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Abstract: Electricity generation from renewable energy sources is emerging as a result of global
carbon emission reduction policies. However, most renewable energy sources are non-dispatchable
and cannot be adjusted to meet the fluctuating electricity demands of society. A flexible operation
process has been proposed as an effective solution to compensate for the unstable nature of renewable
energy sources. Thermal load fluctuations during flexible operation may cause creep–fatigue damage
to the high-temperature components of thermal power plants, as they are designed with a focus
on creep damage under a constant power level. This study investigated the residual life of high-
temperature components, such as a superheater tube and a reheater header, to failure under flexible
operation conditions using finite element analysis and empirical models. First, we determined an
analytical solution for the straightened superheater tube under thermal conditions and compared it
with the numerical solution to verify the numerical models. Through the verified finite element model,
the creep–fatigue life of the reheater header was estimated by considering flexible operation factors
and employing the Coffin–Manson and Larson–Miller models. Although fatigue damage increases
with decreasing minimum load and ramp rate, we confirmed that creep damage significantly affects
the residual life during flexible operation. In addition, a surrogate model was proposed to evaluate
the residual life of the reheater as a function of the flexible operation factors using the machine
learning methodology, based on the results of finite element methods. It can be used to predict its
residual life without performing complex thermo-structural analysis and relying on empirical models
for fatigue and creep life. We expect our findings to contribute to the efficient operation of thermal
power plants by optimizing the flexible operation factors.

Keywords: flexible operation; creep–fatigue behavior; response surface model

1. Introduction

Global CO2 emissions have steadily increased over time, and Belbute [1] has suggested
that the emissions will increase by 27.4% by 2030. Prior studies have addressed the adverse
effects of fossil fuels on CO2 emissions and the need to generate electricity using renewable
energy sources (RES) for low-carbon growth [2,3]. Most RES have non-dispatchable charac-
teristics that prevent them from adjusting the energy supply to meet the demand. Climatic
or geographic conditions cause variability in electricity production and can render power
plant systems more unstable. According to the average net electricity production per week
in Germany in 2021, there was a power fluctuation at approximately 12:00 p.m. owing to
the influence of solar power [4]. The concern about power outages caused by over- and
under-generation increases with the proportion of RES in the power generation system. As
a result, it is critical to address the power uncertainty caused by the increased demand for

Processes 2023, 11, 1679. https://doi.org/10.3390/pr11061679 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11061679
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-0224-2567
https://doi.org/10.3390/pr11061679
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11061679?type=check_update&version=2


Processes 2023, 11, 1679 2 of 20

RES [5]. Flexible operation is a method of changing the output level of a thermal power
plant to maintain constant output power according to the change in the output power of the
RES. This is the most economical way to handle the instability of RES energy generation [6].

Flexibility indicates the efficiency of a concept. Although higher flexibility addresses
the system stability problem, it can be accompanied by thermal load fluctuations that
place conventional power plants in harsh conditions. The thermo-structural behavior of
these facilities under thermal load variation must be considered as conventional power
plants were designed by considering the fatigue and creep of the thermal parts under
constant power levels. This study entails an investigation of the thermo-structural behavior
of high-temperature components in conventional power plants by using computational
analysis, bypassing the time efficiency weakness of practical experiments.

Previous studies primarily focused on assessing the life of power plants. In particular,
researchers investigated the unsteady temperature and pressure changes in the superheater
header during operation. They concluded that shutdown would cause significant damage
to the plant components [7,8]. These studies have helped resolve the structural stability
problems caused by creep–fatigue damage during power plant operation. However, these
analyses were performed at a general load, and it was impossible to predict the change
in the residual life of the plant component under flexible operating conditions. Several
researchers [9–13] have studied the cumulative damage of each boiler component through
a numerical approach. In addition, prior research focused on the thermo-structural fatigue
life under specific loading conditions. Still, it did not evaluate the fatigue and creep life
of high-temperature components under fluctuating thermal loading conditions. They
described the risk of failure by focusing on creep–fatigue damage accumulation in the
boiler header part and performed a quantitative evaluation of the residual life under specific
boundary conditions. Although they performed a quantitative assessment of the residual
life for different boundary conditions, previous works disregarded the variation in critical
life to failure due to changes in thermo-structural conditions.

