving the decision-making problem
is to calculate the weights of criteria, and, for the current study, mean weights, standard
deviation weights, entropy weights, and PSI weights are selected as four different weights
for each criterion. Procedural steps as described in the methodology section of this paper
are duly followed to calculate the criteria weights. These weights are used in combination
with all six MCDM techniques for selection of the best robot.

The SAW method is implemented as discussed in case study 1 for the selection process
and the ranks obtained are shown in Figure 4. The Cybotech V15 Electric robot is selected
as the best robot 75% of the time by the SAW technique. While ASEA-IRB 60/2 is selected
by the SAW method when entropy weights are used, the Cybotech V15 Electric robot is
recommended as the second best among the robots considered for the study. The least
desirable alternative is suggested to be fifth robot 75% of the time when the SAW method
is used.
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Similarly, TOPSIS is also used to rank the best robot among the seven robots studied.
Although the weights of criteria play a significant role in the ranks suggested by the TOPSIS
method, the overall trend of first and third robots being the among the better alternatives
while the fifth and sixth are the least desirable alternative is consistent among all the
discussed methods. This can also be reflected in the closeness coefficient plot shown in
Figure 5. While the difference among alternatives is not as prominent in case study 1, the
plot can be carefully observed to identify that alternative 3 is closer to the ideal positive
than all other alternatives. Alternative 1 seems to be farthest away from the negative ideal,
resulting in a higher ranking among alternatives.Processes 2023, 11, x FOR PEER REVIEW 17 of 26 
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Ranks obtained using LINMAP are similar to the ones obtained by TOPSIS except for
a few weight allocation strategies as seen from the rank plots and correlation plot shown in
Figures 4 and 6. The first robot, i.e., ASEA-IRB 60/2, is ranked as the best alternative 75%
of the time except when the third robot is ranked as the best alternative using PSI weights.
The close competition between the third and first robots reflects the importance of criteria
weights in any MCDM study.

Similarly, VIKOR suggests that the third robot is the best alternative with the most
weight allocation strategies. While entropy weights suggest that the first robot is the most
desirable alternative, it is ranked fourth among the seven robots with all other weight
allocation strategies. This suggests a slight skewing of the weight allocation strategy to
favor selection under few specific criteria.

ELECTRE-III is not very sensitive to weight allocation strategies and is very consistent
in assigning ranks to all the alternatives. The only inconsistency seen is in choosing the best
and worst alternatives. While 75% of the time, ELECTRE-III chooses the third robot, i.e.,
the Cybotech V15 Electric robot, as the best robot, entropy weight allocation chooses the
second robot as the best. A similar inconsistency can also be seen from Figure 4 regarding
the selection of the worst robot wherein the highest weight allocation suggests the sixth
robot to be the worst alternative, while entropy weight allocation suggests the fifth robot to
be the least desirable.
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NFM, like ELECTRE-III, shows very little sensitivity to criteria weights and an incon-
sistency is observed only in the selection of the worst alternative. The inconsistency is also
similar in the worst alternative region, reflecting similarities in the methodologies between
NFM and ELECTRE-III. The correlation plot shown in Figure 6 shows a high degree of
correlation among most methods. A pattern between exceptions can be identified when one
notices that a poor correlation with VIKOR is shown by techniques such as SAW, TOPSIS,
and LINMAP, which shows a strong correlation among each other.

3.3. Case Study 3
3.3.1. Problem Description

One more case study is considered for the selection of robots among four alternatives
based on six criteria—velocity, load capacity, vendor service quality, programming flexi-
bility, repeatability error, and cost, among which the first four are the benefit-type criteria
and the remaining two are the cost-type criteria. The details regarding each criterion are
provided in Table 1 above. The effects of weights are also compared among the MCDM
techniques used to rank the robots with a comprehensive correlation study within and
among the techniques. Table A3 shows the decision matrix for this case study.
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3.3.2. Optimal Robot Selection

As discussed in earlier sections, the weights of each criterion are first allotted based on
the discussed methodologies. The weights obtained using all the weight allocation strate-
gies are shown in Table 2. These weights are used with the discussed MCDM techniques
for the selection of the best industrial robot. The individual techniques are discussed in
earlier sections and hence a cumulative discussion is presented in this case study with a
detailed discussion on the comparison between the techniques.

