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Abstract: CO2 is a potential fluid for absorbing and accumulating thermal energy; an accurate and
fast calculation method for the heat capacity is essential for the study of the flow state near the critical
point. However, the calculation of the heat capacity near the critical point by the equations suggested
by NIST can easily be divergent, such as for CO2, nitrogen, methane, etc. Therefore, an explicit
fitting equation was studied. The fitting equation, which used density and temperature as variables
and contained three constants, was derived from the nature of heat capacity change (molecular
kinetic energy and potential energy). Based on the heat capacity data of the NIST WebBook, the heat
capacity of CO2 is taken as the example for the equation deduction and parameter fitting. The three
constants were defined in order by Origin fitting software. By this new approach, it is found that
the heat capacity at the critical point is below 1% deviant from that of the NIST WebBook. Moreover,
the heat capacities that are difficult to be calculated in the NIST WebBook are well calculated. The
study shows that the fitting equation is efficient for the prediction of heat capacity of gases near the
critical point.

Keywords: heat capacity; molecular kinetic energy; molecular potential energy; fitting; explicit equation

1. Introduction

Supercritical carbon dioxide (SC-CO2 for short) can produce large temperature differ-
ences with pressure changes near the critical point. Therefore, it has become an effective
medium for jet rock breaking, fracturing, thermal cycling, and other deep earth resource
exploitation technologies. SC-CO2, as a jet medium, can improve the mechanical penetra-
tion rate, increase oil and gas production, save water resources and energy, and reduce
emissions, and it has become an anhydrous drilling fluid and fracturing fluid with great ap-
plication potential [1–3]. The threshold pressure of the SC-CO2 jet for breaking granite and
shale is two-thirds and one-half that of a water jet, respectively [4]. SC-CO2 coiled-tubing
slim-hole jet-assisted rock breaking drilling can greatly reduce the drilling cost due to the
low threshold pressure of jet rock breaking, low circulating pressure loss, the improved ser-
vice life of drilling tools, and accessible underbalanced drilling conditions [4,5]. Compared
with water jet fracturing, the initiation pressure of SC-CO2 jet fracturing is less than half
of that of water jet fracturing [6]. With SC-CO2 as the fracturing fluid, clay hydration and
expansion as well as water shortage can be solved. Moreover, shale has stronger adsorption
of CO2, which can replace methane and realize CO2 geological storage [7–10]. The common
basic problem in SC-CO2 jet drilling and SC-CO2 jet fracturing is the mechanism of the
SC-CO2 jet rock breaking. At present, a lot of experiments on SC-CO2 jet rock breaking have
been conducted, proving that SC-CO2 jets have greater advantages than water jets in rock
breaking [4,5,11–16]. What is interesting about the mechanism is that a large temperature
gradient and high-temperature stress can be generated under a SC-CO2 jet, and the higher
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temperature stress is the main reason why the SC-CO2 jet is superior to the water jet in
rock breaking [17–20]. Nevertheless, there are few studies on the SC-CO2 jet flow field and
stress field near the critical point due to the drastic changes in density, heat capacity, etc.

Geothermal and solar electricity generation is a renewable generating technology
that can enable significant reduction in fossil fuel consumption. In environmental, cost,
and safety terms, CO2 is regarded as an ideal natural heat transfer medium [21–28].
The SC-CO2-based Brayton cycle has been seen as a good alternative to conventional
power cycles because of high cycle efficiency, compact turbo machinery, and compact heat
exchangers [29–33]. The big change in SC-CO2 heat capacity near the critical point makes
it efficient to store and release energy. If we control the CO2 phase of flow under the
supercritical state, there will be no phase change such as water gasification and the cost of
the equipment controlling phase change can be saved [29]. Moreover, the heat transfer rate
is high near the critical point [34–36]. Based on the theory above, Ni et al. have successfully
applied invention patents using SC-CO2 near critical point as a transmission media to more
efficiently generate electricity [37] and make use of geothermal resources to supply heating
and exploit oil [38]. As the patents described, the cycle efficiency of SC-CO2 near the critical
point is more than two times that of water in the conditions where the energy of water
vaporization can be transferred to electricity 100%. The main problem is how to predict
and control the flow state near the critical point. Simulation is a good method for flow
prediction and design of the experimental setup.