Recently, studies on flexible operations have progressed. Avagianos [14] summarized
several prior studies that determined the allowable limits of operational flexibility features
using commercial analysis programs and in-house codes. They argued that existing thermal
power plants that do not account for flexible operation in their design might be vulnerable
to thermal fatigue in high-flexibility situations. However, individual studies have paid little
attention to the quantitative life evaluation of structural vulnerabilities and the prediction
of the variation in residual life for the operation process. Several studies have investigated
methods that can quickly respond to fuel combustion and load fluctuations during flexible
operation [15,16]. They suggested that steady-state operation can yield higher efficiency
in fuel usage and CO2 emissions and that rapid load alternation reduces this efficiency.
However, little attention has been paid to estimating residual life with fluctuating thermal
loads by flexible operation. Therefore, a life evaluation study considering fatigue and creep
life is required to investigate the reliability of high-temperature components because of
thermal load fluctuations under flexible operating conditions.

The flowchart for studying the remaining life assessment of high-temperature pipes
under flexible driving conditions is as follows. First, we calculated the stresses and strains
using the thermo-structural simulation program ANSYS Mechanical. The boundary con-
ditions of FEA were determined by the flexible operation cycle. Second, by utilizing the
solutions (i.e., strain and stress range), we numerically evaluated the fatigue and creep
damages through the Coffin–Manson equation [17] and the Larson–Miller method [18].
We considered the creep–fatigue interaction, which reduces the service time of the struc-
ture. Finally, a response surface model using a machine learning method was developed,
which performs life assessment without repetitive experiments or numerical analysis. Our
study aimed to estimate the residual life to failure under flexible operating conditions
by performing finite element analysis (FEA). First, we calculated the strain range in the
high-temperature pipe using thermo-structural analysis. We determined an analytical
solution for high-temperature pipes under thermal conditions (i.e., convection, conduction,
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and radiation) and compared it to the numerical solution to verify our FEA platform. In
addition, we evaluated the fatigue life using the Coffin–Manson equation [17] and the
life by creep damage through the Larson–Miller method [18] under high pressure and
temperature. Considering the creep–fatigue interaction, we calculated the overall damage
and residual life of the power plant components. We also analyzed the response to the
fatigue life for each variable (i.e., minimum load changes and ramp rate). As a result, we
confirmed that creep had a greater effect on the overall life than fatigue, and flexibility
significantly affected the creep–fatigue damage and residual life. Furthermore, this study
introduced a response surface model using a machine learning method, which performs
life assessment without repetitive experiments or numerical analysis.

2. Methodology
2.1. Thermo-Structural Analysis for Evaluation of Strain Range during Flexible Operation

In flexible operation, conventional power from fossil fuels is adjusted to generate
power based on daily consumption. Flexibility is a factor that determines how the plant
quickly controls the load in response to the changing demand for electricity. To increase
the proportion of renewable energy, conventional power plants are required to control the
load freely. However, high flexibility (low minimum load, fast ramp rate) causes rapid
load changes, resulting in thermal damage to facilities with extreme load variations [19,20].
Therefore, this study investigated the relationship between the flexibility and thermo-
mechanical behavior of high-temperature components in power plants.

We considered two main factors: ramp rate and minimum load. The ramp rate is the
loading rate during flexible operation. A plant with a high ramp rate can rapidly respond
to operating conditions. The minimum load is the lowest power that can be stably applied.
The generation characteristics of the plant are more flexible with a lower minimum load. It
is challenging to thoroughly analyze an actual situation because complex load fluctuations
caused by natural phenomena should be considered. This focused on the tendency of
the components to fail, thus simplifying the analysis. Despite the deviation from reality,
this model proved sufficient for identifying the failure tendency. Figure 1 shows the ideal
flexible operation cycle, divided into the following four sections.
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Figure 1. Schematic diagram of the flexible operation cycle. (a) General load operation section: the sec-
tion where the power plant operates while maintaining the general load (Pmax). (b) Load-decreasing
section: the flexible operating section adjusts power in response to an increasing proportion of RES.
(c) Minimum load operation section: the section that maintains the minimum load (Pmin ). (d) Load
increasing section: the section increasing the load from Pmin to Pmax.

The analysis was conducted for the flexible operation cycle presented in Figure 1,
and the temperature and pressure of the working fluid varied according to the power
generation output that changed from (a) to (d). This high-temperature steam applies a
thermo-structural load to the header components and pipes. The FEA was performed with
these components under ideal flexible operating conditions. The structure of the entire
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power plant was too complex and large to perform numerical analysis. As a result, we
substituted the model with one column of header and piping by sub-modeling [9,21]. Plant
facilities are subjected to loads by high-temperature fluids. Therefore, they are influenced
by the hydrodynamics of their flows. However, the flow patterns of the fluids were not
important in this study because we aimed to evaluate the structural behavior of high-
temperature components under thermal conditions. Thus, we assumed that the flow field
around the analysis model was sufficiently large and that the local temperature and heat
transfer coefficient were equal to the empirically obtained average values [22,23].

