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Abstract: Double-pipe counter-flow heat exchangers are considered more suitable for heat recovery
in the heat transfer industry. Numerous studies have been conducted to develop static tools for
optimizing operating parameters of heat exchangers. Using this study, an improved heat exchanger
system will be developed. This is frequently used to solve optimization problems and find optimal so-
lutions. The Taguchi method determines the critical factor affecting a specific performance parameter
of the heat exchanger by identifying the significant level of the factor affecting that parameter. Gray
relational analysis was adopted to determine the gray relational grade to represent the multi-factor
optimization model, and the heat exchanger gray relation coefficient target values that were predicted
have been achieved using ANN with a back propagation model with the Levenberg–Marquardt drive
algorithm. The genetic algorithm improved the accuracy of the gray relational grade by assigning
gray relational coefficient values as input to the developed effective parameter. This study also
demonstrated significant differences between experimental and estimated values. According to
the results, selecting the parameters yielded optimal heat exchanger performance. Using a genetic
algorithm to solve a double-pipe heat exchanger with counterflow can produce the most efficient
heat exchanger.

Keywords: double-pipe heat exchanger; genetic algorithm; gray

1. Introduction

Global urbanization and a growing population have increased the demand for energy.
Oil, gas, coal, etc., are fossil fuels, and their use has a negative impact on the environment.
As a result, energy-saving strategies and renewable energy sources have been employed
in order to address this problem [1]. As a result, an effective thermal system is being
developed to reduce energy consumption. It is widely recognized that heat exchangers are
essential components in a variety of industries, including electric, petroleum, electronics,
chemical, and aerospace [2,3].

The design of heat exchangers has evolved significantly over time as heavy and light
machinery are used in different industries. The Tubular Exchanger Manufacturers Associa-
tion (TEMA) has developed and adopted standards that specify the design, construction,
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and dimensions of these systems [4–7]. Researchers have explored various techniques to en-
hance the performance of heat exchangers, including the use of coiled wires, spiral/twisted
bands, winglets, ribs/fins/baffles, and riblets [8].

In the chemical, food, and automotive industries, heat transfer methods have evolved
through industrial transformation [9]. However, optimizing the performance parameters of
heat exchangers has become increasingly challenging [10]. To determine the effects of the
parameters, researchers have used statistical analysis methods such as analysis of variance
(ANOVA) and the Taguchi method, considering all possible combinations of variables.
Limited studies in the literature have analyzed thermal system performance parameters.
Heat exchanger performance has been analyzed using Taguchi and ANOVA methods in
several of these studies [11].

A gray relational analysis (GRA) measures multiple objective parameters simultane-
ously and determines optimal parameters for different applications. According to Naqiud-
din et al. heat transfer and flow characteristics were optimized by changing various design
parameters using computational fluid dynamics and Taguchi GRA [12].

Previous studies have demonstrated the efficacy of data-driven models based on
experimental data, such as artificial neural networks (ANNs) or fuzzy systems, in accurately
predicting complex functions. Researchers have focused on developing ANN models to
accurately predict the thermal conductivity of nanofluids, and the results have shown good
agreement with experimental data [13]. Further, Sridharan [14] emphasized the value of
artificial intelligence in predicting and controlling heat exchanger performance. Generalized
regression neural networks provided the most accurate values (98.50%) compared to real-
time experimental values.

Most studies that consider structural parameters use genetic algorithms for optimizing
heat exchanger processes. It has been reported that genetic algorithms, neural networks,
and particle swarm optimization can solve mathematical programming models, although
they have limitations. This allows GA to function reliably and accurately without human
intervention [15–17]. There are successful applications of genetic algorithms in optimizing
finned heat exchangers [18]. For instance, Sanaye and Hajabdollahi [19] estimated two ob-
jective functions for plate-fin heat exchangers with staggered stripe ribs, namely maximum
efficiency and minimum total annual cost, using GA. Xie et al. [20] demonstrated that a
genetic algorithm can minimize the slab-fin type compact heat exchanger in terms of both
volume and annual cost.

