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Abstract: Understanding the evolution of pore-fracture networks in coal during loading is of
paramount importance for coalbed methane exploration. To shed light on these dynamic changes, this
study undertook uniaxial compression experiments on coal samples collected from the eastern edge
of the Ordos Basin, complemented by µ-CT scanning to obtain a 3D visualization of the crack network
model. The compression process was divided into three stages, namely, micro-crack compaction, lin-
ear elasticity, and peak failure. An increase in stress resulted in greater concentration and unevenness
in fractal dimensions, illustrating the propagation of initial cleats and micro-cracks in the dominant
crack direction and the ensuing process of crack merging. These results provide valuable insights
into the internal structure and behavior of coal under stress, informing more efficient strategies for
coalbed methane extraction.

Keywords: uniaxial compression; µ-CT; fracture evolution; quantitative characterization; the eastern
edge of Ordos

1. Introduction

In the 21st century, sustainable human development is closely related to the supply
of energy [1]. Coalbed methane (CBM) is an unconventional natural gas occurring in
coal reservoirs [2]. Coal is a porous medium with heterogeneity, where many natural
fractures, pores, and defects are randomly distributed [3]. The fracture network plays
a dominant role in the storage and transport of CBM. The formation and evolution of
the microfractures in coal rocks are affected by the microscopic composition of coal, coal
rank, fluid pressure formed during coalification, and tectonic stress. In particular, tectonic
stress is an essential factor in the distribution and expansion of microfractures in coal
seams [4]. With the increase in burial depth, the stress conditions of coal rocks become more
complex, resulting in the decline of CBM permeability [5], gas protrusion [6,7], and rock
explosion [8,9], which probably enhances the difficulty of CBM exploration. Therefore, it is
important to understand the initiation and evolution of the fracture network of coal rocks
under different stress conditions, which is vital for exploiting CBM [10] and engineering
safety [11,12].

Numerous studies have been conducted on the fracture structure of coal rock. The
methods to study the fracture structure in coal seams mainly include Mercury injection
capillary pressure (MICP) [13,14], nitrogen adsorption (NGD) [15,16], nuclear magnetic
resonance (NMR) [17], scanning electron microscopy (SEM) [18], field emission scanning
electron microscopy (FESEM) [19], and the micro-CT technique (µ-CT) [20,21]. The µ-CT
technique has attracted more research interest because it is nondestructive, intuitive, fast,
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and capable of reconstructing three-dimensional fracture network models. Yao et al. pro-
posed a novel method for quantifying and 3D visualizing the spatial distribution of miner-
als, pores, and fractures in coal [22]. Mathews et al. provided a comprehensive explanation
and analysis of the CT scanning technology in the study of coal fracture network struc-
tures [23]. Shi et al. combined CT technology with fractal theory to analyze the physical
characteristics of coal fractures and discussed the CT images of different coal ranks [4].
Wang et al. used µ-CT to study the effects of temperature on coal sample structure, showing
that increased temperatures promote the expansion and widening of fractures and induce
new fractures [24]. Based on CT images, Wu explored in detail the fractal characteristics of
coal fracture network structures and derived the relationship between 2D and 3D fractal
dimensions [25]. HW Zhou characterized the evolution of pore-fracture networks in coal
under uniaxial compression conditions by combining MICP, X-ray µ-CT technology, and
the presented fractal model [21]. In summary, many researchers have made progress in vi-
sualizing the 3D reconstruction of the coal microstructure and quantitatively characterizing
the fracture networks.

Many researchers have utilized CT scanning technology to study the evolution of coal
fractures under uniaxial compression. To avoid the effect of unloading on the coal fracture
network, Xi et al. proposed an in situ CT observation method to study the evolution of coal
fracture networks under the influence of confining pressure and axial load [26]. Li et al.
conducted an in situ observation of coal fractures under uniaxial and triaxial compression
and performed three-dimensional visualization and quantitative characterization [27]. On
this basis, Wang et al. further quantitatively analyzed the dynamic evolution of coal
fractures by combining fractal theory and found that the fractal dimension of coal rock
fractures is positively correlated with the crack rate, crack density, and crack connectivity
during the process [28]. Hao et al. compared the development pattern of the fracture
structure of bituminous coal under uniaxial compression, tension, and shear using the
CT technique, finding that under uniaxial compression load, tensile damage occurred in
bituminous coal and fractures extended mainly along the vertical direction [29]. Song et al.
compared the fracture characteristics of brittle coals under uniaxial and cyclic compression
loading and found that the former exhibited abrupt damage caused by large cleavage
fractures while the latter exhibited progressive damage by a mixed fracture network [30].