Figure 2 presents a flowchart of the analysis. First, we derived the boundary conditions
for the heat and internal pressure of each structural element based on heat transfer theories
and solid mechanics. Equation (1) expresses the differential heat conduction in cylindrical
coordinates and Equation (2) expresses the triaxial strain formula with the thermal effects.
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where ρ, c, T, E,
.
egen corresponds to the density, specific heat, temperature, elastic modulus,

and heat generation, respectively. εt, εr, εz indicate the hoop, radial, and axial strains,
respectively. Finally, σt, σr, σz represent the hoop, radial, and axial stresses.

Then, we calculated the stresses using the thermo-structural simulation program
ANSYS Mechanical. The coupling analysis resolved the strain range problem corresponding
to each condition. Additionally, utilizing the solution, we numerically evaluated the creep
and fatigue damages using MATLAB (See Sections 3.1 and 3.2). Finally, we considered
the creep–fatigue interaction, which reduces the service time of the structure. Our model
applied the condition in the creep–fatigue envelope corresponding to the ASME boiler
section. The residual life of an object was evaluated by determining whether the structure
was broken when it exceeded the threshold.

2.2. Creep–Fatigue Damage Theory

Thermo-structural loads can damage power plant components in the form of creep or
fatigue. The fatigue life of the components is primarily evaluated using the Coffin–Manson
model and low-cycle fatigue life equation [17].

∆ε

2
=

σ′ f
E

(2N f )
b + ε′ f (2N f )

c (3)

In Equation (3), ∆ε is the strain range and N f is the critical cycle for fatigue failure.
σf
′= 807 MPa and b= − 0.1486 are the coefficients and exponents for elastic deformation,

and ε′ f = 0.1125 and c= − 0.4355 the ones for plastic deformation, respectively. These are
material constants derived from fatigue test results [24]. Additionally, in the high-stress
range, the alternating load generates a high mean stress σm, and derives a mean stress effect
that further reduces the fatigue life [25,26]. In this paper, the fatigue life was predicted
using Morrow’s equation (Equation (4)), considering the mean stress effect in the strain-life
approach [27].

∆ε

2
=

σ′ f
E

(1− σm

σ′ f
)(2N f )

b + ε′ f (2N f )
c (4)

Palmgren [28] and Miner [29] defined pure fatigue damage as the sum of the ratio of
the progressive cycle N to the failure cycle N f , as expressed by Equation (5). The fatigue
damage is a time-independent variable because N f follows the Morrow equation and
depends only on the load change.

D f = ∑
i

N
N f

(5)

The creep deformation should also be considered in the design of thermal power
plants, as they are exposed to high temperatures for an extended period while operating.
The creep rupture time depended on the stress and temperature applied to the model, and
the relationship could be determined experimentally. The National Institute of Material
Science (NIMS) conducted creep tests at various stresses and temperatures on the SUS304
steel [30]. Several studies have employed the Larson–Miller method to predict creep life by
defining the Larson–Miller parameter (LMP) using Equation (6) [18,31]. According to the
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experimental data, the stress was linearly proportional to LMP, as expressed in Equation (6).
The coefficients A= −64.3 and B= 1474 are obtained by solving a least-squares problem.

σr = A× (LMP) + B
where LMP = T · log10 tr + 20

(6)

Similar to fatigue damage, creep damage can be calculated using the cumulative
damage model. Robinson defined creep damage as the ratio of the loading time t to the
rupture time tr at a specific stress and temperature, as expressed in Equation (7) [32]. In
other words, the rupture time can be predicted from the stress and temperature conditions
using Equation (6), and the creep damage was evaluated using the following formula:

Dc = ∑
i

t
tr

(7)

Equation (8) summarizes the creep–fatigue damage interaction. When the cumulative
damage D exceeded the permissible damage value Da, the material was considered to
have failed [33]. The simplest rule for evaluating creep–fatigue damage is the linear
damage summation rule, which sets Da to 1 [18]. The Da value can be defined empirically,
depending on the load type and material properties [34].