Despite advancements in optimizing structural parameters of heat exchangers, a
comprehensive study assessing the contributions of performance parameters, such as
effectiveness, thermal resistance, and overall heat transfer coefficient, to heat exchanger
performance is lacking. This research aims to address this gap by combining gray relational
analysis (GRA) with artificial neural networks (ANNs) and genetic algorithms (GAs) to
determine the relative significance of these parameters in a specific order. This integrated
approach can improve problem-solving capabilities and provide valuable insights for
enhancing heat exchanger efficiency in various industries.

2. Optimization Methodologies
2.1. Gray Relational Analysis Optimization (GRA)

GRA is capable of solving problems with a variety of objectives. The concept behind it
is gray relational analysis, which considers both objective values and data uncertainty or
imprecision in order to compare multiple options or solutions.

The GRA optimization process involves the following steps:

1. Define the decision factor variables and the optimized goal functions.
2. Gather information for the decision factor factors and function goals.
3. Use gray relational analysis to evaluate and compare the different options or solutions

based on their objective values and the uncertainty or imprecision of the data.
4. The optimal solution is determined by analyzing gray relational data.
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Grey Relation Analysis has the unique advantage of being able to handle both quali-
tative and quantitative data while concurrently balancing multiple conflicting objectives.
Additionally, it can effectively handle uncertainty or imprecision in the data, which is often
present in real-world problems.

Multi-objective optimization problems with uncertain or imprecise data have been
solved using GRA optimization in a variety of fields, including engineering, finance, and
management science [21–24].

The gray relational analysis (GRA) process involves several steps, including the use of
formulas to evaluate the relative importance of variables and optimize a system or process.
The specific steps and formulas used in GRA can vary depending on the problem and
research design, but a general step-by-step process with formulas is as follows:

Step 1: Normalization—The raw data and pre-processing are normalized using the fol-
lowing formulas. The responses are normalized linearly between zero and one. Generating
gray relations is the process that is involved in this step.

These equations were used to normalize the original sequence:

Xi(k) =
Max(Xi(k))− (Xi(k))

(Max Xi(k))− (Min Xi(k))
(1)

Xi(k) =
(Xi(k))− (Max Xi(k))

(Max Xi(k))− (Min Xi(k))
(2)

Step 2: Analysis of Deviations—The normalized responses are analyzed for deviations
using the following formula to determine the deviational sequence.

∆0,i(k)= |(X ∗0(k))−
(

X*
i (k))| (3)

where X*
0(k) is the reference section and (X *

i (k)) is the comparative sequence.
Step 3: Gray Relational Coefficient—A gray relational coefficient is used to compare

an idealized result with a real normalized result. This formula can be used to calculate
GRC.A threshold of ζ = 0.5 is used in this study.

ξ0,i(k) =
∆min+ζ.∆max
∆0,I + ζ.∆max

(4)

Step 4: Gray Relational Grade—The gray relational grade (GRG) of an output is
calculated by averaging its GRC over all outputs corresponding to every run.

γi =
1
p

p

∑
k=1

ξ0,i(k) (5)

This step-by-step process and associated formulas allow evaluating the relative impor-
tance of variables and optimizing a system or process using gray relational analysis.

2.2. Artificial Neural Network

Machine learning simulates the functions of the human brain with an artificial neu-
ral network (ANN). ANNs comprise interconnected neurons that process and transmit
information, linked by synapses acting as connection weights. The input layer receives
data, transmitting it to hidden layers for processing and ultimately to the output layer
for final results. ANNs vary in layer and neuron number depending on task complexity,
with feed-forward, recurrent, and convolutional networks being common types. Feed-
forward networks only have unidirectional information flow, while recurrent networks
have feedback connections allowing cyclic flow, and convolutional networks are designed
for image processing.
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ANNs require training by adjusting interneuron connection strengths to improve
performance on a given task. Back-propagation, commonly used for training, adjusts
weights using gradient descent. ANNs are extensively applied in imaging, speech and
natural language processing, decision-making, and other fields. As data and computational
resources become more available, ANNs’ accuracy and power in solving complex problems
continue to increase. ANNs represent a powerful machine learning tool that will keep
improving with technology and data availability [25–29].