CBM in medium-rank coal is abundant in China, especially in the Ordos Basin [31,32].
The eastern margin of the Ordos Basin is one of the major CBM-rich producing blocks
at present [33,34]. However, research on the internal fracture network evolution of coal
samples under uniaxial compression in this region is limited. In this study, firstly, in situ
uniaxial compression experiments and µ-CT scanning experiments were conducted on coal
samples extracted from the eastern edge of the Ordos Basin, obtaining the corresponding
stress–strain law and CT scanning images under different loads. Secondly, the CT images of
coal rocks scanned at each stress loading stage were processed, and 3D visualized fracture
network models were extracted. By combining fracture structure parameters, we depicted
the dynamic evolution process of fracture networks in coal in an intuitive and quantitative
manner. Finally, the evolution process of internal network fractures in coal rocks under
different axial stresses was analyzed by combining stress–strain curves, fracture network
structure parameters, and fractal theory.

2. Materials and Methods
2.1. Coal Sampling

The coal sample was taken from the Rongtai coal mine in Lvliang, at the eastern
edge of the Ordos Basin. The coal-bearing strata are mainly the Upper Carboniferous
Taiyuan Group (C2t) and the Lower Permian Shanxi Group (P1s). Samples were taken
from fresh extraction faces downhole, immediately wrapped in waterproof and shockproof
polyethylene film, and returned to the laboratory.



Processes 2023, 11, 1631 3 of 13

2.2. Sample Processing and Physicochemical Analysis

A column sample of Φ3.8 × 8.1 mm was made in the laboratory using the wire-cutting
technique along the vertical laminae direction for uniaxial compression and a µ-CT scan
experiment (Figure 1). The column sample was polished with sandpaper to make the
surface roughness less than 0.02 mm to eliminate the possible end effect of the coal sample
during the uniaxial compression test. It is worth noting that in order to avoid the influence
of the native voids in the coal samples on the experiments, we deliberately avoided the
areas with large voids when processing the coal samples and selected the dense parts of the
coal samples for wire cutting. Meanwhile, parallel samples were made from the remaining
samples of wire-cutting and the maximum vitrinite reflectance (Ro, max) measurement
and maceral composition analysis according to relative standards [35,36]. The industrial
components were determined by an SDLA618 automatic industrial analyzer.
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According to Table 1, the results of maceral composition analysis and the maximum
vitrinite reflectance (Ro, max) determination indicate that the content of the vitrinite group
in the coal sample was 58%, the content of the inertinite group was 40.2%, and the Ro, max
value was 1.5%, which indicates that the coal sample belonged to the middle-rank coal. In
addition, the mineral composition content of the coal sample was 1.8%, which was mainly
dominated by clay minerals. The results of the industrial analysis showed that the fixed
carbon content of the coal sample was 77.03%, volatile content was 18.8%, ash content was
4.17%, and moisture content was 0.6%, which indicates medium-volatile and low-ash coals.
In Table 1, Mad, Vad, Aad, and FCad indicate moisture (air-dried basis), volatile matter (dry,
ash-free basis), ash (air-dried), and fixed carbon (air-dried basis), respectively.

Table 1. Maceral Composition and Industrial Components Data of the Coal Sample.

Ro, max (%)
Macerals Composition (%) Industrial Components (%)

Vitrinite Inertinite Clay Mineral Sulfide Mineral Mad Vad Aad FCad

1.5 58 40.2 1.4 0.4 0.6 18.8 4.17 77.03

3. The Experimental Procedure
3.1. Experimental Equipment

Experiments were conducted utilizing a uniaxial loading device with an integrated
X-ray µ-CT system at the Institute of Geology and Geophysics, Chinese Academy of Science
(Figure 2). This device can obtain high-precision CT scan images while compressing the
coal sample in situ, avoiding the unloading effect.
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Figure 2. The uniaxial loading device with an integrated X-ray µ-CT system.

The loading system uses the Deben CT5000TEC uniaxial compression device, which can
provide a maximum loading force of 5 kN at a constant loading rate of 0.03–3.00 mm/min,
with real-time stress–strain data recorded in the computer during loading.