D = D f + Dc
D f + Dc < Da

(8)

A conservative safety factor should be considered during the design stage to avoid
unintentional power plant destruction. Therefore, the damage model for objects should be
applied conservatively, which involves a higher safety factor. Figure 3 shows the ASME
standard design of SUS304 obtained through experiments, which has a joint at (0.3, 0.3). In
the bilinear region of ASME Section III for boilers and pressure vessels, Dc and D f follow
the two relational expressions in Equation (9) [35]. The critical cycle for safe operation
under flexible conditions was estimated by solving these two inequalities.{

Dc ≤ − 7
3 D f + 1 f or D f ≤ 0.3

Dc ≤ − 3
7 (D f − 1) f or D f ≥ 0.3

(9)
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2.3. Machine Learning Techniques

We derived the residual life from a specified set of flexibility factors through experi-
ments or computational analyses. However, obtaining all outputs for the entire flexibility
range using only the aforementioned methods is time consuming and inefficient. Therefore,
this study entailed the development of a life assessment method that employs machine
learning to predict the life for operating conditions that have not been previously analyzed.

2.3.1. Feedforward Neural Network Model

The feedforward neural network is an artificial neural network (ANN) model that
propagates information from the input layer to the output layer. In this network, each
hidden layer uses a rectified linear unit (ReLU) function, f (x) , max(0, x), as an activation
function to provide the learning data. The jth node value of the kth hidden layer was given
by Equation (10), and the model was trained to reduce the mean-squared error between the
data and actual output. The upper subscript k corresponds to the label number of the layer,
the lower subscript j to the label of the recipient node, and i to the label of the giver node.
Let nlayer be the number of hidden layers; then, a0

i is the input value of the ith node, and

a
nlayer+1
i is the output value of the ith node.

ak
j = f (bk

j +
jk−1

∑
i=0

wk
jia

k−1
i ) (10)

The ANN model in Figure 4 is trained using a back-propagation algorithm called Bayesian
Regularization. The letter updates the weights wk

ji and bias bk
j using the partial differentiation

of the objective function V(x). The algorithm computes ∆x = −[JT(x)J(x) + µI]−1 JT(x)e(x) to
update the V(x) to V(x + ∆x). This process continues until V(x) reaches the optimal
value [36]. In the Bayesian Regularization algorithm, V(x) consists of a linear combination
of the sum of square errors ∑ e(x)2 and the sum of square weights ∑ w(x)2, where aα and
aβ are adjusted through Bayesian optimization [37]:

VBR(x) = aα∑ e(x)2 + aβ∑ w(x)2VBR (11.a)

∑ e(x)2 = ∑ (t(x)− anlayer+1
i)

2
(11.b)
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2.3.2. Hyperparameter Optimization Using Random Search

To improve the performance of the machine learning model, the hyperparameters
(e.g., learning rate and number of hidden layers) should be appropriately selected through
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an empirical method, such as a grid search or random search. The grid search algorithm
discretizes the range of hyperparameter values into a finite set, or grid of values and trains
the ANN model multiple times. The number of training trials is N = ∏

k
nk, where nk

refers to the number of grid values of the kth hyperparameter. A grid search performs
well in low-dimensional problems, but its exhaustive strategy necessitates a large number
of trials when there are numerous hyperparameters. For example, in a test including
hyperparameters with 10 discrete values, a grid search will require 104 trials to identify the
best performing value.

The random search algorithm overcomes this difficulty. It generates random com-
binations of values from a given hyperparameter range and selects the combination set
with the best performance. When tuning multiple hyperparameters, it is more likely to
find the optimal value than the grid search. Furthermore, more time is reserved when
determining the optimal parameters to use for training the machine learning model [38].
Numerous studies have demonstrated the algorithm’s accuracy through statistical and
mathematical approaches [38–40]. Figure 5 shows a schematic comparison of the two search
methods. Under the same conditions, the random search method offers better accuracy if
the performance responses are too complex or sensitive to specific hyperparameters.
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3. Numerical Examples
3.1. Validation for Thermo-Structural FE Model

We used the ANSYS Workbench software 2022 R2 for thermo-structural analysis. Nu-
merical results were compared to the analytical solution to validate the analytical method.
Heat transfer from the combustion gas and work fluid occurs during the boiler operation.
The combustion gas interacts with the outer walls of the pipe components through natural
convection and radiation. In addition, the working fluid flowing inside the pipe transfers
heat to the inner wall through forced convection. The header part, located outside the
combustion chamber, was not affected by the combustion gas and was under standard air
conditions. The overall boundary conditions of the header and tube components are shown
in Figure 6. Power plants are vulnerable to creep and fatigue failure. To this end we used
Creep Strength Enhanced Ferritic Steel (CSEF) in this environment, which exhibits good
heat resistance, and high creep strength. In this study, we used SUS304 steel, a common
type of CSEF steel. Table 1 lists the composition of the SUS304 steel. The temperature
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conditions change as the load fluctuates, owing to flexible operation. Therefore, the material
properties of SUS304 are temperature dependent, and the temperature variation due to
the operating conditions affects the properties. Tables 2 and 3 list the material properties
and thermo-structural boundary conditions with the load level. The values between these
categories were interpolated linearly.
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Table 1. Composition of the SUS304 steel.