The following steps can be followed to create and train an ANN:

1. Data preparation: In order to train the model, the dataset must first be prepared. This
dataset should include input and output pairs, where the input is in the form of a
matrix, with each row representing a sample, and the output is in the form of a matrix
or vector with the same number of rows as the input matrix.

2. Network creation: The next step is to create the network structure using commands
such as “feed forward net” or “pattern net” for feed forward or pattern recognition
networks, respectively. By specifying layers and neurons, the user can create a network
of any size.

3. Network configuration: Once the network is created, it can be configured by setting
the transfer function for each layer, as well as the training algorithm and performance
function. This step is crucial for achieving optimal performance on the specific task.

4. Training: The network is trained using the “train” command along with the input and
output data. Weights are adjusted across neurons in a model to improve performance.

5. Testing: After training, the network can be tested using the “sim” command with new
input data. A comparison between the network’s output and expected output can be
used to determine the model’s performance.

6. Deployment: The network can be used to predict or classify new data once it has been
trained and tested.

2.3. Genetic Algorithm

A genetic algorithm mimics natural selection in biology by utilizing an optimization
method. They are widely used for finding near-optimal solutions to complex problems
in a computationally efficient manner. Genetic Algorithms were based on the principles
of population generation, evaluation of solution quality using fitness functions, genetic
operators, such as crossovers and mutations, for producing new candidate solutions, and
selection criteria for selecting the best solutions for reproduction. [30–34].

A brief summary of the step-by-step process for implementing a genetic algorithm is
provided below.

1. Problem definition: Define the problem that needs to be solved and determine the
objective function that will be used to evaluate the quality of solutions.

2. Encoding: Represent the problem using a suitable encoding method, such as binary
or real-valued encoding.

3. Initialization: Create an initial population of solutions using a random or heuris-
tic method.

4. Evaluation: By calculating the objective function for each solution in a population,
assess its quality.

5. Selection: A select group of the most effective solutions to serve as parents to the next
generation should be selected.

6. Crossover: Combine the selected parents to create new solutions using crossover
operators, such as one-point or two-point crossover.

7. Mutation: Introduce small random changes to the new solutions using mutation
operators, such as bit-flip or polynomial mutation.

8. Replacement: Replace the worst solutions in the population with the new solutions.
9. Repeat steps 4–8 for a specified number of generations or until a satisfactory solution

is found.
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10. Analysis of results: Analyze the results obtained and interpret the solution obtained
by the GA.

Genetic regulatory algorithms (GRAs) are a computational technique inspired by
biological systems that use artificial neural networks (ANNs) and genetic algorithms (GAs)
to optimize solutions. GRA combines the power of ANNs, which are computational
models inspired by the human brain, with GAs, which mimic the processes of natural
selection and evolution. By applying genetic operators, such as mutation and crossover,
to the parameters of ANNs, GRA can evolve and improve the performance of neural
networks in solving complex problems. This integration of GRA, ANNs, and GAs enables
the development of robust and adaptive computational systems capable of learning and
adapting to changing environments.

3. Proposed Research Framework

Hybrid optimization is a technique that combines multiple optimization methods to
improve the performance of the optimization process.

Gray relation analysis (GRA) analyzes the relationship between multiple variables
and identifies the degree of relevance between them, which is commonly used in decision-
making, optimization, and control systems. The integration of GRA with neural networks
and genetic algorithms (GA) has been shown to enhance the ability to solve complex
problems and improve the accuracy of predictions.

In order to combine GRA with neural networks and GA, the following steps can
be taken:

1. To select the most significant variables for the problem at hand, GRA determines the
degree of relevance between several variables.

2. The next step is to train a neural network with inputs from the selected variables and
outputs from the desired ones.

3. Genetic algorithms are then applied to optimize the neural network’s structure and
parameters to improve its performance.