The µ-CT system uses the Xradia 520 Versa 3D X-ray microscope, which consists of
an X-ray source, a rotary table, and a detector. The X-ray source operates at a voltage
range of 30–160 kv with a maximum output power of 10 w. The rotary table carrying the
coal sample can be rotated 360◦ to ensure that the internal fissures of the coal rock are
captured in all directions. The X-rays emitted from the source pass through the rotating
coal sample and are received by the detector, which converts the received attenuated X-rays
signal into a high-resolution digital image reflecting the internal information of the coal
sample, providing the basis for subsequent 3D modeling. Compared to conventional
micro-CT, the system employs a dual-stage magnification technique for 0.7 µm spatial
resolution and voxel-by-voxel imaging of 70 nm voxels. This allows high-resolution images
of coal samples even when they are far from the ray source, providing the possibility to
observe the continuous evolution of 3D fracture networks within coal rocks under axial
compressive loading in the laboratory. To ensure that the voids detected in the µ-CT
scanning experiments are all cracks formed in the coal sample during uniaxial compression,
we need to choose the best scanning resolution. In this study, the optimal resolution
was adjusted according to the field of view. We chose it by switching between different
magnification objectives and adjusting the relative distance between the X-ray source, the
coal sample and the objective. Through several tunings, we finally chose 11.27 µm for voxel
imaging and subsequent fracture studies to ensure scanning accuracy and sample integrity.
However, there were still limitations in the detection of microfractures due to unavoidable
human errors.

3.2. Experimental Procedure

Before the test loading, Teflon sheets were bedded, and silicone grease was applied to
ensure uniform stress distribution at the end of the sample during loading. Subsequently,
uniaxial compression experiments were performed on the coal samples at the same loading
rate. The experimental schematic diagram is shown in Figure 3. To ensure that the core
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position was not affected under different stresses, the loading was suspended when the
axial stresses reached different stresses, the compression pressure was maintained using
the servo control function, and µ-CT scanning experiment was performed. Due to the
difference in density and structure of the coal rock’s internal composition, the coal rock’s
pore fracture can be distinguished from the coal matrix and minerals by the different
intensities of light in different parts [37].
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The specific experimental procedure is as follows:

1. To ensure the stress state of the coal rock, uniaxial compression was performed at
a loading rate of 0.03 mm/min. The loading was suspended when the axial stress
reached 20 N of stress. The first µ-CT scan was performed.

2. The loading rate of 0.03 mm/min was kept constant, and the second µ-CT scan was
performed when the axial stress reached 150 N.

3. The coal rock damage was observed in real time, and a third µ-CT scan was performed
when the axial stress reached 200 N.

Three sets of µ-CT images of coal samples under different stress states were obtained
from three CT experiments. To obtain high-quality CT images, the optimal scanning
parameters must be set according to the sample size and material characteristics. In this
study, the µ-CT scanning voltage was 86 kV and the current was 70 µA. The CT images
were scanned every 40 min at a spatial resolution of 11.27 µm/pixel, and 1010 CT images
were generated for each set of scans, resulting in a total of three sets of µ-CT images under
different stress conditions. The entire experiment was performed at room temperature.

3.3. Three-Dimensional Modeling Method of Coal Rock Fracture Network
3.3.1. Two-Dimensional CT Image Preprocessing

The original CT scan images of coal samples are noisy due to unavoidable systematic
environmental and equipment errors. This study used an improved adaptive median
filtering algorithm for filtering and noise removal. Compared with the traditional median
filtering algorithm, this algorithm can customize the processing order according to the
characteristics of the pixels, thus removing noise more effectively, and, by adjusting the
parameters, it can more flexibly adapt to different noise densities.

After the raw CT images were median filtered, the image segmentation was performed
using an interactive threshold segmentation algorithm. The threshold pixels were set according
to the grayscale difference between the pore fracture, coal matrix, and minerals. The image
was binarized into the region of interest (ROI) and the background. The binarized image
can well reflect the pore-fissure structure information in the coal rock. It can effectively
distinguish the pore fissures in the coal sample from the coal matrix and minerals. As
shown in Figure 4c, the blue area indicates the pore fracture and the black area indicates
the coal matrix and minerals.
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3.3.2. Three-Dimensional Fracture Network Extraction

The preprocessed 2D CT images were reconstructed to obtain the 3D data body of
coal rock, and the 3D pore-fracture model was obtained by threshold segmentation of the
data body. Pores and fractures are basically the same in the image gray value and cannot
be distinguished. However, due to the difference in morphology and size of pores and
fractures in coal rocks, shape factors are introduced to distinguish pores from fractures.

The shape factor characterizes the proximity of the hole and throat configuration to
the sphere, with a sphere value of 1. The smaller and closer to the sphere, the larger and
more irregular; its calculation formula is

Shape Factor =
Area3

36π ×Volume2 (1)

where, Shape Factor is the shape factor; Area is the surface area of the pore-fracture
structure in µm2; and Volume is the volume of the pore-fracture structure in µm3.