Elements C Mn Si Cr Ni N Nb P

Composition (wt%) 0.07–0.13 1.00 0.010 17.0–19.0 7.5–10.5 0.05–0.12 0.30–0.60 0.040
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Table 2. Temperature-dependent properties of the SUS304 steel.

Material Property Value at 300 ◦C Value at 500 ◦C Value at 700 ◦C

Density, ρ
(
kg/m3 ) 7790 7700 7610

Thermal expansion coefficient, α(
×10−6/◦C

) 9.7 10.05 10.3

Elastic modulus E (GPa) 164.78 148.93 132.38
Poisson’s ratio ν 0.2874 0.2946 0.3018

Thermal conductivity, k
(W/m ◦C) 21.461 24.923 30.98

Specific heat, c (J/kg ◦C) 542.62 579.71 616.81

Table 3. Thermo-structural boundary conditions during the operation of the power plant.

Boundary Condition Under 100%
Condition

Under 30%
Condition

Tube

Steam temperature, T∞, in
(◦C)

Inlet 501.71 474.22
Outlet 502.29 475.32

Flue gas temperature, T∞, ex
(◦C)

Inlet 1057.89 1066.17
Outlet 843.19 857.56

Internal pressure p
(MPa)

Inlet 25.303 9.787
Outlet 25.298 9.786

Convective film coefficient, hconv
(W/m2)

Flue gas, hconv, ex 8.582 8.216
Steam, hconv, in 5436.24 1620.95

Emissivity Tube, εtube 0.8
Gas, εgas 0.281

Header
Steam temperature, T∞, in (◦C) 596 572

Convective film coefficient, (W/m2) 2403.8 980.54
Internal pressure, p (MPa) 4.599 1.483

Equation (12.a) defines the heat transfer coefficient (h) as the product of the thermal
conductivity k and the Nusselt number (Nu). Nu is related to the Reynolds (Re = ρVD/µ),
Rayleigh (Ra = gα

νϕ (Ts − T∞)D3), and Prandtl numbers (Pr = λ/ϕ), where µ is the viscosity,
ϕ is the thermal diffusivity, λ is the kinematic viscosity, V is the flow velocity, D is the
diameter of the pipe, and g is the acceleration due to gravity. Equation (12.b) shows the
empirical formulas used to define Nu [23,41]. Given the value of Nu, the heat transfer
coefficient can be calculated from Equation (12.a) [41].

h = Nu× k (12.a)

Nu =


0.023Re0.5Pr0.4 f or Forced convection0.6 + 0.387

 Ra(
1+( 0.559

Pr )
9/16)16/9


1/6


2

f or Natural convection
(12.b)

Stefan–Boltzmann’s law was used to calculate the radiant heat transfer coefficient hrad of
the combustion gas (see Equation (13)), where σ is the Stefan—Boltzmann constant, εtot is
the total emissivity, Tg is the gas temperature, and Tw is the wall temperature adjacent to
the gas [42]. The composition and properties of the combustion gas mixture are described
in the literature [43,44].

q = hrad(Tg − Tw) = σ · εtot(Tg
4 − Tw

4)

where hrad = σ · εtot
Tg

4−Tw
4

Tg−Tw
, εtot =

(1+εtube)
2 εgas

(13)
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Equation (1) provides a solution for the heat conduction equation. It is difficult to
verify this model for header components with complex geometries. Therefore, this study
validated the model by comparing these equations with the numerical results of a simple
straight-pipe model. The boundary conditions used in the analysis are shown in Figure 6.
This can be summarized as follows:

(a) Radiant and convective heat transfer from combustion gas at the outer wall;
(b) Conduction in the tube wall;
(c) Convection at the inner wall of the working fluid.