The integration of GRA, neural networks, and GA can be applied to solve complex
issues such as pattern recognition, control systems, and multi-objective optimization. By
using this hybrid approach, important variables can be identified through GRA, the neural
network can model the relationship between variables, and GA can optimize the neural
network’s performance.

However, it’s important to acknowledge that combining these methods is not a straight-
forward process and requires a good understanding of each method and how they can be
integrated to solve a specific problem. A good dataset and evaluation metric are also crucial
for achieving good results. Figure 1 illustrates the hybrid optimization method model.
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Figure 1. Optimization using ANN-GA method [35].

4. Design and Results of an Experiment
Equipment Details

Double-pipe heat exchangers refer to heat exchangers that consist of two pipes, with
one pipe located within the other and the annular space between them serving as the
heat transfer area. In this experiment, a hot fluid is passed through an inner tube while
a cold fluid is circulated through an outer pipe in the opposite direction. Control valves
regulate fluid flow by monitoring the temperatures at the inlet and outlet. The system
is kept constant in terms of heat and liquid introduction. Varying mass flow rates are
examined through a series of experiments. The specifications of the experimental setup are
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provided in Table 1 and illustrated in Figure 2, while Figure 3 presents a schematic layout
of the setup.
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Figure 2 illustrates the experimental arrangement of a double-pipe heat exchanger,
which includes a control valve regulating the flow of hot and cold liquids in opposite
directions. To monitor the temperature of the hot and cold fluids, temperature sensors (TS1,
TS2, TS3, and TS4) were employed. Throughout the experiments, a consistent quantity of
heat and liquid was provided to the system.
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Table 1. Specifications of the heat exchanger.

Parameter Value

Geometrical Aspect

Nature of heat exchange Indirect contact
Inner tube material Copper
Inner diameter 9.5 mm
Outer diameter 12.5 mm
Outer tube material Galvanized iron
Inner diameter 28.5 mm
Outer diameter 32.5 mm
Length of heat exchanger 1500 mm

Thermal aspect

Working fluid Water
Hot water fluid inlet temperature 60 ◦C
Cold water fluid inlet temperature 32 ◦C
Mass flow rate of the hot water fluid 1–4 (kg/min)
Mass flow rate of the cold water fluid 1–4 (kg/min)

5. Numerical Approach
5.1. Overall Heat Transfer Coefficient

The heat transfer rate can be calculated using the equation:

Q = Qc = Qh

where Qc is the heat transfer rate of the cold fluid and Qh is the heat transfer rate of the
hot fluid.

To calculate Qc and Qh, the following equations can be used:

Qc = Mc * Cpc * (t1 − t2) (6)

Qh = Mh * Cph * (T2 − T1) (7)

where Mc is the mass flow rate of the cold fluid, Mh is the mass flow rate of the hot fluid,
Cp,c is the specific heat capacity of the cold fluid, Cp,h is the specific heat capacity of the
hot fluid, t1 and t2 are the inlet and outlet temperatures of the cold fluid, and T1 and T2 are
the inlet and outlet temperatures of the hot fluid.

The overall heat transfer coefficient (U) can be calculated using the following equation:

U = 1/((1/h1) + (r1/k) + (r2/k) + (1/h2)) (8)

where h1 and h2 are the heat transfer coefficients for the hot and cold fluids on the inner
and outer pipe surfaces, respectively, r1 and r2 are the thermal resistances of the inner and
outer pipes, respectively, and k is the thermal conductivity of the pipe material.

5.2. Effectiveness

The following equation can be used to calculate the effectiveness of a counterflow
double-pipe heat exchanger:

ε = [1 − (t2 − T1)/(t1 − T1)]/[1 + (Mc/Mh) * (t2 − t1)/(Mh/Mc * (T2 − T1))] (9)

where Mc and Mh are the mass flow rates of cold and hot water, T1 and t1 are the inlet
temperatures of hot and cold water, and T2 and t2 are the outlet temperatures of hot and
cold water, respectively.

