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Abstract: While heating a seawater spiral shell (Euplica scripta), thermally induced aragonite–calcite
(A–C) transformation occurred within the temperature region of multistep thermal dehydration.
Here, the kinetic interplay between the A–C transformation and thermal dehydration was stud-
ied as a possible cause of the reduction in the A–C transformation temperatures. The kinetics
of the A–C transformation was systematically investigated under isothermal conditions by pow-
der X-ray diffractometry and under linear nonisothermal conditions by Fourier transform infrared
spectroscopy. The thermal dehydration was characterized as a partially overlapping, three-step
process by thermogravimetry–differential thermal analysis coupled with mass spectroscopy for the
evolved gases. The A–C transformation occurred in the temperature range of the final part of the
second dehydration step and the initial part of the third dehydration step. The kinetics of A–C
transformation and thermal dehydration were characterized by contracting geometry-type models,
in which the respective transformations were regulated by a constant linear advancement rate and
diffusional removal of water vapor, respectively. Based on the kinetic results, the mutual interaction
of those thermally induced processes is discussed as a possible cause of the reduction in the A–C
transformation temperature.

Keywords: biomineralized aragonite; aragonite–calcite transformation; multistep thermal dehydration;
kinetics; mechanistic relationship

1. Introduction

Aragonite is one of the most typical phases observed for biomineralized CaCO3 [1]. After
heating, aragonite transforms into calcite prior to the thermal decomposition of CaCO3 [2–8].
In crystallographic terms, the aragonite–calcite (A–C) transformation has been explained by
a reorientation of the CO3 group, accompanied by a variation in the distribution of the Ca
atom from approximately hexagonal to cubic, close packings [9,10]. In addition, a detectable
increase in the unit-cell volume has been observed during heating of aragonite samples [10–13].
Notably, in biomineralized aragonite, the thermally induced A–C transformation occurs in a
lower temperature range, compared with mineral aragonite [5,13,14]. A large deformation
of the crystal lattice during A–C transformation has been observed in biomineralized arago-
nite [15–17], in which water vapor is released during A–C transformation [2–8]. Therefore, the
mechanistic and kinetic relationships between thermally induced A–C transformation and
dehydration can provide further insight into the thermally induced A–C transformation in
biomineralized aragonite to elucidate the reduction in the A–C transformation temperature.

During laboratory synthesis of aragonite using a hydrothermal urea decomposition
method, needle-like crystals formed a columnar crystal with a lamellar structure [8]. Af-
ter heating the columnar aragonite crystals, splitting of the lamellar structure to form a
cauliflower-like construction occurred during the A–C transformation. Simultaneously,
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water vapor was released during the morphological change. Thus, during aragonite con-
struction, water molecules are expected to be trapped in the lamellar structure. A higher
order of lamella structures forming a stacking structure of aragonite plates and polymeric
materials has been observed in biomineralized aragonite [18–21]. Thus, thermal dehydra-
tion in biomineralized aragonite is expected to occur as a multistep process, accompanied
by the decomposition of polymeric materials and release of water molecules included in
the lamellar structure, as well as absorbed water. After linearly heating biomineralized
aragonite, thermal dehydration occurs as a partially overlapping, multistep process [22,23].
In our previous studies [22,23], the multistep thermal dehydration of coral aragonite and
freshwater pearl were kinetically characterized using an advanced kinetic computation of
kinetic deconvolution analysis (KDA) [24–28], and the relationships between each thermal
dehydration step and the A–C transformation were discussed by comparing the tempera-
ture regions of these transformations. However, further detailed kinetic information about
A–C transformation is needed for discussing the relationship between the thermal dehydra-
tion processes and A–C transformation in a kinetic scheme. Herein, we focus on the kinetics
of thermally induced A–C transformation by systematically collecting the kinetic data
under isothermal conditions using powder X-ray diffractometry (XRD) and under linear
nonisothermal conditions using Fourier transform infrared spectroscopy (FT-IR) using
a seawater spiral shell (Euplica scripta). In addition, the multistep thermal dehydration
process of the shell was traced using thermogravimetry (TG) and analyzed based on KDA.
The interplay of these thermally induced processes is discussed based on the kinetic results.

The biomimetic mineralization process of CaCO3 has been extensively studied for
realizing highly functional materials in biominerals [29–35]. The fundamental studies of
biomineralization processes in living organisms and of the specific functionality and reactiv-
ity of various biominerals have provided information for promoting biomimetic mineraliza-
tion studies [36–38]. Considering that the mutual relationship between A–C transformation
and thermal dehydration examined in this study can be a specific phenomenon attributed
to the constructional characteristics and reactivity specific to the biomineral, a detailed
understanding of the mechanistic and kinetic features provides fundamental information
about the biominerals to be used in studies of biomimetic mineralization, in addition to a
physicochemical understanding of A–C transformation.