Recently, drug processing using SCFs has been proposed as a sufficient alternative
for conventional techniques. SC-CO2 is non-toxic, low-cost, non-flammable, and easyily
accessible with moderate critical pressure and near ambient critical temperature. Amongst
SCFs, SC-CO2 and the mixtures containing high amounts of SC-CO2 are the most used
SCFs. Modeling is an efficient method for the study of drug solubilities and drug particle
formation and delivery [39,40]. To predict the temperature, pressure, density, and velocity
of fluids in the wide range of operating conditions, equations of density and heat capacity
have an important effect on the accurate correlative capability [41].

In a word, the application of SC-CO2 in the above technical fields is closely related to
the fluid properties and flow field of carbon dioxide. Mature commercial software such as
FLUENT and CFX are efficient and economical methods to study the flow field, and the heat
capacity is an essential input parameter. For the accurate calculation of the heat capacity
of carbon dioxide and its mixture, NIST real gas equations, such as the Span–Wagner
(S-W) equation of state [42] and GERG-2008 wide-range equation [43], can satisfy both the
calculation accuracy and application range in engineering. In addition, NIST has provided
an effective software named REFPROP for the fluid properties calculation of density, heat
capacity, and so on. However, although the FLUENT and NIST WebBook [44] used the
same real gas equations for the calculation of isobaric heat capacity (Cp for short), such as
those for carbon dioxide, methane, nitrogen, and water, the heat capacity near the critical
point can easily diverge in the fluent simulation and NIST WebBook calculation (as shown
in Table 1). By exploring the deep reason, one possible reason is that because the heat
capacity calculation equation is implicit and involves multiple intermediate coefficients, if
the significant digit of the parameter is reduced for the sake of fast calculation, numerical
truncation and cumulative error will be generated, resulting in the situation that the heat
capacity cannot be calculated.

Table 1. Points where critical heat capacities diverge easily in the NIST WebBook [44].

Fluid Temperature (K) Pressure (MPa) ρ (kg/m3) Cp (J/g·K) Phase

CO2 303.7 7.3725 608.81298 undefined liquid
CO2 304.2 7.3675 362.24288 undefined vapor
CO2 304.5 7.3835 342.33699 undefined supercritical
CH4 190.1 4.5955 214.82531 undefined liquid
CH4 190.6 4.5960 131.59005 undefined vapor
CH4 190.8 4.6035 122.47476 undefined supercritical
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Table 1. Cont.

Fluid Temperature (K) Pressure (MPa) ρ (kg/m3) Cp (J/g·K) Phase

N2 125.7 3.396 428.58276 undefined liquid
N2 126.2 3.392 255.06112 undefined vapor
N2 126.4 3.4 230.87678 undefined supercritical

H2O 646.6 22.064 423.77596 undefined liquid
H2O 647.2 22.06 250.46303 undefined vapor
H2O 647.5 22.066 230.395 undefined supercritical

In terms of the gas heat capacity calculation, researchers have conducted a lot of
valuable research. For example, C N Yang and C P Yang studied the critical point in
the liquid–gas transition effect on the heat capacity of oxygen and noble gases [45]. W
Botch and M Fixman founded a theory for dynamic heat capacity associated with long-
wavelength density fluctuations in the critical region [46]. G Orkoulas et al. established
that the divergence is shared almost equally between the second temperature derivatives
of the pressure and the chemical potential [47]. Previous studies have shown that the
heat capacity increases substantially near the critical point and density fluctuation and
temperature-related parameters are the key factors affecting the heat capacity of gases.
Therefore, this study derives the fitting equation method to directly solve the isobaric heat
capacity calculation equation by density and temperature based on the authentic NIST
WebBook data [44] and the nature of the heat capacity change (molecular kinetic energy
and potential energy). The heat capacity of CO2 is taken as the example for the equation
deduction and parameter fitting. Compared with the existing implicit function equation
for solving the heat capacity, this new explicit method is simpler and faster because the
intermediate coefficients calculation is omitted and lots of iterative calculations are avoided.
The heat capacity near the critical point is hard to diverge because of the smaller truncated
cumulative error. Additionally, it gives a simple method for deducing the critical heat
capacity by fitting the experimental data near the critical region. In particular, the current
equations of states, namely the Peng–Robinson (PR), Soave–Redlich–Kwong (SRK), etc.,
can calculate the density, temperature, and pressure of gases, but there are no effective
corresponding heat capacity equations. Therefore, the heat capacity calculation method
established in this paper can also be an important supplement to the above gases’ equations
of state.