The determination of inlet and outlet water temperatures, which are influenced by
the mass flow rates of the two streams, is a crucial factor in evaluating the efficiency of
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counterflow double-pipe heat exchangers. This equation plays a vital role in optimizing
such systems.

5.3. Thermal Resistance

The thermal resistance equations for a counterflow double-pipe heat exchanger can be
expressed as:

R = (T1 − T2)/(Mc * Cpc) = (t2 − t1) / (Mh * Cph) (10)

where R is the thermal resistance, Mc and Mh are the mass flow rates of the cold and hot
fluids, respectively, Cpc and Cph are the specific heats of the cold and hot fluids, respectively,
T1 and T2 are the inlet and outlet temperatures of the hot fluid, and t1 and t2 are the inlet
and outlet temperatures of the cold fluid.

If the effectiveness of the heat exchanger is known, the thermal resistance can be
calculated as:

R = (1 − ε)/(ε * U * A) (11)

where ε is the effectiveness, U is the overall heat transfer coefficient, and A is the heat
transfer surface area.

5.4. Design of Experiments

An experimental design was created using the Taguchi method in this study. In
this approach, multiple variables are considered to optimize the experimental design by
considering their effects on output responses. The total degrees of freedom were used
to determine the proper orthogonal array. The Taguchi method is an effective tool for
identifying key factors affecting output response and minimizing variability. An estimation
of the initial response can be calculated by identifying the optimal combination of factors.

According to the experimental arrangement, 60 ◦C hot fluid entering the center core
barrel passes through valve V1 at a temperature of 60 ◦C. This is done from the hot fluid
reservoir. The hot fluid exits the center tube at a temperature of T2, as measured by TS2.
Through valve V3, a 32 ◦C cold liquid flows into the outer tube against the hot liquid (with
valves V2 and V4 closed). TS4 measures t2 as the exit temperature through valve V5.

This study conducted 16 sets of experiments to assess the effects of varying mass flow
rates, from 1 kg/min ± 1.42% to 4 kg/min ± 1.42%. The results from these experiments
are presented in Table 2, and summarized in Table 3.

Table 2. Heat exchanger experiment conditions.

Factor Parameters Levels

1 2 3 4

A Mass flow rate of hot water (kg/min) 1 2 3 4
B Mass flow rate of cold water (kg/min) 1 2 3 4

Table 3. Experimental analysis of the heat exchanger.

S.No. Mass Flow Rate Input Conditions Output Conditions

Mh Mc T1 t1 T2 t2 € TR U

kg/min kg/min ◦C ◦C ◦C ◦C ◦C\W (W/m2 ◦C)

1 1 1 60 32 48.2 44.6 0.42 0.0186 2.9
2 1 2 60 32 45.6 36.6 0.51 0.0156 3.4
3 1 3 60 32 40.6 36.1 0.69 0.0069 7.7
4 1 4 60 32 43.7 35.9 0.58 0.0071 7.4
5 2 1 60 32 51.8 46.8 0.52 0.0124 4.3
6 2 2 60 32 46.5 42.1 0.47 0.0099 5.4
7 2 3 60 32 43.6 34.8 0.58 0.0092 5.8
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Table 3. Cont.

S.No. Mass Flow Rate Input Conditions Output Conditions

Mh Mc T1 t1 T2 t2 € TR U

kg/min kg/min ◦C ◦C ◦C ◦C ◦C\W (W/m2 ◦C)

8 2 4 60 32 43.4 34.3 0.59 0.0071 7.5
9 3 1 60 32 53.6 47.8 0.56 0.0088 6.0

10 3 2 60 32 51.9 45.1 0.46 0.0090 5.9
11 3 3 60 32 44.8 37.1 0.54 0.0082 6.5
12 3 4 60 32 44.7 34.8 0.54 0.0075 7.0
13 4 1 60 32 50.8 44.3 0.44 0.0084 6.3
14 4 2 60 32 47.9 45.3 0.47 0.0057 7.3
15 4 3 60 32 46.7 37.1 0.18 0.0088 6.0
16 4 4 60 32 43.6 33.5 0.58 0.0073 7.3

6. Optimization Results
6.1. GRA-Based Optimization

An analysis of multiple performance characteristics of a heat exchanger system was
conducted using the GRA method. The resulting response was normalized between 0 and
1 (Equation (1)), resulting in a single-objective optimization problem. The normalization
equation used was selected for its ability to maximize T2, t2, U, €, and TR, which are the
desired parameters. By utilizing the GRA method, a single-objective optimization problem
was obtained from the original multi-objective problem, which had multiple performance
characteristics [36].

