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Abstract: This work considers the stabilization of a high-order system with time delay; an observer–
predictor scheme is designed to estimate an internal signal of the system that is not available for
measurement: this internal signal is the output before being delayed. By using the estimated signal,
it is possible to design a controller for the delay-free system. The key point to carrying out this
estimation strategy is to obtain conditions assuring that the estimated signal converges to the internal
variable of the system. A necessary and sufficient condition to achieve an appropriate convergence in
the proposed observer–predictor scheme is given. In addition, an analysis of the disturbance rejection
and robustness with respect to the delay term is provided. The correct functioning of this scheme is
verified through an example.
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1. Introduction

Time delay systems are often found in dynamic processes. It is well known that
when the delay is small enough in comparison with the dynamics of the process, it can be
neglected. However, if this is not the case, a careful design of the control stage becomes
necessary. Systems with a delay are common in different fields of application, for example,
in chemical processes [1], satellite communications [2], hydraulic systems [3], economic
systems [4] and technological processes, such as remote operation [5,6]. From the control
point of view, linear delayed systems pose a challenge because when closing the control
loop, the delay term is located in the denominator of the transfer function. As a consequence,
the characteristic equation has an infinite number of roots.

Numerous works have addressed the control of delayed systems in continuous time;
for example, some authors propose representing the delay as a rational function by using
Taylor, Bessel, or Padé approximations [7–9]. Others propose strategies based on classical
controllers such as Proportional (P), Proportional-Derivative (PD), Proportional-Integral
(PI), and Proportional-Integral-Derivative (PID); see, for example, [1,10–13].

On the other hand, when a digital control is implemented, the process to be controlled
should be discretized. In the particular case of a discretization by using a zero-order hold
(ZOH) of the delayed system, the delay term yields n poles at the origin, where n is an
integer and must satisfy T = τ/n, where T is the sampling period and τ is the time delay.
This approach allows designing a digital controller using any classical technique in the
discrete domain (for instance, P, PD, PI, or PID controllers). However, some robustness
problems can occur when the delay of the system differs from the model. Another way to
use a discrete model of the system, as mentioned above, is to perform a discrete analysis of
the transfer function together with the controller by leading the sampling time T → 0 in
the analysis (or equivalently n→ ∞) to get stability conditions in continuous time [14,15].
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From a different perspective, the control of the delayed system has been treated by
using the well-known Smith Predictor (PS) [16]. This strategy estimates a signal before
being delayed, and later this estimated signal is used to apply the control to the delay-free
system. However, the main limitation of this strategy is that it only allows the treatment of
stable systems. Therefore, numerous modifications have been developed in the structure
of the PS. Some modifications of the PS for unstable systems with delay are presented
by [17–23]. Recently, in [24], an observer–predictor is presented for the case of one, two,
and even three unstable poles with time delay. In particular, the stabilization for a system
with one unstable pole, several stable poles, and time delay, the same kind of plant as that
analyzed in the present work, is discussed. Stability conditions with respect to the time
delay are given based on the use of an observer–predictor scheme and a PID-type controller.

In this work, an observer–predictor control scheme for high-order delayed systems
with an unstable pole and several stable poles is proposed. For the convergence of the
observer–predictor, a special injection scheme is considered, which is discretized, and later
the stability condition of the system in continuous time is obtained under the consideration
of a sampling period T = τ

n , with T → 0 (or equivalently when n→ ∞).
Special attention is given to the case of a delayed unstable second order (one stable and

one unstable pole) because it is a system commonly treated in the literature [21,25–27]. Later,
the proposed control strategy is generalized to high-order unstable systems with delay. The
proposal presented here improves the size of the delay that can be controlled compared to
some related works found in the literature, such as [14,24,27,28]. It is important to highlight
that the observer–predictor structure proposed in the present work allows stabilizing the
kind of systems previously mentioned with a larger delay than the observer–predictor
control proposed in [11,24]. This improvement is achieved due to the fact that the new
proposed observer–predictor in the present work has a different structure, as well as the
fact that it has two free parameters for the design of the observer. Moreover, necessary and
sufficient conditions are presented for the proposal in contrast with some strategies found
in the literature, where necessary and/or sufficient conditions are not derived [19,29].