2. Materials and Methods
2.1. Sample and Characterization

A seawater spiral shell (Euplica scripta), which is commercially available for handicrafts,
was used as a sample of biomineralized aragonite (Figure S1 in Supplementary Information).
The shells were classified into four categories in reference to the colors—brown, light brown,
beige, and white—owing to differences in the degrees of natural blanching. The shells in
each color classification were carefully ground using a stainless-steel mortar and pestle
and sieved to different particle size fractions. The shell powders in the four different color
classifications were characterized by energy dispersive X-ray (EDX) spectroscopy, XRD,
FT-IR, and thermogravimetry (TG)/differential thermal analysis (DTA)–mass spectroscopy
(MS). For the EDX spectroscopy, a pellet of the sample powders was prepared by mechanical
pressing under a pressure of 8 MPa. The pellet was coated with a thin Pt layer by sputtering
(JFC-1600, JEOL, Tokyo, Japan; 30 mA, 30 s). The sample surface was observed by scanning
electron microscopy (SEM, JSM-6510, JEOL, Tokyo, Japan), and the EDX spectra were
recorded using an instrument (x-act, Oxford Instruments, Tokyo, Japan) equipped with an
SEM instrument. The XRD patterns were recorded using a diffractometer (RINT 2200V,
Rigaku, Tokyo, Japan) by radiating Cu-Kα (40 kV, 20 mA) and scanning 2θ values from
5◦ to 60◦ at a scan speed of 4◦ min−1 within a 0.02◦ interval. For FT-IR spectroscopy,
the shell powders were quantitatively diluted to 10 wt% with KBr powder by mixing
precisely weighed shell and KBr powders in an agate mortar with a pestle. The FT-IR
spectra for each diluted sample were recorded using a spectrometer (FTIR 8400S, Shimadzu,
Kyoto, Japan) with the diffuse reflectance method. Approximately 10 mg of each shell
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powder sample, weighted into a Pt pan (diameter, 5 mm; depth, 2.5 mm), were subjected to
TG/DTA–MS measurements. Using a TG–DTA instrument (TG-8120, Thermoplus2 system,
Rigaku, Tokyo, Japan), the sample was heated from room temperature to 1223 K at a heating
rate (β) of 5 K min−1 in a stream of dry helium gas at a flow rate (qv) of 200 cm3 min−1.
During the TG–DTA measurements, a part of the outlet gas from the reaction chamber
was continuously introduced into a quadrupole mass spectrometer (M-200QA, Anelva,
Kanagawa, Japan) via a capillary tube (internal diameter, 75 µm; length, 0.7 m) heated
at 500 K. The MS spectra of the outlet gas from the TG–DTA instrument were repeatedly
recorded without breaks in the m/z range of 10–50 amu (EMSN, 1.0 mA; SEM, 1.0 kV).
For the brown shell, cross-sectional surfaces of roughly crushed pieces of the shell and
powdered sample particles were observed by SEM after the pieces were coated with a thin
Pt layer by sputtering (30 mA, 30 s).

2.2. Investigation of Thermal Behavior

To obtain detailed information about the thermally induced changes, the brown shell
powder in a sieved fraction within the range of 90–150 µm was used. The changes in the
XRD patterns of the shell powder sample during thermal treatment were tracked using
the RINT 2200V diffractometer equipped with a programable heating chamber (PTC-20A,
Rigaku, Tokyo, Japan). The sample, fitted to a Pt plate sample holder by gentle pressing,
was heated from room temperature to 1123 K at a β of 2 K min−1 in a stream of dry N2 gas
at a qv of 100 cm3 min−1, during which isothermal holding sections for 15 min were inserted
within a 50 K interval in the temperature range of 323–1123 K. The XRD patterns of the
sample were recorded during each isothermal holding section under the same measurement
conditions as those applied for the sample characterization at room temperature.

The TG–DTA measurements for the shell powder sample (brown shell; 90–150 µm)
weighed in the Pt pan (initial mass (m0), approximately 20.0 mg) were performed using a
TG–DTA instrument (STA7300, TA7000 system, Hitachi High Tech, Tokyo, Japan) under
different atmospheric conditions in a stream of dry N2 gas or N2–CO2 mixed gas (20%-CO2)
at a qv of 300 cm3 min−1. Under both atmospheric conditions, the sample was heated from
303 to 1223 K at a β of 5 K min−1.

2.3. Kinetic Data Measurement for the A–C Transformation

The A–C transformation of the shell powder sample (brown shell, 90–150 µm) at
different temperatures was tracked by XRD. In a stream of dry N2 gas (qv = 100 cm3 min−1),
the sample press-fitted to the Pt plate was heated to a programed temperature (T = 643,
653, 663, or 673 K) at a β of 10 K min−1, and the temperature was maintained until the
transformation was completed, during which XRD measurements were repeated within a
15-min interval of the measurement starting time.