2. Identification of the Heat Capacity Fitting Equation

The internal energy of gas molecules can be divided into two parts, molecular kinetic
energy and molecular potential energy, among which molecular kinetic energy is mainly
related to the temperature. The isobaric heat capacity of fluids with constant density can be
calculated according to Equation (1):

Cp =
∆Ep + ∆Ek

∆T
(1)

where Cp is the isobaric heat capacity, Ep is the molecular potential energy, Ek is the
molecular kinetic energy, and T is the temperature.

The identification of the potential energy function is the key to determine the fitting of
Equation (1), and the potential energy function can be divided into the model fluid potential
energy function, the semi-empirical potential energy function, and the ab initio potential
energy function [48]. In these three types of functions, the semi-empirical potential energy
function is more welcome and popular due to its good calculation precision and simple
form. The commonly used empirical potential energy model can be further divided into
the two-center Lennard-Jones plus quadrupole model (2CLJQ) [49–52] and the three-center
Lennard-Jones plus quadrupole model (3CLJQ) [53]. Among these two models, 2CLJQ was
introduced for accurate simulation and calculation of the properties of supercritical carbon
dioxide [54]. In addition, Meng Long et al. proposed a 2CLJDQP model considering the
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long-range electrostatic and induction effects [55], and Wang Sheng et al. improved the
2CLJDQP model by introducing potential energy parameters related to temperature [56].

Molecular potential energy can be mainly divided into intermolecular potential energy
and intramolecular potential energy. It is found that intermolecular attraction plays a more
important role when the pressure is low, and then the fluid density fluctuates obviously,
whereas the intermolecular repulsive force leads to weak density fluctuation when the
pressure is high [57]. As the heat capacity is mainly influenced by density, intramolecular
potential energy is not considered in this study, which can also simplify the fitting process.
Although the later developed models such as 2CLJDQP have higher accuracy, they will
make the fitted equations and processes more complicated. The intermolecular potential
energy of 2CLJQ can be expressed by Equation (2) [58,59]; it has been proved to be useful
for the isobaric heat capacity of working fluid in a supercritical CO2 Brayton cycle. Since
it is a function of density and temperature, the molecular potential energy is exclusively
related to the temperature when the density is constant. The main purpose of considering
potential energy is to obtain a semi-empirical formula based on the principles of a simple
form and few parameters for fitting; the relationship of the energy and size terms of the
2CLJQ model to critical points [60] is also ignored.

Ep(r,T) =
ε(e f f )

n− 6

6

[
rm

(e f f )

r

]n

− n

[
rm

(e f f )

r

]6
 (2)

where ε(e f f ) is the potential well depth determined by the temperature, rm
(e f f ) is the

molecular equilibrium spacing determined by the temperature, r is the intermolecular
spacing, and n is a constant.

ε(e f f ) and rm
(e f f ) can be approximately expressed as Equations (3) and (4).

ε(e f f ) = ε

(
rm

rm(e f f )

)6
(3)

rm
(e f f ) = rm + dT (4)

where ε and rm are the potential well depth and the molecular equilibrium spacing, respec-
tively, whereas d is a constant.

If we substitute Equations (3) and (4) into Equation (2), we can obtain Equation (5),
which expresses the relationship between molecular potential energy and temperature.
When the intermolecular distance is constant, Equation (5) is derivative, which can bring us
Equations (6) and (7) that describe the variation in molecular potential energy and density
potential energy with temperature, respectively.