This paper is organized as follows. Section 2 describes the kind of system to be studied.
In Section 3, the necessary preliminary results are shown; these results will be used later in
the main results of this paper. Section 4 presents the main results, that is, the estimation
strategy and the design of the control strategy. In Section 5, the step tracking and step
disturbance rejection of the proposed scheme is analyzed. In Section 6, a robustness analysis
with respect to uncertainty in the time delay is presented. In Section 7, three simulation
examples implemented in Matlab-Simulink software illustrate the performance of the
proposed strategy and finally, conclusions are presented in Section 8.

2. The Class of Systems

Consider the class of linear Single-Input Single-Output (SISO) system with
input/output delay given with

Y(s)
U(s)

= Gs(s)Gu(s)e−τs = G(s)e−τs, (1)

where

Gs(s) =
1

∏
p
i=1(s + bi)

. (2)

Let us define the product as Gs(s) = Gs̄(s)Gstb(s) with Gs̄(s) = 1
∏

p
i=2(s+bi)

, and

Gstb(s) = 1
s+b1

. Gu(s) = b
s−a with b1 ≥ bi, ∀i 6= 1. U(s) and Y(s) are the input and

output signals respectively, τ > 0 is the constant known delay, a > 0 is the position of the
unstable pole, bi > 0, for i = 1, 2, · · · , p; b > 0 is the gain of the system and G(s) is the
delay-free transfer function. Note that in system (1) only real poles are considered.
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A traditional control strategy based on a unitary feedback output of the form,

U(s) = [R(s)−Y(s)]Q(s), (3)

produces a closed-loop system given by,

Y(s)
R(s)

=
Q(s)G(s)e−τs

1 + Q(s)G(s)e−τs , (4)

where the term e−τs located in the denominator of the transfer function in Equation (4)
leads to a system with an infinite number of poles and, therefore, the stability analysis is
complicated to carry out, and the design of the controller should be carefully analyzed.

3. Preliminary Results

Next, the stability condition for the system (1) using a PID controller is given.

Lemma 1 ([11]). Consider the system given in (1), the PID type controller given by

C(s) = kp(1 +
ki
s
+ kds), (5)

and a control law U(s) = [R(s)−Y(s)]C(s) with R(s) as a new input reference. Then, there exist
kp, ki, and kd such that the closed-loop system Y(s)/R(s) is stable if and only if
τ < 1

a −∑
p
i=1

1
bi
+
√

1
a2 + ∑

p
i=1

1
b2

i
.

Lemma 2. Consider the subsystem G(s) = Ȳ(s)/Ū(s) in (1) (delay-free transfer function), a PID
controller (5) and a control law Ū(s) = [R(s)− Ȳ(s)]C(s) with R(s) as a new input reference.
Then, there exist kp, ki, and kd such that the closed-loop system Y(s)/R(s) is stable if and only if
0 < 1

a −∑
p
i=1

1
bi
+
√

1
a2 + ∑

p
i=1

1
b2

i
.

Proof. This result is a particular case of Lemma 1, by considering a delay term equal
to zero.

In this paper, it is assumed that system (1) can be stabilized using a PID controller for
τ = 0, i.e., the condition given in Lemma 2 is satisfied.

4. Main Results

Before providing the estimation strategy, a result that establishes the stability condi-
tions for the injection scheme shown in Figure 1 is presented. This result will be used later
in the proof of the convergence of the proposed observer.

Figure 1. Proposed injection scheme.
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Lemma 3. Consider the system given by Equation (1) with an output injection described by
Figure 1. Then, there exist gains g1 and g2 such that the closed-loop system,

Y(s)
U1(s)

=
be−τs

((s− a)(s + b1) + g1(s + b1)be−τs + g2be−τs)∏
p
i=2(s + bi)

, (6)

is stable if and only if τ < 1
a −

1
b1
+
√

1
a2 +

1
b2

1
.

Proof. The proof of this lemma is presented in Appendix A.