To obtain the heat-treated samples characterized by different conversion fractions
(αtr) of A–C transformation, approximately 20 mg of the shell powder in the Pt pan was
heated from 303 K to temperatures within the range of 657–707 K at β values of 1, 3, 5,
and 10 K min−1 in a stream of N2–CO2 mixed gas (20%-CO2) using a TG–DTA instrument
(TG/DTA 220, SII). The thermally treated sample was recovered after naturally cooling to
room temperature in the instrument. The heat-treated sample was quantitatively diluted
to 10 wt% with KBr. The FT-IR spectra of the heat-treated samples were recorded using
an FT-IR 8400S spectrometer under the measurement conditions identical to those applied
during the characterization of the original sample.

2.4. Kinetic Data Measurement for the Multistep Thermal Dehydration

The kinetic behavior of multistep thermal dehydration was tracked using TG–DTA
measurements (STA7300, TA7000 system, Hitachi High Tech) in a stream of N2–CO2 mixed
gas (20%-CO2). The sample (m0 = 20.00 ± 0.04 mg; in a Pt pan) was heated from 303 to
1223 K at β values of 1, 2, 3, 5, 7, and 10 K min−1.
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3. Results and Discussion
3.1. Sample Characterization

Irrespective of the shell samples in different color groups, the major component elements
were Ca, C, and O, although a detectable trace of Na was observed for all samples (Figure S2).
The XRD patterns exhibited diffraction peaks attributed to aragonite (orthorhombic, space
group (SG) = Pmcn(62), a = 4.9652, b = 7.9636, c = 5.7484, α = β = γ = 90.000, ICDD PDF 01-075-
9982) [39,40] and calcite (trigonal, SG = R-3c(167), a = b = 4.9896, c = 17.0610, α = β = 90.000, γ
= 120.000, ICDD PDF 00-047-1743) [41] (Figure S3). The mixed ratio of aragonite and calcite,
determined using the Rietveld and reference intensity ratio methods, indicated that the more
dilute color sample exhibited a greater content of calcite, as listed in Table S1. The brown
shell sample exhibited the greatest content of the aragonite phase (95.3%). The shell samples
with different colors exhibited IR absorption peaks attributable to vibration modes of CO3

2−

and O–H [42–44] (Figure S4). The presence of water molecules was confirmed by the O–H
stretching vibration in the range of 2600–3600 cm−1 and the H–O–H bending vibration at
~1650 cm−1 (Figure S4a). The v4 mode of CO3

2− appeared as two split absorption peaks at
700 and 713 cm−1, characteristic of the aragonite phase. The other CO3

2− vibration modes of
v2, v1, and v3 were observed at 863, 1082, and 1504 cm−1, respectively. Regarding the two split
absorption peaks at 700 and 713 cm−1, the ratio of absorbance of these peaks varied with the
shell samples in different color groups, in which the ratio of the peak at 713 cm−1 increased
as the shell color was diluted (Figure S4b). This finding can be interpreted in relation to the
increase in the content ratio of calcite because the calcite phase does not exbibit the absorption
peak at 700 cm−1. The content ratio of aragonite and calcite was determined from the ratio of
the area of IR absorption peaks [43–49] (Figure S5). After the FT-IR spectra were converted to
the absorption spectra using the Kubelka–Munk conversion, the specific double peaks with
maxima at 700 and 713 cm−1 were deconvoluted using the Lorentzian function (Equation
(S1)) (Figure S5a). Thereafter, the content ratio of aragonite and calcite was determined using
a calibration curve method with reference to the peak areas attributed to aragonite and calcite
(Figure S5b). This procedure was detailed in our previous study [23] and is outlined in the
Supplementary Information. The content of aragonite determined from the IR spectra is also
listed in Table S1. The content ratios of aragonite determined by XRD and FT-IR spectroscopy
were practically identical, and the brown sample exhibited the greatest content of aragonite.

Figures S6 and S7 show the SEM images of the cross-sectional surfaces of the roughly
crushed brown shell and the powdered sample particles, respectively. The Euplica scripta shell
comprised outer, middle, and inner layers, as generally observed for spiral shells [18–21]. The
middle layer with a thickness of approximately 20 µm had a construction built with plate-like
first-order lamella (Figure S6a). The first-order lamella was constructed by the second-order
lamella and further by the third-order lamella, which is the basic building block (Figure S6b).
A similar construction was observed for the inner layer (Figure S6c,d). In the powdered
sample, submicrometer-sized particles generated by crushing adhered to the surface of each
particle (Figure S7a). The constructional lamellar structures of the shell were exposed on the
surfaces of the main body of the particles (Figure S7b).