After normalization, the GRC (ξ (0, i) (k)) was determined using Equation (4). An
idealizing value and actual values are represented by GRC coefficient. The calculation
involves the identification coefficient (ζ), which is limited to the range of 0 < ζ < 1. Al-
though the selection of any value within this range does not affect the order of parameter
importance in the GRA method, a commonly used value is 0.5 [37–39].

Equation (5) was used to compute the gray relational grade (γi) using different weight
factors. After calculating the GRC, the resulting γi value was utilized to measure the degree
of correlation between the reference and comparative sequences. An ideal gray relational
grade of 1 indicates that the two sequences are identical. The highest gray relational grade
represents the best result, which is achieved when the maximum T2, t2, U, €, and TR values
are attained.

The assignment of weight factors to each response is a critical step in the application of
the gray relational analysis (GRA) technique, as the importance of different responses may
vary in real-world engineering problems. While some researchers may choose to assign
equal weight to multiple responses, this approach may not always yield reliable results.
Hence, it is imperative to adopt a suitable procedure to determine the weight factors, taking
into account the effects of parameter variations on T2, t2, U, €, and TR.

To obtain the overall multi-response output, known as the genetic response grade
(GRG), the GRCs for each response were averaged, as shown in Table 4.

6.2. ANN–GA-Based Optimization

Heat exchanger parameters were represented by four neurons in the input layer, and
responses were represented by five neurons in the output layer. The optimal number of
neurons and hidden layers in the hidden layer were determined using trial and error in the
MATLAB software. For training, we obtained an MSE of 0.03, and for testing, we obtained
an MSE of 0.015. In this BPNN network, the egress and hidden layers were activated
by purelin and tansig, respectively. The training function was Levenberg–Marquardt
(trainlm), and the stopping criteria were 10,000, 0.001, 0.00001, and 1000, respectively,
for the maximum epoch number, the performance goal, and the minimum performance
gradient. Figure 4 shows the network architecture configuration. Table 5 presents the
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prediction data for the predicted gray relational coefficient (PGRC) of output parameters
and predicted gray relation grade (PGRG).

A training set and a test set were used to develop the ANN model. According to
Figure 5, there was an average error of less than 9% for each response when comparing
experimental and ANN-predicted values. The two values are significantly in agreement.
Figure 6 shows the correlation coefficients between all data, training, and testing datasets.
Inferring response levels with the ANN model proved to be highly accurate.

Table 4. Gray relational coefficient (GRC) and gray relational grade (GRG) for all responses.

S.NO.
Gray Relation Coefficient

GRG
GRC-T2 GRC-t2 GRC-U GRC-€ GRG-TR

1 0.460 0.392 1.000 0.517 0.333 0.540
2 0.561 0.698 0.858 0.437 0.393 0.589
3 1.000 0.733 0.402 0.333 0.841 0.662
4 0.677 0.749 0.415 0.390 0.816 0.609
5 0.367 0.350 0.693 0.424 0.492 0.465
6 0.520 0.454 0.564 0.463 0.605 0.521
7 0.684 0.846 0.526 0.388 0.648 0.618
8 0.699 0.899 0.414 0.383 0.818 0.643
9 0.333 0.333 0.505 0.401 0.675 0.449

10 0.364 0.381 0.515 0.472 0.662 0.479
11 0.607 0.665 0.472 0.414 0.720 0.576
12 0.613 0.846 0.436 0.412 0.777 0.617
13 0.389 0.397 0.484 0.496 0.703 0.494
14 0.471 0.377 0.333 0.466 1.000 0.529
15 0.516 0.665 0.506 1.000 0.674 0.672
16 0.678 1.000 0.424 0.390 0.799 0.658

Table 5. Prediction data of ANN.