For future reference, consider a state space representation of the system (1) with
Gs̄(s) = 1, given as  φ̇1(t)

φ̇2(t)
y(t + τ)

 =

a b 0
0 −b1 0
1 0 0

φ1(t)
φ2(t)
y(t)

+

0
1
0

u(t). (7)

Therefore, a closed-loop state space representation (related to the closed-loop transfer
function (6)) considering Gs̄(s) = 1 of the output injection shown in Figure 1 can be
written as  φ̇1(t)

φ̇2(t)
y(t + τ)

 =

a b −bg1
0 −b1 −g2
1 0 0

φ1(t)
φ2(t)
y(t)

+

0
1
0

u1(t). (8)

On the other hand, consider a state space representation of the system (1) with Gs̄(s)
considering p ≥ 2 given with

φ̇1(t)
φ̇2(t)
α̇(t)

y(t + τ)

 =


a b 0 0
0 −b1 C1 0
0 0 A1 0
1 0 0 0




φ1(t)
φ2(t)
α(t)
y(t)

+


0
0
1
0

u(t). (9)

Thus, by using (9), a closed-loop state space representation of the closed-loop transfer
function (6) or equivalently the output injection shown in Figure 1 can be written as

φ̇1(t)
φ̇2(t)
α̇(t)

y(t + τ)

 =


a b 0 −bg1
0 −b1 C1 −bg2
0 0 A1 0
1 0 0 0




φ1(t)
φ2(t)
α(t)
y(t)

+


0
0
1
0

u1(t). (10)

Remark 1. Notice that the closed-loop state space representations (8) and (10) have the same
stability condition established in Lemma (3) due to the fact that (8) is a particular case of (10) and
by the assumption bi > 0, for i = 1, 2, · · · , p previously made.

The parameters of the injection scheme depicted in Lemma 3 are presented in the
following result.

Corollary 1. Let us consider the system given by Equation (1) with an output injection as in
Figure 1. The parameters g1 and g2 such that the closed-loop system Y(s)/U1(s) (Equation (6)) is
stable can be obtained as follows:

b1(aτ − 1) + a
b

< g1 <
b1(aτ − 1) + a

b
+ ε1, (11)
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and,

b1(a− bg1)

b
< g2 <

b1(a− bg1)

b
+ ε2, (12)

for some ε1, ε2 > 0.

Proof. The proof of this corollary is presented in Appendix B.

4.1. Estimation Strategy

The proposed observer–predictor scheme for system (1) is presented in Figure 2. The
following results present the convergence conditions for two cases:

(i) unstable delayed second order (Gs̄(s) = 1).
(ii) unstable delayed higher order (Gs̄(s) with p ≥ 2).

Figure 2. Proposed observer–predictor scheme.

A state space representation of system (1) considering Gs̄(s) = 1 is given with ω̇1(t)
ω̇2(t)

y(t + τ)

 =

a b 0
0 −b1 0
1 0 0

ω1(t)
ω2(t)
y(t)

+

0
1
0

u(t). (13)

Theorem 1. Consider system (1) with Gs̄(s) = 1 with the state space representation (13) and
the observer–predictor scheme shown in Figure 2. Then, there exist constants g1 and g2 such that
limt→∞[ω̂(t)−ω(t)] = 0 if and only if τ < 1

a −
1
b1
+
√

1
a2 +

1
b2

1
.

Proof. Consider the observer–predictor scheme of Figure 2. Its complete dynamics can be
described as

ω̇1(t)
ω̇2(t)
ˆ̇ω1(t)
ˆ̇ω2(t)

 =


a b 0 0
0 −b1 0 0
0 0 a b
0 0 0 −b1




ω1(t)
ω2(t)
ω̂1(t)
ω̂2(t)

+


0 0 0 0
0 0 0 0
0 0 bg1 −bg1
0 0 g2 −g2




0
0

y(t)
ŷ(t)

+


0
1
0
1

u(t), (14)

[
y(t + τ)
ŷ(t + τ)

]
=

[
1 0
0 1

][
ω1(t)
ω̂1(t)

]
. (15)
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Defining the prediction error as eω(t) = ω̂(t)−ω(t), where eω(t) =
[

eω1(t)
eω2(t)

]
and the

estimate of the output error as ey(t) = ŷ(t)− y(t), it is possible to describe the behavior of
the dynamic error signal error ėω(t) = ˆ̇ω(t)− ω̇(t), ėω1(t)