3.2. Thermal Behavior

Figure 1 shows the results of the TG/DTA–MS measurements for the different shell
powder samples. As shown for the brown sample, the thermal decomposition of CaCO3
accompanied by the evolution of CO2 was observed as the major mass loss process while
heating the samples (Figure 1a). Notably, preliminary to the thermal decomposition of
CaCO3, a detectable mass loss accompanied by the evolution of water vapor was observed
in the temperature range of 400–800 K. The sample with the deep colors exhibited large
mass loss values, owing to preliminary thermal dehydration (Figure 1b). This outcome
was confirmed by the large peak area of the MS thermogram for m/z = 18 of the deep-
colored samples (Figure 1c). In the deep-colored samples, the major peak of m/z = 18 was
accompanied by a small but detectable peak of m/z = 44. Because the temperature region
of the thermal dehydration is much lower than the thermal decomposition of CaCO3,
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the simultaneous evolution of water vapor and CO2 may be attributed to the thermal
degradation of component polymeric materials. In our previous study of biomineralized
calcite, i.e., avian eggshell [50], similar simultaneous evolution of water vapor and CO2
was observed as a part of preliminary dehydration process occurring prior to the thermal
decomposition of calcite, for which the thermal degradation of fibrous protein substances
was microscopically confirmed in the corresponding temperature range. It is expected that
the degradation of component polymeric materials contributes to a part of the multistep
thermal dehydration of the shell samples. It is deduced from the comparisons of the
A–C composition and thermal dehydration behavior between differently colored shell
samples that the natural whitening resulted from weathering of the shell, leading to the
degradation of polymeric material and partial A–C transformation. Therefore, the brown
shell, characterized by the least content of calcite and the largest mass loss value during the
preliminary dehydration process, was selected for investigating the relationship between
the A–C transformation and thermal dehydration.
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Figure 1. TG/DTA–MS results for the shell powder samples (m0 = 10.01 ± 0.04 mg) with different
color groups recorded at a β of 5 K min−1 in a stream of He gas (qv = 200 cm3 min−1): (a) TG–DTA
curves and MS thermograms for m/z = 18 (H2O+) and m/z = 44 (CO2

+) of the brown shell powder
sample; (b) comparison of TG–derivative TG (DTG) curves in the temperature range of water vapor
evolution among the different shell powder samples; and (c) comparison of MS thermograms for
m/z = 18 and 44 among different shell powder samples.

The changes in the XRD pattern while heating the brown sample powder using
the stepwise isothermal heating mode indicated that A–C transformation occurred in
the temperature range of 523–723 K (Figure S8), followed by thermal decomposition of
calcite to form CaO in the temperature range of 923–1023 K. The temperature range of
A–C transformation was covered by the temperature range of the thermal dehydration
process, as reported for biomineralized aragonite samples [22,23]. When the sample was
heated in a stream of N2–CO2 mixed gas characterized by a high partial pressure of CO2,
only the mass loss process, owing to the thermal decomposition of calcite, shifted to high
temperatures without detectable changes in the mass loss process of preliminary thermal
dehydration (Figure S9). As a result, the temperature ranges of the thermal dehydration
and the subsequent thermal decomposition of calcite were experimentally separated, which
was desirable for analyzing the kinetics of the thermal dehydration.

3.3. Kinetics of the A–C Transformation

A–C transformation at different temperatures was traced by XRD (Figure 2). The
contents of aragonite and calcite at each duration of isothermal heat treatment were de-
termined by analyzing each XRD pattern, from which the αtr value at each duration was
calculated. The αtr versus time plots at different temperatures were used as the kinetic data
for A–C transformation (Figure 3). The time-dependent change in the αtr values and its
temperature dependence indicated that it was a kinetically controlled process.
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The experimentally determined kinetic data (symbols in Figure 3) were analyzed
using conventional kinetic calculation procedures for solid-state reactions under isothermal
conditions (Figure 4). The rate constant (ktr) for A–C transformation at each temperature
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was determined by examining the linear correlations of the kinetic model function g(αtr)
versus time plots using different g(αtr), as listed in Table S2 [51].

g(αtr) = ktrt (1)
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The most statistically significant linear correlation of the g(αtr) versus t plot was
confirmed when the first-order reaction model (F(1): g(αtr) = −ln(1 − αtr)) or the three-
dimensional phase boundary controlled reaction (R(3): g(αtr) = 1 − (1 − αtr)1/3) was used,
as shown in Figure 4a and b, respectively. The ktr values are listed in Table S3. The
Arrhenius-type temperature dependence was applicable to the ktr values (Figure 4c).

ln ktr = lnAtr −
Ea,tr

RT
, (2)

where Atr and Ea,tr are the preexponential factor and apparent activation energy for the
transformation, respectively, and R is the gas constant. The Arrhenius plots for the ktr
values, determined by assuming F(1) and R(3) to be suitable kinetic model functions,
exhibited a parallel shift with practically the same slope. The shift was due to the Atr
values, which were related to the geometrical constraints assumed in the respective g(αtr).
Table 1 summarizes the as-determined Arrhenius parameters. The overall kinetic curves
for A–C transformation at each temperature were simulated using these kinetic parameters
(Figure 3). The overall kinetic curves based on the R(3) model exhibited a better fit to the
experimental data points in comparison with those based on the F(1) model.