S.NO.
ANN Predicted

PGRG
PGRC-T2 PGRC-t2 PGRC-U PGRC-€ PGRG-TR

1 0.46 0.40 0.98 0.52 0.35 0.54
2 0.56 0.71 0.83 0.44 0.43 0.58
3 0.98 0.79 0.37 0.34 0.81 0.65
4 0.87 0.98 0.50 0.34 0.79 0.49
5 0.37 0.34 0.72 0.43 0.46 0.46
6 0.51 0.48 0.55 0.46 0.63 0.52
7 0.69 0.81 0.56 0.37 0.69 0.63
8 0.70 0.91 0.40 0.38 0.83 0.64
9 0.36 0.34 0.37 0.42 0.71 0.45

10 0.36 0.43 0.49 0.53 0.73 0.48
11 0.60 0.72 0.45 0.42 0.85 0.57
12 0.61 0.86 0.42 0.41 0.81 0.62
13 0.34 0.41 0.44 0.46 0.69 0.45
14 0.46 0.39 0.34 0.48 0.97 0.53
15 0.52 0.67 0.51 0.98 0.79 0.66
16 0.68 0.98 0.43 0.40 0.76 0.66

This study optimized the ANN model parameters with the genetic algorithm (GA)
to improve the accuracy of the heat exchanger GRA ranking prediction. To minimize the
difference between predicted and actual GRA ranking values, we used the GA to find the
optimal neural network weights and biases. It took several iterations for the optimized
ANN model to achieve a correlation coefficient of 0.98417, which indicates a high level of
accuracy in the GRA ranking prediction. Combining ANN and GA techniques can improve
the accuracy of heat exchanger performance predictions. Table 6 shows the results.
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Table 6. Predicting GRA ranking with genetic algorithm.

S.No. Mass Flow Rate Input Conditions GRG

Mh Mc T1 t1

1 1 1 60 32 0.540
2 1 2 60 32 0.589 GA Result
3 1 3 60 32 0.662 0.657
4 1 4 60 32 0.609
5 2 1 60 32 0.465
6 2 2 60 32 0.521
7 2 3 60 32 0.618
8 2 4 60 32 0.643
9 3 1 60 32 0.449

10 3 2 60 32 0.479
11 3 3 60 32 0.576
12 3 4 60 32 0.617
13 4 1 60 32 0.494
14 4 2 60 32 0.529
15 4 3 60 32 0.672
16 4 4 60 32 0.658
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7. Conclusions

This study assessed the performance of double-tube heat exchangers using GRA,
ANN, and GA techniques. In evaluating the heat transfer coefficient, effectiveness, thermal
resistance and thermal efficiency were taken into account. Temperature resistance measures
the resistance to heat flow through a heat exchanger, while efficiency measures the efficiency
of heat transfer between hot and cold fluids. An efficient heat transfer is implied by a low
thermal resistance. Based on the thermal properties of the materials and the design of the
heat exchanger, the overall heat transfer coefficient measures the efficiency of heat transfer.

To accurately predict the response value of double-tube heat exchangers, an ANN
model was developed. Heat exchanger performance was most significantly influenced by
the overall heat transfer coefficient, according to GRA analysis. An average error of less
than 9% was observed between experimental and expected values using the ANN model.
The ANN model predictions were highly accurate in relation to the experimental values,
indicating high correlation coefficients.

An ANN model parameter was optimized using a GA to improve the GRA ranking
prediction accuracy. Using the GA, the neural network’s weights and biases were optimized
for minimizing the difference between predicted and actual GRA rankings. With a corre-
lation coefficient of 0.98417, the optimized ANN model achieved a high correlation. As a
result, the GRA ranking of the heat exchanger was predicted very accurately. By combining
GRA, ANN, and GA techniques, heat exchanger performance prediction accuracy can be
significantly improved, and these results can possibly be applied to other heat exchanger
designs as well.
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