Ranks obtained for all the robots for all methods are shown in the graphical plot in
Figure 7. The SAW technique is the only MCDM technique that selects the fourth robot as
the best robot 75% of the time and hence shows the least correlation with other techniques.
While TOPSIS does also suggest the same robot to be the best robot 25% of the time using
entropy weights, the rest of the time, it suggests that the second robot is the best robot in the
lot. The closeness coefficient plot for case study 3 is shown in Figure 8. The unique behavior
of entropy weights can also be seen in this plot. It is also worth mentioning here that robot
2 with the distances closest to the ideal solution is identified to be the best alternative using
all other methods. The rank plot such as LINMAP can be observed consistently across all
MCDM techniques with at least one of the weight allocation strategies. Therefore, that can
be taken as a reliable ranking of robots for the problem considered. The VIKOR process is
seen to have the least internal correlation (Figure 9) across all the case studies, suggesting a
high dependence on criteria weights in the VIKOR technique. ELECTRE-III also ranks the
second robot as the best alternative and the first robot as the worst alternative, while the
intermediate ranks vary depending upon the weights of criteria. For case study 3, it can be
safely concluded that the second robot outperforms other robots and the first robot is the
least desirable in the lot.
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4. Conclusions

The presented work deals with the comparison between six MCDM approaches for
the selection of the optimum robot based on various conflicting criteria. Four different
weight allocation methods are employed for deciding criteria weights and the effect of the
weight allocation strategy is also studied. Three different case studies are considered to
strengthen the comparative study. The following conclusions are made from the present
study:

• For case study 1, robots 2 and 3 can be safely selected as the better alternatives
for the desired pick-and-place jobs. Any further selection would require additional
information on the most appropriate weight allocation depending on the application
and expertise of the decision maker.

• Similarly, for case study 2, the first and third robots show the best rankings among the
robots considered. A similar result is also observed in identifying the worst alternative
between the fifth and the sixth robot considered in this case study.

• For the considered case study 3, most MCDM techniques choose the second robot to
be the best alternative among the four robots considered. Although a few techniques
do suggest the fourth robot to be the best alternative under a certain weight allocation
strategy, the number of times that occurs is very few in the study.

• The entropy weight allocation strategy appears to be very unique among the methods
considered because of its tendency to be skewed in favor of or against certain criteria.

• The observed correlation among the MCDM techniques considered and the consistency
in identifying the best alternative suggest that the observations of this study are reliable.
The current work safely validates itself.

• MCDM methods seem to greatly rely on the weight allocation strategy and it is
absolutely crucial for weights to properly reflect the relative importance of individual
criteria without biases.

As the application of industrial robots becomes more widespread, decision makers in
manufacturing industries will need to understand the intricacies of robot selection. The
decision models explored in this paper provide a comprehensive framework that decision
makers can use to select an optimal robot for their specific applications, leading to improved
efficiency and productivity in the short term. Mid-term impacts could include an increased
focus on certain criteria in robot design and selection, informed by the findings of the
MCDM methods. For instance, if reliability and precision are consistently found to be the
most influential criteria in robot selection, manufacturers might prioritize these attributes
in their design and production processes. In the long term, the MCDM methods could
facilitate greater standardization in the industry’s robot selection processes, leading to more
reliable and comparable results across different settings. This could further promote the
development and application of industrial robots in a variety of industries, contributing to
increased automation and technological advancement.

The outcomes and findings of this work can lead to changes in industrial robot selection
in the short-, mid-, and long-term. The different weight allocation strategies can impact
the decision-making process and the importance of an unbiased reflection of the relative
importance of individual criteria.
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Appendix A

Table A1. Decision matrix for Case Study 1 (Reproduced with permission from) [56].

Alternative Freedom Load Capacity (kg) Repeatability Error (mm) Vertical Reach (cm) DF

Robot 1 60 0.4 125 5
Robot 2 60 0.4 125 6
Robot 3 68 0.13 75 6
Robot 4 50 1.0 100 6
Robot 5 30 0.6 55 5

Table A2. Decision matrix for Case Study 2 (Reproduced with permission from) [57].

Robot Load Capacity (kg)
LC Reach (mm) R Maximum Tip Speed

(mm/s) MTS
Memory Capacity

(MC)
Repeatability Error

(mm) R

1 60 990 2540 500 0.4
2 6.35 1041 1016 3000 0.15
3 6.8 1676 1727.2 1500 0.1
4 10 965 1000 2000 0.2
5 2.5 915 560 500 0.1
6 4.5 508 1016 350 0.08
7 3 920 177 1000 0.1

Table A3. Decision matrix for Case Study 3 (Reproduced with permission from) [24].

Robot Velocity (m/s)
V

Load Capacity
(kg) LC

Vendor’s Service
Quality VSQ

Robot’s Programming
Flexibility PF Cost ($) C Repeatability

Error (mm) R

1 1.8 90 8 4 9500 0.45
2 1.4 80 7 5 5500 0.3
3 0.8 70 6 6 4000 0.2
4 0.8 60 4 7 4000 0.15
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