Subsequently, a specific Shape Factor threshold was set, and structures with a Shape
Factor greater than this threshold were judged as fractures, while structures having a
Shape Factor less than this threshold were judged to be pores, thus achieving automatic
differentiation between pores and fractures (Figure 5).
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Figure 6 shows the pictures of segmented voids with different shape value intervals,
where we choose Shape Factor = 20 as our threshold.
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The pores and fractures were partitioned by Shape Factors to distinguish pores and
fractures within the coal rock, providing a methodological basis for the subsequent study
of fracture-related properties.

4. Results and Discussion
4.1. Evolution Characters of Stress–Strain

The stress–strain curve of the sample is shown in Figure 7. The compression process
can be divided into the microfracture compaction stage (S1), linear elasticity stage (S2), and
peak failure stage (S3). From the CT scan results of points A, B, and C, as the axial stress
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increases, the crack network gradually begins to initiate, develop, and penetrate the sample.
During the initial compaction stage (0~1.1% axial strain), the curve is concave, indicating
that the rate of stress change is greater than that of strain change; as the axial load increases,
the curve falls and then rises again into the linear stage (1.1~3.0% axial strain). The first
significant drop in the curve is due to the gradual expansion and connection of local small
and medium-sized natural cleats under the stress, resulting in local failure. Large cracks
can be observed on the surface of the sample, but due to the redistribution of stress, it still
has a large bearing capacity. Afterwards, the line grew approximately linearly, but due
to the increase in stress, the pores continued to develop and multi-scale cracks connected
with each other, and sharp fluctuations appear in the curve. The main crack continued to
propagate until it penetrated the sample, causing the splitting failure and complete loss
of its load-bearing capacity, thereby exhibiting strong brittleness characteristics. Through
calculation, the failure strength of the sample is 24.58 MPa and the elastic modulus is
6.32 GPa.
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4.2. Fracture Porosity

The volume and surface area of cracks can reflect their expansion characteristics and
using fracture porosity ϕ as the fracture evaluation index can be used to quantitatively
characterize the overall evolution degree of cracks. The calculation formula is

ϕ =
Vf

Vc
(2)

where Vf is the total volume of cracks in the coal, mm3; Vc is the total volume of the
coal sample, mm3. As shown in Figures 7 and 8, a fracture porosity test was conducted
on the sample before the experiment, and it was found that the fracture porosity was
0.124%. When the axial stress was 20 N (point A), the fracture porosity was 0.06% with
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the 3.44 × 108 µm3 crack volume, which was 51.61% lower than the intact sample. This is
due to the closure of some micropores in the S1 stage corresponding to the 20 N condition.
When the pressure increased to 150 N (point B), the fracture porosity rose to 0.597% with
the 3.37 × 109 µm3 crack volume, an increase of 895% compared to point A. The main
reason for this is that there is a large drop in the stress–strain curve between A and B,
indicating the generation of macroscopic cracks and a sudden outbreak in the total volume
of cracks. When the stress reached 200 N (point C), the fracture porosity further increased
to 1.48% with the 8.19 × 109 µm3 crack volume, an increase of 995% and 248% compared to
points A and B, respectively. Obviously, the curve from B to C fluctuates frequently, and
the sample undergoes the process of multiple local failure–stress redistributions to resist
deformation. Further connection of cracks and a sharp increase in crack volume appear. In
addition, large secondary fractures continue to develop along the dominant plane, and new
fractures continue to form, further promoting an increase in fracture rate until the sample is
destroyed. In the above two stages, the slope of the AB segment is smaller than that of BC,
which may be because the energy in the early stage is mainly used for crack germination,
and the average distance of micro-cracks inside the coal rock is relatively large. In the
later stage, the pore cracks develop to a certain extent, and the average distance decreases,
making it easier for them to communicate with each other, resulting in a faster increase in
fracture porosity.
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4.3. Fractal Characteristics of the Fracture Network

Coal rock is a complex system with a fractal structure. The fractal dimension of
fractures can reflect the chaotic complexity and irregular tortuosity of fractures in coal rock.
There are many common methods to calculate fractal dimension, such as box counting,
ball counting, and Fourier transform. In this study, the box counting method was used to
calculate the fractal dimension of the crack, that is, a series of cubes with different sizes are
used to cover the binary image of the crack, and then the number of pixels in each cube
is counted. With the continuous reduction in the size of the cube, the number of pixels
contained in the cube shows a certain pattern. Therefore, by analyzing the relationship
between the cube size and the number of pixels, we can calculate the fractal dimension of
the crack. The calculation formula is