The tube temperature changed from (a) to (b), and thermal deformation occurred.
The heat flux during the heat transfer process is explained in the literature [23]. As each
heat flux

.
q is equal throughout the entire section, the heat flux at any time step follows

Equation (14), which is a quaternary equation for heat flux. Therefore, we used Newton’s
method to solve the complicated equation and derive its approximate solution, which was
compared to the numerical solution calculated from the FE model. The validation was
performed in the load-descending section, as shown in Figure 1b.

.
q =

T∞.ex − T∞.in + εtotσ
{

T∞.ex − (
.
q(Rcond − Rcond.in) + T∞.in)

4
}
× Rconv.ex

Rcond + Rconv.in + Rconv.ex
(14)

T∞.ex and T∞,in are the external and internal temperatures of the tube, respectively, Rcond is
the thermal conductivity k divided by the thickness D, Rconv,ex and Rconv,in are the recip-
rocal of the convective film coefficients hex and hin, which follow Equations (12) and (13),
respectively.

Figure 7 compares the analytical solutions using Equation (14) and numerical results.
The right-hand side of Equation (1) can be solved by utilizing the approximate equality be-
tween the heat flux and temperature over time. Using a finite difference method, changes in
temperature with location can also be computed, in agreement with the laws of physics [23].
Therefore, the thermal boundary condition of the numerical model is well posed.
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Figure 7. Validation of heat transfer analysis by comparing the analytical solutions with numerical
solutions of (a) wall temperature and (b) heat flux in the power descending section.
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Temperature variations cause thermal deformation and stress in the object. Their
mechanical behavior follows Equation (2). The triaxial thermal stresses of the superheater
tube in a cylindrical coordinate system follow Equation (15) [22].

σr =
Eα

1−ν
1
r2

[
r2−ri

2

ro2−ri
2

∫ ro
ri

Tr dr−
∫ r

ri
Tr dr

]
Radial stress

σt =
Eα

1−ν
1
r2

[
r2+ri

2

ro2−ri
2

∫ ro
ri

Tr dr +
∫ r

ri
Tr dr− Tr2

]
Hoop stress

σz =
Eα

1−ν
1
r2

[
2

ro2−ri
2

∫ ro
ri

Tr dr− T
]

Axial stress

(15)

From the numerical model, the thermal stress was estimated and compared with
the analytical solution, as shown in Figure 8. Figure 8a compares the thermal results,
confirming that the heat transfer and thermal load conditions in the numerical model
follow the governing equation. In addition, the power plant equipment is subjected to
internal pressure. Dowling [45] proposed stresses in thick-walled pressure vessels by
internal pressure p(see Equation (16)).

σr = − pri
2

ro2−ri
2

(
ro

2

r2 − 1
)

Radial stress

σt =
pri

2

ro2−ri
2

(
ro

2

r2 + 1
)

Hoop stress
σz = 0 Axial stress
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Figure 8. Comparison of numerical solution with the analytic solution under (a) thermal, (b) struc-
tural, and (c) thermo−structural condition.
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The comparison of stress in the superheater tube under the structural load by pressure
is presented in Figure 8b. Equations (15) and (16) can be linearly combined using the
superposition method, as the stress generated by the heat and pressure is within the
elastic range. Finally, Figure 8c shows the results of the coupled thermo-structural stresses
by thermal loading and internal pressure. We validated the boundary conditions of the
numerical model by comparing the results to those of the analytical solution.

3.2. Estimation of Fatigue Life under Cyclic Thermal Loads

In this analysis, all power plant components were divided into several submodels
for time efficiency. Figure 9 shows the numerical models for each part. The finite element
model of the components consist of SOLID 185 3D elements, which are linear hexahedral
elements used for thermo-structural analysis. Table 4 lists the number of elements and
nodes [46].
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Table 4. The number of nodes and the elements of the boiler components.

Part Num. of Nodes Num. of Elements

Tube 31,648 24,021
Header 24,324 17,527

The thermo-structural boundary conditions are changed, since the factors of flexible
operation modify the power level of the power plant. Each feature depends on the time
t and the power generation output φ(t) at any given moment. Any boundary condition
X (e.g., the temperature of the working fluid and internal pressure at that time) follows
Equation (17), where ∆X and ∆φ represent the changes in the boundary condition and
power generation over time in a specific operation section, respectively. Additionally, Xo
and φo indicate the initial values.

X(t) =
∆X
∆φ
{φ(t)− φo}+ Xo (17)

The electricity power level φ(t) affects the condition X. Furthermore, it varied depend-
ing on the position in the boiler tube. Therefore, they are path dependent, and X follows
the binary function of Equation (18). The distance d is din at the inlet and dout at the outlet
of the path.