Ep(r,T) =
εrm

6

n− 6

(
6
(rm + dT)n−6

rn − n
r6

)
(5)

∆Ep(r,T)

∆T
=

∂Ep(r,T)

∂T
=

6εrm
6dn−6(rm/d + T)n−7

rn (6)

∆Ep(ρ,T)

∆T
=

6ερn/3Nn/3−2dn−6
[
(M/ρm)

1/3/d + T
]n−7

ρm2Mn (7)

In Equation (7), ρ is the fluid density, N is the molar constant, M is the molecular
weight, and ρm is the fluid density when molecules are in the ground state.
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When the density is constant, all the parameters except the temperature in Equation (7)
are constant. Therefore, Equation (7) can be simplified as a relationship involving three
constants, a, T0, and c, as shown in Equation (8).

∆Ep(ρ,T)

∆T
=

a
(T − T0)

c (8)

a =
6ερn/3Nn/3−2dn−6

ρm2Mn (9)

T0 = −(M/ρm)
1/3/d (10)

c = 7− n (11)

The influence of the molecular kinetic energy on heat capacity can be neglected at the
critical point because heat capacity significantly varies there and molecular potential energy
dominants. In order to verify the correctness of Equation (8), the heat capacities of methane,
water, nitrogen, and carbon dioxide under the critical density are fitted (corresponding to
Figures 1–4, respectively). Table 2 displays the fitting values, determination coefficients
(R-square), and mean absolute relative error (MARE) of the parameters in Equation (8). It is
found that though the molecular kinetic energy is not considered, Equation (8) well applies
the heat capacity near the critical temperature, demonstrating the effectiveness of the fitting
near the critical point. However, as the temperature rises, the fitting error becomes bigger,
finally resulting in a big absolute relative error.
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(without consideration of the molecular kinetic energy).

The molecular kinetic energy cannot be neglected anymore when the temperature is
away from the critical point, as it contributes more to the heat capacity when the effect of
the molecular potential energy decreases. Figures 5 and 6 show the fitting results of the
CO2 heat capacity with densities of 10 kg/m3 and 50 kg/m3, from which we can further
find that Equation (8) is not applicable for the fitting far away from the fluid critical point.
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Table 2. Fitting results of critical heat capacity with different fluids.

Fluid Critical Density kg/m3 a c T0 R-Square MARE (%)

CH4 162.66 247.6514 1.18539 190.5413 0.99993 90.2242
N2 313.3 81.74206 1.10026 126.1819 0.99993 41.4713

H2O 322 1228.679 1.14402 647.0782 0.99995 27.5464
CO2 467.6 156.7309 304.1184 1.12325 0.99997 65.2738
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It has been demonstrated that the molecular kinetic energy can be approximately
calculated by the regression of a one-variable polynomial equation [61,62]. By the law
that explains the variation in the molecular potential energy with the distance to the
molecules [63], we can know that the molecular potential energy rarely varies with the
temperature when the intermolecular distance is very large; therefore, the variation in heat
capacity can be regarded as the variation in molecular kinetic energy with temperature.

We use the CO2 heat capacity corresponding to density of 0.0001 kg/m3 to approximate
the change in CO2 kinetic energy per unit mass. Then, based on the calculation data of the
NIST WebBook [44], we employed OriginPro to fit the relationship between CO2 kinetic
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energy and temperature (as shown in Equation (12)) with a determination coefficient of
0.99999. Next, we substitute Equations (12) and (8) into Equation (1) and can obtain the
CO2 heat capacity fitting Equation (13).

∆Ek
∆T

= Cpρ = 0.0001 = 0.58496−2.10229T
104 +

8.49535T2

106 − 2.36752T3

108 +
2.84159T4

1011 − 1.29972T5

1014 (12)

CpCO2 =
a

(T − T0)
c + 0.58496 − 2.10229T

104 +
8.49535T2

106 − 2.36752T3

108 +
2.84159T4

1011 − 1.29972T5

1014 (13)