Table 1. The Arrhenius parameters for the A–C transformation under isothermal conditions.

g(αtr) Ea,tr/kJ mol−1 ln(Atr/s−1) −γ a

F(1) 281.1 ± 6.6 42.7 ± 1.3 0.9994
R(3) 271.7 ± 6.9 39.6 ± 1.3 0.9993

a Correlation coefficient of the linear regression analysis of the Arrhenius plot.

Figure 5 shows the FT-IR spectra of the sample preheated to different temperatures at
different β values. Irrespective of β, the split peaks at 700 and 713 cm−1 attributable to the
v4 mode of CO3

2− gradually converged to a single peak at 713 cm−1 with an increase in
the temperature, exhibiting the transformation from aragonite to calcite. The αtr value of
the preheated sample was determined from each spectrum by the quantitative analysis of
the peak areas of the split peaks using the calibration curve method, as used for the sample
characterization. The changes in the αtr values with preheated temperature were drawn at
each β value, as shown in Figure 6.
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The series of data points of αtr versus T at each β value in Figure 6 were used as kinetic
data in the integral form under linearly increasing temperature conditions. The kinetic data
at each β value were analyzed using the Coats and Redfern method [52].

ln
g(αtr)

T2 = ln
[

AtrR
βEa,tr

(
1− 2RT

Ea,tr

)]
− Ea,tr

RT
(3)
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The statistically significant linear correlation of ln[g(αtr)/T2] versus T−1 was obtained
when the F(1) or R(3) model was used as g(αtr), irrespective of the β value (Figure S10).
The Arrhenius parameters determined for A–C transformation at each β value are listed
in Table S4. As observed for solid-state reactions, the Ea,tr and ln Atr values determined
using the Coats and Redfern method decreased with an increase in the β value [53–56]. In
addition, the Ea,tr and ln Atr values at a β value calculated using different kinetic models
were different [57,58]. Furthermore, these Ea,tr and ln Atr values at different β values and
kinetic models exhibited a linear correlation of ln Atr versus Ea,tr (Figure S11), known as the
kinetic compensation effect (KCE) [59–66]. Even so, the kinetic triplets (Ea,tr, ln Atr, g(αtr))
obtained by assuming F(1) and R(3) reproduced the practically identical kinetic curves at
each β value, as shown in Figure 6.

The kinetic curves for A–C transformation under isothermal and linear nonisothermal
conditions, simulated using the kinetic parameters determined from the changes in the
XRD patterns and FT-IR spectra, respectively, were subjected to isoconversional kinetic
analysis, as shown in Figure 7. Kinetic analysis was performed based on the differential
kinetic equation [51]:

dαtr

dt
= Atrexp

(
−Ea,tr

RT

)
f (αtr), (4)

where f (αtr) is the kinetic model function in differential form. The Friedman plots of
ln(dαtr/dt) versus T−1 at selected αtr values were separately examined for the transforma-
tions under isothermal and linear nonisothermal conditions, according to the logarithmic
form of Equation (4) [67]:

ln
(

dαtr

dt

)
= ln[Atr f (αtr)]−

Ea,tr

RT
. (5)
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Figure 7. Kinetic analysis of the simulated kinetic data for A–C transformation under isothermal and
linear nonisothermal conditions: (a) Friedman plots at αtr = 0.5; (b) Ea,tr values at different αtr values;
and (c) experimental master plots of (dαtr/dθtr) versus αtr.