X(d, t) =
X(dout, t)− X(din, t)

dout − din
{d− din}+ X(din, t) (18)
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Figure 10 shows the numerical contours of the boiler parts, where the boundary
conditions of Equation (18) were applied under a minimum load of 20% and a ramp rate
of 3%/min. Table 5 summarizes the stress and temperature results of the reheater header
and superheater tube. The creep–fatigue damage in Equation (6) depends on the data
listed in Table 5. The maximum stress in the header part was 1.92 times higher than that in
the tube part. Therefore, we expected the header component to be more damaged by the
thermo-structural load than the other parts. Based on this result, we determined that this
part is vulnerable to creep–fatigue damage and selected it for assessing the residual life.
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Table 5. Analysis results at minimum load (Pmin ) of 20% and ramp rate of 3 %/min.

Value At Header Component At Tube Component

Maximum temperature over time (◦C) 595.52 ◦ 527.70 ◦

Minimum temperature over time (◦C) 566.20 ◦ 513.34 ◦

Maximum von Mises stress over
time (MPa) 228.09 113.61

Minimum von Mises stress over
time (MPa) 13.169 74.761

Maximum strain range 14.648× 10−4 5.175× 10−4

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.3. Creep and Fatigue Life of the Header

The creep–fatigue damage of the header in Equation (7) depends on the change in
flexibility during the operation. We assumed that the power plant had an ideal flexible
operation cycle, as shown in Figure 1, and that the holding time of the minimum load
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section was tc = 3h. Under these assumptions, the operating time in each section is defined
as ta = 24− (tb + tc + td), tb = td = Pmax−Pmin

ν , tc = 3, where Pmin is the minimum load
and ν = dP/dt is the ramp rate The creep–fatigue damage was estimated under operating
conditions using the data presented in Table 5. Fatigue damage occurred only in sections
(b) and (d) of the optimized cycle shown in Figure 1, where the load alternated and caused
strain. In contrast, creep damage, which occurs based on stress and temperature levels,
appeared throughout the operation cycle. Equation (19) gives the total creep damage Dc
and fatigue damage D f , that the header receives after operating N cycles, with one cycle
being 24h. We can rearrange Equation (7) to solve for the operation cycle N, to obtain
Equation (20). If N reaches the critical cycle Ncr, this inequality satisfies the equal sign, and
the damaged object is considered to have failed.

D = D f + Dc = N × (d f + dc) (19)

N ≤ Ncr =

{ 3
3dc+7d f

for D f ≤ 0.3
3

7dc+3d f
for D f ≥ 0.3

(20)

The boundary conditions change when the minimum load changes and affect creep
and fatigue damage. The variation in the ramp rate did not affect the conditions, but it
affected the operating time, as shown in Figure 1. Since fatigue damage is time independent,
it is unaffected by the ramp rate. In contrast, the creep damage varies with the flexibility fac-
tor. We estimated the critical cycle for the given creep–fatigue damage using Equation (20),
Figure 11a shows the fatigue damage as a function of ramp rate and minimum load change.
The results indicate that the fatigue damage was only affected by the variation in the
minimum load. The fatigue damage decreased as the minimum load increased and was
unaffected by the ramp rate changes. In other words, it is independent of the ramp rate. In
contrast, creep damage depends on two flexibility factors (i.e., ramp rate and minimum
load), as shown in Figure 11b. We demonstrated that the creep damage was higher for
increasing ramp rate and minimum load. Additionally, the creep damage change for the
minimum load over a certain ramp rate was not significant. This results from the fact that
sections (b) and (d) in Figure 1, which cause fatigue damage, are shortened at high ramp
rates, and creep damage becomes dominant.
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Figure 11. Damage versus minimum load for (a) fatigue and (b) creep.

The creep damage per cycle dc is approximately 100 times higher than the fatigue
damage d f in most operating conditions. As a result, the expectancy of the critical cycle Ncr
is dominated by creep effects (Figure 12). The boiler parts generally have lower residual
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life under operating conditions that cause high creep damage levels (i.e., higher minimum
load and ramp rate). Figure 13 shows the damage to the plant header during 3000 cycles in
the creep–fatigue envelope, suggesting that the plant element is vulnerable to creep under
most flexibility cases. During the flexible operation of thermal power plants, engineers
must prioritize creep damage over fatigue damage.
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Although the fatigue damage is minor compared to the creep damage, the effect of
fatigue damage may increase as the ramp rate and minimum load decrease. As a result,
fatigue damage must be considered when evaluating the residual life. Furthermore, this
study assumed that only two load fluctuations (sections (b) and (d) of Figure 1) occurred
per day, considering an ideal flexible operation. However, the proportion of fatigue to
residual life is expected to increase as more complex operations progress. For these reasons,
the fatigue effect should also be considered when assessing the residual life of boiler
components.