Equation (13) is then used to again test the CO2 heat capacity fitting effect. Figures 7 and 8
are the CO2 heat capacity fitting curves considering molecular kinetic energy with respec-
tive densities of 10 kg/m3 and 50 kg/m3. It is obvious that Equation (13), which considers
molecular kinetic energy, can well fit the CO2 heat capacity with low density.
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We used the software OriginPro to further verify the fitting precision of CO2 heat ca-
pacity with densities of 1 kg/m3, 467.6 kg/m3 (critical density), and 1178 kg/m3 (maximum
density), as shown in Figures 9–11 and Table 3. We can see that the mean absolute relative
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error (MARE) of the parameters in Equation (13) is less than 1/50 that of Equation (8)
and that both the determination coefficients (R-square) and mean absolute relative error
(MARE) reach excellent values. Equation (13) is demonstrated to well fit the variation in
heat capacity with temperature. Therefore, we finally identify Equation (13) as the fitting
Equation of CO2 heat capacity as it fully considers the variation in molecular kinetic energy
and potential energy. Figure 12 shows that the contribution ratio of the molecular kinetic
energy to the total fitting CO2 heat capacity (Ratio-Cp of Ek) increases with increases in
temperature, and the maximum value reaches about 0.35, which proves the importance of
considering the molecular kinetic energy.
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Table 3. Fitting results for CO2 heat capacity with different densities.

ρ kg/m3 a c T0 R-Square MARE (%)

1 6.765 1.45845 128.1503 1 0.0001
10 71.9377 1.47141 134.17161 1 0.0004
50 76.80196 1.23533 190.82847 0.99947 0.0012

467.6 155.88611 1.12793 304.09746 0.99996 0.7123
1178 44.8895 0.79192 119.4896 0.99996 0.0002
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3. Fitting Equation Parameters Determination

During the first fitting, we find that the three parameters influence each other. There-
fore, it is necessary to implement three rounds of fitting to identify c, T0, and a in order. The
first fitting determined the relationship between constant c and density; the second fitting
determined the relationship between constant T0 and density; the third fitting determined
the relationship between constant a and density. The first and final fitting results of a, c, and
T0 are shown in Figures 13–15, which have an average determination coefficient of 0.99993,
which indicates very high fitting precision.
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It can be seen from the first fitting dot of Figure 14 that the variation of T0 is more
regular, which is totally different from that of a and c, especially when the density is low or
high. The reason could be that more deviation from the critical density means a smaller
change in molecular potential energy, which makes it difficult for the fitting parameters
to reflect the influence of molecular potential energy on heat capacity. If we consider c
as an impact factor for the influence of molecular potential energy on heat capacity, we
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might obtain a larger c with larger molecular potential energy at the critical density point,
whereas c tends to be a constant when the density is low or high. Therefore, we should
simplify the fitting Equation of c. Existing multiple library functions in the OriginPro
were compared and studied to finally identify the fitting Equation of c and the related
parameters, as expressed as Equation (14) and shown in Table 4. The final fitting dot of
Figure 13 shows the relationship between fitting c and density.

c =



1 ( ρ ≤ 418 )

A/
[

1+
5
∑

i=1
Ai(|ρ− xc|/500) i

]
( 419 ≤ ρ ≤ 518 )

A/
[

1+
5
∑

i=1
Ai(|ρ− xc|/500) i

]
( 518 ≤ ρ ≤ 570 )

0.8 ( ρ ≥ 570 )


(14)

Table 4. Fitting parameters of c (R-square > 0.9999, MARE < 0.0001).

ρ kg/m3 xc A A1 A2 A3 A4 A5

419–445 445 1.14733 −0.135 58.6 −560 −2143 45,108
445–467.6 467.6 1.12795 −0.12779 −22.8665 1322.2 −40188 430,658
467.6–495 467.6 1.12795 −0.62095 -19.3 840.2 −28050 318,116
495–518 495 1.18665 0.42544 74 −680 2790 0
518–570 570 0.8 −0.55794 −17.6784 −107.511 1356.378 0

When ρ ≤ 418 kg/m3 or ρ ≥ 519 kg/m3, the maximum heat capacity can be calculated
based on the NIST WebBook. However, in the transition zone where 418 kg/m3≤ ρ≤ 519 kg/m3,
the maximum heat capacity cannot be calculated. Therefore, there should be a large muta-
tion within or near the density range of 418–419 kg/m3 and 518–519 kg/m3. In this context,
we adopt the linear interpolation method to calculate the heat capacity of the transition
zone, expressed as Equation (15).