In each heating mode, the Friedman plots [67] exhibited statistically significant linear
correlations with the correlation coefficients better than −0.99 at different αtr values over
0.01 ≤ αtr ≤ 0.99 (Figure 7a). Graphically, the Friedman plots for A–C transformation
under isothermal and linear nonisothermal conditions show a parallel translation, resulting
from different sampling conditions. However, the Friedman plots for the transformations
under isothermal and linear nonisothermal conditions at a selected αtr value exhibited
different slopes and intercepts. This behavior can be interpreted as a typical KCE caused
by the different experimental conditions of kinetic data measurements [59–66]. The Ea,tr
variation trends were largely different between the transformations under isothermal and
linear nonisothermal conditions (Figure 7b). Under isothermal conditions, the constant Ea,tr
value of 271.7 ± 0.1 kJ mol−1 was obtained during the reaction, which was the same as the
value used for the simulation of the isothermal kinetic curves. Conversely, the Ea,tr values
systematically decreased under linear nonisothermal conditions as the transformation
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proceeded; it rapidly decreased from approximately 440 to 330 kJ mol−1 in the initial stage
of the transformation and subsequently decreased gradually to 300 kJ mol−1 at the end of
the transformation, with the average Ea,tr value of 312.5 ± 9.1 kJ mol−1 (0.3 ≤ αtr ≤ 0.9).
This variation in the Ea,tr values determined by the isoconversional method was attributed
to the variation of Ea,tr value depending on β values obtained using the Coats and Redfern
method (Figure S10 and Table S4).

The experimental master plots for transformation under isothermal and linear nonisother-
mal conditions were drawn by calculating the hypothetical reaction rate (dαtr/dθtr) at an
infinite temperature using the average Ea,tr values of 271.7 ± 0.1 kJ mol−1 (0.01 ≤ αtr ≤ 0.99)
and 312.5 ± 9.1 kJ mol−1 (0.3 ≤ αtr ≤ 0.9), respectively [68–75].

dαtr

dθtr
=

(
dαtr

dt

)
exp

(
Ea,tr

RT

)
= Atr f (αtr) with θtr =

∫ t

0
exp

(
−Ea,tr

RT

)
dt, (6)

where θtr is Ozawa’s generalized time [74,75] for A–C transformation. Under isothermal
conditions, the experimental master plot exhibited a deceleration process that fit perfectly
using the R(3) model with an Atr value of (1.63 ± 0.01) × 1017 s−1, which was identical to
that determined by conventional isothermal kinetic analysis for the XRD data. The experi-
mental master plot for transformation under linear nonisothermal conditions exhibited a
completely different shape from that of isothermal transformation, exhibiting the maximum
rate midway through the transformation at αtr = 0.42. The experimental master plot was
fitted using an empirical kinetic model known as the Šesták–Berggren model (SB(m, n, p))
because of the high flexibility to fit different rate behaviors [76–78].

SB(m, n, p) : f (αtr) = αm(1− α)n[−ln(1− α)]p (7)

The experimental master plot was perfectly fitted using SB(0.06, 0.70, 0.33) with the
Atr value of (4.24 ± 0.01) × 1021 s−1. Table 2 summarizes the kinetic results obtained by
isoconversional kinetic analysis and the subsequent master plot method for simulated
kinetic curves under isothermal and linear nonisothermal conditions. The different rate
behaviors between the A–C transformations under isothermal and linear nonisothermal
conditions, revealed by the experimental master plots, should be interpreted by considering
the different sampling conditions for the measurements of kinetic data. Furthermore, Ea,tr
and Atr values exhibit mutually dependent variations between the transformations under
isothermal and linear nonisothermal conditions along KCE [59–66].

Table 2. Kinetic parameters for the A–C transformation under isothermal and linear nonisother-
mal conditions.

Heating Condition Ea,tr
/kJ mol−1 Atr/s−1 f (αtr) R2, a

Isothermal 271.7 ± 0.1 (1.63 ± 0.01) × 1017 R(2.99 ± 0.01) >0.9999
Nonisothermal 312.5 ± 9.1 (4.24 ± 0.01) × 1021 SB(0.06 ± 0.01, 0.70 ± 0.01, 0.33 ± 0.01) >0.9999

a Determination coefficient of the nonlinear least-squares analysis for fitting the experimental master plot using f (αtr).

3.4. Kinetics of the Multistep Thermal Dehydration

Figure 8 shows TG–derivative TG (DTG) curves for thermal dehydration of the brown
shell powder sample (m0 = 20.00 ± 0.04 mg) recorded at different β values in a stream of
N2–CO2 mixed gas (20%-CO2, qv = 300 cm3 min−1). Three distinguishable DTG peaks
appeared by partial overlapping. The first mass loss step initiated near room temperature
and may be attributed to the dehydration of absorbed water. The major mass loss process
in multistep dehydration, observed in the temperature range of 450–700 K (second mass
loss step), is the process accompanied by detectable evolution of CO2 and likely originated
from thermal degradation of the component polymeric materials. The third mass loss step
was observed at temperatures higher than the A–C transformation and probably were
due to the evaporation of water molecules trapped in the lamellar structure of aragonite
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crystals [8]. As a preliminary kinetic estimation, the overall process of thermal dehydration
was subjected to formal kinetic analysis based on the isoconversional kinetic relationship
(Figure S12). The TG–DTG curves were converted to kinetic curves by normalizing the
mass loss value to the fractional reaction (α) with reference to the total mass loss value
during the overall thermal dehydration process (Figure S12a). The Friedman plots applied
to overall thermal dehydration exhibited variations in their slopes in three ranges of α,
corresponding to each DTG peak (Figure S12b). The apparent activation energy (Ea) for
thermal dehydration varied among three α ranges of α ≤ 0.15, 0.15 ≤ α ≤ 0.8, and 0.8 ≤ α
(Figure S12c). Therefore, the feature of the DTG curves and apparent results of the Friedman
plots supported the partially overlapping three-step reaction for thermal dehydration.
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To separate the overlapping reaction steps, an empirical analysis of the DTG peak
deconvolution using a statistical function (Fi(t)) was performed [25–28,79,80].