DF = −lim
ε→0

log N(ε)

log N0
(3)

where DF is the fractal dimension of the coal rock fracture, N(ε) represents the number
of pixels within the coal rock fracture, and N0 is the minimum number of pixels within
the cube.
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A higher fractal dimension represents a more complex fracture structure, and the
more dispersed the distribution, the looser the connection between the fractures, which
means the stronger the damage. According to Figure 9, when the axial stress is 20 N, the
DF is 1.71, indicating that the distribution of coal rock fractures is relatively dispersed and
there are many small fractures. At 150 N, the DF increases to 2.05, which shows that the
fracture distribution begins to concentrate, and some large fractures appear. When the
pressure reaches 200 N, the fractal dimension of coal rock fractures rises further to 2.32,
which indicates that the fracture is concentrated and the large cracks are about to penetrate
the sample. Similarly, the latter slope is greater, which reveals that, as stress increases, the
fractures begin to concentrate faster and damage to the coal rock is gradually accelerating.
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4.4. Dynamic Evolution of Fractures

The µ-CT slices were used to perform 3D fracture reconstruction to determine the
fracture network. Figure 10 shows the three-dimensional crack network extracted from the
sample at axial pressure of 20 N, 150 N, and 200 N. The overall crack propagation process
of coal and rock is as follows:

1. When the axial pressure is 20 N, there are three forms of fracture networks in coal
and rock: (1) the embryonic form of the main fracture network extending along a
monoclinic direction in the upper part; (2) the local network of fractures extending
horizontally at the lower part; and (3) the fracture network extends in a monoclinic
direction (opposite to the initial extension direction of the main fracture network) at
the lower left side. At this time, the number of coal rock fractures is 67 with a total
crack area of 3.79 × 107 µm2.

2. At 150 N (1) the embryonic network of the main fracture continues to merge with
the lower transverse fracture network; (2) the fracture network at 20 N continues to
expand along the original dominant plane; and (3) the horizontal cracks germinate
densely from top to bottom, the number of cracks increases to 311, and their total area
is 3.52 × 108 µm2.

3. At 200 N, the sample approaches failure, with (1) the main crack continuing to extend
along the dominant plane to the bottom of the coal rock, and (2) the transverse small
cracks in the middle connecting with each other and forming a larger-scale crack
network. Finally, the number of coal rock cracks decreases to 289 with a total crack
area of 5.35 × 108 µm2.
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5. Conclusions

To visually and quantitatively characterize the distribution characteristics and dynamic
evolution process of the internal fracture network of coal under different pressure states,
coal samples were subjected to uniaxial compression loading and µ-CT scanning, obtaining
corresponding stress–strain data and CT scanning slices under different loads. The results
show the following:

1. The compression process of the sample can be divided into the micro-crack compaction
stage (S1), linear elastic stage (S2), and peak failure stage (S3). S1 shows that the
stress change rate is greater than the strain change rate; in the S2 stage, the curve
is approximately linear, but significant fluctuations are due to the expansion and
connection of small and medium-sized natural cleats under stress, leading to local
failure; and in the S3 stage, the main crack continued to propagate and penetrated the
sample, which completely lost its load-bearing capacity. The sample exhibited strong
brittle characteristics, with a failure strength of 24.58 MPa and an elastic modulus of
6.32 GPa.
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2. The crack volume at 20 N, 150 N, and 200 N was 3.44 × 108 µm3, 3.37 × 109 µm3,
and 8.19 × 109 µm3, respectively, corresponding to fracture porosity of 0.06%, 0.597%,
and 1.48%. The sample underwent local failure and stress redistribution to resist
deformation while new cracks continued to form and connect. The early energy was
mainly used for crack initiation, and the average distance between micro-cracks was
relatively large. In the later stage, the average distance between cracks decreased,
making it easier for them to communicate with each other, resulting in greater crack
rate growth.

3. The fractal dimensions for axial pressures of 20 N, 150 N, and 200 N were 1.71, 2.05,
and 2.32, respectively. This means that as the stress increases, cracks begin to concen-
trate and their size becomes more uneven, which may lead to further fragmentation
of the coal rock.

4. As the stress increases, the initial cleats propagate in the dominant crack direction,
while many transverse micro-cracks continue to sprout internally, ultimately forming
the main crack. The total crack area at 20 N, 150 N, and 200 N was 3.79 × 108 µm2,
3.52 × 108 µm2, and 5.35 × 108 µm3, respectively, but the number of cracks increased
first and then decreased, which means that the cracks constantly merged as they arose.
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