Cp =

{
Cpρ=418 + (Cpρ=419 − Cpρ=418)(ρ−418) ( 418 ≤ ρ ≤ 419 )
Cpρ=518 + (Cpρ=519 − Cpρ=518)(ρ−518) ( 518 ≤ ρ ≤ 519 )

}
(15)

In the fitting process, it is found that the heat capacity fitting precision is more sensitive
to changes in T0, whereas T0 changes very regularly. Therefore, we then fit the T0 through
the piecewise Equation (16). Table 5 shows the fitting parameters. The final fitting dot of
Figure 14 shows the relationship between fitting T0 and density.

Table 5. Fitting parameters of T0 (R-square > 0.9999, MARE < 0.0001).

ρ kg/m3 xc A A1 A2 A3 A4 A5

0.01–250 250 290.17571 0.33243 0.2834 7.34123 −26.56616 40.9466
250–330 330 300.52514 0.11042 1.85179 −26.71893 209.13131 −543.8088
330–375 375 303.00611 0.06046 0.13587 6.2638 −67.77213 269.90062
375–418 418 303.94059 0.0181 0.28438 −5.80458 100.62786 −507.6728
419–445 445 304.09399 0.00631 0.10056 −0.81355 20.9428 −126.4

445–467.6 467.6 304.11792 −0.00025 −0.02075 0.64954 37.95686 −462
467.6–495 467.6 304.11792 −0.00019 −0.01384 −0.87259 70.33025 −644.07
495–518 495 304.08123 0.00786 0.09597 −0.2174 2.16398 0
519–570 519 303.92747 0.0188 0.01178 1.83036 −10.15248 47.55789
570–620 570 302.89499 0.0643 0.22867 1.40737 −1.70157
620–700 620 299.90971 0.135 0.57585 −2.28116 18.71844 −46.52369
700–850 700 289.93954 0.25501 1.83235 −14.84521 67.05886 −97.84919

850–1178 850 253.00199 0.6462 0.74432 0.24847 1.81233 0
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In the fitting process, it is found that the heat capacity fitting precision is more sensitive
to changes in T0, whereas T0 changes very regularly. Therefore, we then fit the T0 through
the piecewise Equation (16). Table 5 shows the fitting parameters. The final fitting dot of
Figure 14 shows the relationship between fitting T0 and density.

T0 = A/

[
1+

5

∑
i=1

Ai(|ρ− xc|/500) i

]
( 0 .01 ≤ ρ ≤ 1178) (16)

Based on the calculated c and T0 by Equations (14) and (16), the equation is fitted for
the third time, which brings in variations of a. This has a high determination coefficient
of 0.99925, still indicating a very high fitting precision. Then a is fitted by the piecewise
Equation (17). Table 6 shows the fitting parameters. The final fitting dot of Figure 14 shows
the relationship between fitting a and density.

a =


(67 .24968 + 167.4ρ)/(ρ + 354) (0 ≤ ρ ≤ 250)

A/
[

1+
5
∑

i=1
Ai(|ρ− ρ0|/500) i

]
(250 ≤ ρ ≤ 1178)

 (17)

Table 6. Fitting parameters of a (R-square > 0.9999, MARE < 0.0001).

ρ kg/m3 ρ0 A A1 A2 A3 A4 A5

250–330 330 82.24941 2.17897 −77.69272 1477.057 −10,862.85 27,604.2
330–375 375 95.04348 1.86662 22.971 −945.3032 11,954.6 −49,742.9
375–418 375 95.04348 −3.58088 129.32 −4664.13 60,103.1 −264,235.5
419–445 445 161.57195 0.60004 38.45717 1152.5 −23,625.2 139,048

445–467.6 467.6 155.88555 −1.91731 −9.8931 2295 −52,762.5 423,919
467.6–495 467.6 155.88555 0.80828 −24.82 2681.87 −58,726.45 435,333
495–518 495 142.14881 2.91935 58.266 1210.6 −20,377.8 125,216.9
519–570 570 49.33043 −4.12187 −38.1146 306.7 −316.4 116.7
570–620 570 49.33043 4.29655 −91.66 2592.7 −31861 132,164
620–700 620 39.7411 1.49342 −10.76 92.021 −479.35 920.58
700–850 700 35.39488 0.40317 −4.7353 39.246 −165.635 238.462