dm
dt

=
N

∑
i=1

Fi(t), (8)

where N is the total number of peaks, and i is the reaction step. After testing the mathe-
matical deconvolution analysis (MDA) using available functions, the logistic power peak
function (Equation (S4)) was selected as a suitable Fi(t) for multistep thermal dehydration.
From the MDA results, the contributions (ci) of each reaction step were estimated from the
area of the deconvoluted peaks, and the kinetic curves at different β values for each reaction
step were obtained. The kinetic curves for each reaction step were formally analyzed using
the Friedman plot and subsequent master plot method. The MDA results and subsequent
formal kinetic analysis for each reaction step are detailed in the Supplementary Information
(Figures S13–S17, Table S5).

When the multistep process comprised the kinetically independent reaction steps, the
overall kinetics was expressed by a cumulative kinetic equation [24–28].

dα

dt
=

N

∑
i=1

ci Aiexp
(
−Ea,i

RT

)
fi(αi) with

N

∑
i=1

ci = 1 and
N

∑
i=1

ciαi = α, (9)

where αi is the fractional reaction of each reaction’s step i. Based on the cumulative kinetic
equation with SB(m, n, p) for fi(αi), the preliminary determined kinetic parameters via MDA
and the subsequent formal kinetic analysis (Table S5) were optimized through nonlinear
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least-squares analysis to minimize the square sum (F) of the residue when fitting the overall
experimental kinetic curve using the curve calculated according to Equation (9) [24–28].

F =
M

∑
j=1

[(
dα

dt

)
exp,j
−
(

dα

dt

)
cal,j

]2

, (10)

where M is the total number of data points in an experimental kinetic curve. The kinetic
calculation based on Equation (9) is called as KDA. Figure 9 shows the results of KDA for
multistep thermal dehydration. Statistically significant fits were achieved as the partial
overlapping of three reaction steps via KDA irrespective of the experimental kinetic curves
at different β values (Figure 9a), and the optimized kinetic parameters for each reaction
step did not change among the results for the different β values. Table 3 lists the optimized
kinetic parameters for each reaction step, averaged over the values determined for different
β values. Although the kinetic exponents in SB(m, n, p) exhibited unrealistic values that
were not expected for the simple physico-geometrical reaction models, the kinetic features
expressed by the optimized kinetic exponents were graphically interpreted as the diffusion-
controlled-type processes with a contracting-geometry scheme irrespective of the reaction
step because each process was characterized by the deceleration process with a concave
shape in fi(αi)/fi(0.5) versus αi plots (Figure 9b).
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(b) fi(αi)/fi(0.5) versus αi plots for each reaction step.

Table 3. Optimized kinetic parameters for multistep thermal dehydration (determination coefficient
R2 = 0.9968 ± 0.0017).

i ci Ea,i/kJ mol−1 Ai/s−1
fi(αi)=αi

mi (1−αi)
ni [−ln(1−αi)]

pi

mi ni pi

1 0.10 ± 0.01 114.9 ± 1.6 (1.47 ± 0.07) × 1016 5.84 ± 0.72 1.85 ± 0.14 −5.80 ± 0.67
2 0.77 ± 0.02 129.1 ± 1.0 (8.19 ± 0.40) × 1010 9.25 ± 0.76 0.73 ± 0.23 −9.80 ± 0.66
3 0.13 ± 0.01 339.1 ± 4.0 (1.55 ± 0.01) × 1013 −28.85 ± 2.12 8.55 ± 0.90 20.71 ± 2.05