3.4. Response Surface Model

To investigate the residual life, we estimated the parameters (e.g., strain range, temper-
ature, and stress level). We proposed an ANN regression model that predicts the residual
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life under flexible operating conditions based on the above results. The proposed model fol-
lows the neural network structure shown in Figure 4. To improve its accuracy, we selected
three hyperparameters for adjustment: the number of hidden layers (nlayer), the number of
nodes per layer (nnodes), and the initial learning rate (ζinital). Table 6 lists the ranges of the
selected parameters. Twenty parameter sets were randomly extracted using the random
search method and the model was trained to find the optimal set of hyperparameters.

Table 6. Range of the hyperparameters to optimize.

Value nlayer nnodes ζinital

Max 2 50 0.1
Min 1 5 0.000001

To evaluate the performance of the neural network model, it is essential to normalize
the input and output data to share the same scale. We used min–max normalization,
which places the smallest value of the data at zero and the largest at one. The other
values are scaled between them. Our ANN model sets each flexibility (i.e., ramp rate
and minimum load) as an input value and the residual life Ncr as an output value. In
the training process using Equations (10) and (11), the machine learning network divides
the data into the training set (60%), test set (20%), and validation set (20%) to use for
cross-validation. For every iteration i, the network is trained using the training set and
evaluated using the test set. The training performance was determined by the mean square
error (MSE) etest(i) of the test set. The weights and biases were updated accordingly to
reduce the error. The error eval(i) of the trained model was also evaluated on the validation
set to avoid overfitting the test set. Our study identified the optimizer with the lowest
validation error eval(ibest) at the epoch ibest and the model performance as the test error
etest(ibest) at this epoch. Subsequently, the ANN model was trained for each hyperparameter
set. Among them, (nlayer, nnodes, ζinital) = (2, 28, 0.0931) exhibited the best performance,
etest(ibest) = 2.1798× 10−5, and was selected as the optimal set. Figure 14 presents the
error and coefficient of correlation R for each dataset. Through this process, we defined a
well-constructed ANN model exhibiting a small error for most inputs. Figure 15 shows the
optimized structure of the ANN model. We propose an ANN model that can effectively
evaluate the residual fatigue life within a given minimum load and ramp rate range.
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Figure 14. Performance of the ANN model. (a) Epoch versus error graph, and (b) regression results
with coefficient of correlation R.
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4. Conclusions

This study aimed to assess the residual life during flexible operation using numerical
methods and empirical models. We considered two main factors of flexible operation, ramp
rate and minimum load, and investigated their effects on residual life. FEA was performed
under the given temperature and pressure conditions to estimate the strain range of the
superheater tube and reheater header. The finite element results were verified by comparing
them to the analytical solution of the straightened tube under thermal load conditions.
We estimated the creep–fatigue life of the reheater header under flexible operation factors
using finite element modeling and the Coffin–Manson and Larson–Miller models. We
numerically demonstrated that fatigue damage occurred owing to thermal cycling and
increased with decreasing minimum load and ramp rate. Nevertheless, creep damage was
the dominant damage mechanism. This originates from the fact that the thermal cycle is a
low cycle that repeats up to twice a day, and creep is the dominant mechanism in terms
of overall damage. In addition, by utilizing the ANN model, we proposed a response
surface model for evaluating the residual life of the reheater heater, which is the most
vulnerable component under flexible operation. This model can predict the residual life of
the reheater header according to the flexible operation factors without performing complex
thermo-structural analysis and empirical models for fatigue and creep life.

This is the first systematic study to analyze the effect of the flexible operation on the
residual life of the tube and header. To evaluate the residual life under flexible operation
conditions using experimental methods, there are some difficulties in terms of time and
research execution. In this study, to overcome these difficulties, computational mechanics
and empirical equations were used as an approach. It additionally presents a model that
can predict the residual life using the response surface model. We believe that our findings
will aid the efficient operation of thermal power plants by optimizing flexible operation
factors in the future. Furthermore, it is expected that this study will contribute to the cost
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reduction and determination of maintenance cycles in power plant maintenance under
flexible driving conditions.
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