850–1178 850 35.67187 −0.23465 0.04875 −2.13036 4.66409 −3.08148

4. Validation of Fitting Precision

Based on the fitting equations of a, c and T0, we compile the C++ program to cal-
culate the heat capacity and validate the results near the critical temperature point with
temperatures of 304.1 K and 304.3 K. Figures 16 and 17 show the comparison result at the
temperatures of 304.1 K and 304.3 K. Table 7 shows the points where the critical CO2 heat
capacities in the NIST WebBook and NIST REFPROP are predicted successfully using the
fitting method. Through comparison with the NIST WebBook and NIST REFPROP data,
the mean absolute relative errors (MAREs) were below 0.674% and 0.337%, respectively.
The biggest MARE happens around the critical density, where the heat capacity and its
change rate with density is high. There are various reasons for the MARE, and the main
reason should be the measures taken for the fitting simplification, such as the assumption
of the molecular kinetic energy density independence, the disregard of the influence of
the intramolecular potential energy, and the mandatory assignment of c away from the
critical density. Nevertheless, compared with the NIST REFPROP heat capacity, the fitting
equation still has acceptably high accuracy. In addition, several traditionally unavailable
heat capacities in the NIST WebBook and NIST REFPROP are well predicted, such as the
point with a temperature of 304.1 K and densities of 435–445 kg/m3 and 510–560 kg/m3.
The fitting result shows that the fitting method established in the article has better conver-
gence in the heat capacity calculation. The detailed C++ program and fitting data is in the
Supplementary Materials.
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Table 7. Points where critical CO2 heat capacities are predicted successfully.

ρ (kg/m3) NIST WebBook Cp [44] NIST REFPROP Cp Fitting Cp MARE (%)

385 128.03301 128.03301 129.29207 0.98339
390 Undefined 158.72872 160.41812 1.06433
430 Undefined 2614.91213 2465.61014 5.70964
435 Undefined Undefined 4092.02132 Undefined
445 Undefined Undefined 57112.40951 Undefined
450 Undefined Undefined Undefined Undefined
490 Undefined Undefined Undefined Undefined
495 Undefined Undefined 15914.15082 Undefined
505 Undefined Undefined 2453.76021 Undefined
510 Undefined 1457.67440 1405.32011 3.59163
560 Undefined 60.68897 60.98897 0.49432
565 50.74832 50.74832 51.04832 0.59115

5. Conclusions

Currently, existing accurate equations for the calculation of the heat capacities of car-
bon dioxide, nitrogen, methane, and water, are easy to diverge for heat capacity calculations
near the critical temperature and pressure. To solve this problem, a fitting equation for heat
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capacity with constant density was derived through analyses of the relationships among
molecular potential energy, molecular kinetic energy, density, and temperature, which was
further validated afterwards. The variations of the fitting parameters with density were
fitted in order, which brings the carbon dioxide heat capacity variation with density and
temperature. Based on this, a corresponding C++ program is compiled. Moreover, the
relative error compared with the NIST WebBook data is identified to be within 1% with
temperatures of 304.1 K and 304.3 K. In addition, for the areas where the NIST WebBook
and NIST REFPROP data diverge easily, such as densities in the ranges 435–445 kg/m3 and
510–560 kg/m3 at 304.1 K, the fitting equation also made a good calculation. Moreover,
due to the avoidance of complex intermediate calculation processes, the heat capacity
calculation speed is greatly improved, which is more suitable for the calculation and simu-
lation of large-scale engineering. Therefore, this fitting formula can be used as an effective
supplement to the heat capacity calculation equation and as a prediction method for fluid
heat capacity experimental data.

This paper has proved that the heat capacity variation near the critical point can be
effectively fitted by the semi-empirical formula determined by molecular potential energy
and kinetic energy. However, in order to reduce the complexity of the fitting formula and
the difficulty of the fitting process, a simplified and relatively simple molecular potential
energy equation was used that resulted in a decline in the fitting accuracy; this deficiency
should be further studied in the future.
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