3.5. Kinetic Relationship between A–C Transformation and Multistep Thermal Dehydration

Figure 10 compares the kinetic curves the A–C transformation and the component
reaction steps of thermal dehydration, simulated for the processes at a fixed β of 5 K min−1.
The first dehydration step was positioned at a considerably lower temperature than the
temperature region of A–C transformation, and the contribution was limited, i.e., c1 = 0.10.
Therefore, a direct correlation between A–C transformation and the first dehydration step
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was not expected. A–C transformation occurred at the final stage of the second dehydration
step and the initial stage of the third dehydration step. The relationships of the processes
along the temperature coordinate empirically showed that the second dehydration step
triggered A–C transformation, which resembles the crystallization of hydrated amorphous
compounds, such as hydrated ZnO2 and TiO2 [81,82]. Conversely, A–C transformation
triggered the third dehydration step, in which liberated water molecules accompanied by
A–C transformation were removed through diffusion in the third dehydration step.
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A simple physico-geometrical model of the interrelationship between A–C transfor-
mation and thermal dehydration in biomineralized aragonite was proposed, as shown in
Figure 11. Stacks of aragonite plates were the common architecture of many biomineralized
aragonites, in which the plate comprised aragonite crystals with lamellar structures and
stacked with polymeric materials [18–21]. Multistep thermal dehydration initiated by the
evaporation of absorbed water with c1 = 0.10. The second dehydration step was the major
process in multistep thermal dehydration with c2 = 0.77, which is attributed to thermal
degradation of polymeric materials positioned between aragonite crystals. Thermal degra-
dation of polymeric materials can produce the space for the volume increase in aragonite
crystals [10–12]. A–C transformation of the biomineralized aragonite occurred at a low
temperature, compared with that of mineral aragonite [5,13,14]. The spaces produced by
thermal degradation of polymeric materials can allow for a volume increase in the aragonite
unit cell and A–C transformation. In addition, there are still water molecules trapped in the
aragonite crystals, which is later released during the third dehydration step with c3 = 0.13.
The possible increase in the internal pressure of aragonite crystal construction with in-
creasing temperature due to the trapped water can be an alternative cause promoting A–C
transformation. The water molecules trapped in the aragonite crystal construction were
released by A–C transformation and removed via diffusion. All component thermal dehy-
dration steps were constrained by the geometry of the aragonite constructions. Thus, it was
expected that A–C transformation in biomineralized aragonite could not occur in a manner
of random nucleation and growth across the bulk because the formation of the reactive sites
for A–C transformation were geometrically constrained in a contacting-geometry scheme.
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4. Conclusions

A–C transformation of biomineralized aragonite originated from a seawater spiral
shell (Euplica scripta), occurring in a temperature range of 650–710 K when it was linearly
heated. The temperature region of A–C transformation was covered by multistep thermal
dehydration. The mutual relationship between A–C transformation and thermal dehy-
dration was investigated by revealing the kinetic features of these two phenomena. The
rate of A–C transformation exhibited significant temperature dependence; therefore, the
process was analyzed as a kinetic process via formal kinetic calculation procedures based
on the kinetic data obtained using high-temperature XRD under isothermal conditions
at different temperatures and using FT-IR spectroscopy for a series of samples thermally
treated under linear nonisothermal conditions at different β values. Under isothermal
and linear nonisothermal conditions, the overall kinetic behavior of A–C transformation
was described using a kinetic model of the contracting geometry type. The Ea,tr values
were determined to be 271.7 ± 0.1 and 312.5 ± 9.1 kJ mol−1 under isothermal and lin-
ear nonisothermal conditions, respectively. Thermal dehydration was characterized as
a partially overlapping three-step process under linear nonisothermal conditions. The
first to third mass loss steps were interpreted as attributable to dehydration of absorbed
water, degradation of the component polymeric materials, and release of trapped water
in the aragonite crystal construction, respectively. All component reaction steps of mul-
tistep thermal dehydration exhibited diffusion controlled kinetic behaviors constrained
by the contracting geometry with Ea values of 114.9 ± 1.6, 129.1 ± 1.0, and 339.1 ± 4.0 kJ
mol−1 for the first to third mass loss steps, respectively. A–C transformation occurred in
the reaction tail of the second thermal dehydration step and the initial stage of the third
thermal dehydration step. The cause-and-effect relationship between A–C transformation
and thermal dehydration was expected from similar geometrical constraints and described
by a simple physico-geometrical model as follows. The second reaction step of thermal
dehydration, characterized as a major dehydration process with the largest contribution
to overall thermal dehydration and attributed to thermal degradation of the component
polymeric materials, produced a space required for the expansion of the aragonite crystal
lattice and subsequent A–C transformation. Conversely, the A–C transformation and subse-
quent crystal growth of calcite promoted the release of trapped water molecules, occurring
during the third reaction step of thermal dehydration. Considered that a similar kinetic
relationship between A–C transformation and thermal dehydration has been observed
for different biomineralized aragonites, the mutually dependent phenomena should be
considered a cause of the variation in the temperature region of A–C transformation among
different aragonite materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr11061650/s1, S1. Sample characterization (Figures S1–S7;
Table S1); S2. Thermal behavior (Figures S8 and S9); S3. Kinetics of A–C transformation (Figures S10
and S11; Tables S2–S4); S4. Kinetics of multistep thermal dehydration (Figures S12–S17; Table S5).
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