ėω2(t)
ey(t + τ)

 =

a b −bg1
0 −b1 −g2
1 0 0

eω1(t)
eω2(t)
ey(t)

. (16)

Whether eω(t)→ 0 as t→ ∞ in (16) depends on the stability of the dynamics depicted
by (16). Notice that if the dynamic error (16) is stable and the initial conditions of the
error eω(0) are different from zero, the corresponding trajectories of the error eω(t)→ 0 as
t→ ∞. In this way, consider now a state-space realization of the system given by (8). It is
clear that the stability condition for system (8) given in Lemma 3 (see Remark 1) is the same
as the prediction error given in (16) since both systems have equivalent dynamic behaviors.
Therefore, the condition for the convergence of the observer is τ < 1

a −
1
b1
+
√

1
a2 +

1
b2

1
.

Now, to extend these results about the design of the observer to a more general class of
systems, consider an unstable delayed higher order system given by (1) (Gs̄(s) with p ≥ 2)
with its state space representation given by

ω̇1(t)
ω̇2(t)
ẋ(t)

y(t + τ)

 =


a b 0 0
0 −b1 C1 0
0 0 A1 0
1 0 0 0




ω1(t)
ω2(t)
x(t)
y(t)

+


0
0
1
0

u(t), (17)

where A1 =



−b2 1 0 ... 0

0 −b3 1
. . . 0

...
. . . . . . . . .

...
0 0 0 bn−1 1
0 0 0 0 bn

, B1 =


0
0
...
0
1

, C1 =
[
1 0 ... 0 0

]
, and

x(t) =


x1(t)
x2(t)

...
xn−1(t)

xn(t)

.

The following result presents how to extend the result of the proposed observer scheme
in Theorem 1 to a system given by (1).

Theorem 2. Let us consider the high-order unstable system in (1), its state space representation (17),
and the observer scheme given in Figure 2. Then, there exist constants g1 y g2 such that
limt→∞[ω̂(t)−ω(t)] = 0 if and only if τ < 1

a −
1
b1
+
√

1
a2 +

1
b2

1
, with

ω(t) =

ω1(t)
ω2(t)
x(t)

, (18)

and the estimate of ω(t) as,

ω̂(t) =

ω̂1(t)
ω̂2(t)
x̂(t)

. (19)
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Proof. The proof of this theorem is similar to the proof of Theorem 1. Define the prediction

errors as eω(t) = ω̂(t) − ω(t), where eω(t) =

eω1(t)
eω2(t)
ex(t)

, ex(t) = x̂(t) − x(t), and the

estimate of the output error as ey(t) = ŷ(t)− y(t). Then, the behavior of the dynamic error
signal ėω(t) = ˆ̇ω(t)− ω̇(t) is described by

ėω1(t)
ėω2(t)
ėx(t)

y(t + τ)

 =


a b 0 −bg1
0 −b1 C1 −bg2
0 0 A1 0
1 0 0 0




eω1(t)
eω2(t)
ex(t)
y(t)

. (20)

Since the behavior of the dynamic error signal (20) is equivalent to the dynamic
system (10), the stability condition is also equivalent. Thus, there are gains g1 and g2 such
that limt→∞[ω̂(t)−ω(t)] = 0 if and only if τ < 1

a −
1
b1
+
√

1
a2 +

1
b2

1
.

4.2. Controller Design

Previously, the convergence of the prediction stage was ensured. Thus, designing the
controller based on the estimated variables is possible. Therefore, in what follows, the
stability conditions based on the observer for the closed-loop system are stated.

Theorem 3. Let us consider the system (13) or (17) and the observer scheme presented in Figure 2
with an adequate convergence (Theorems 1 and 2, respectively). Then there is a control C(s) of type
PID such that the closed loop system Y(s)/R(s) is stable if and only if τ < 1

a −
1
b1
+
√

1
a2 +

1
b2

1
.

Proof. The adequate convergence of the observer is provided by Theorems 1 and 2:
τ < 1

a −
1
b1

+
√

1
a2 +

1
b2

1
for systems (13) or (17), respectively. Additionally, by using

the separation principle for linear observers, a controller can be designed by using the esti-
mated variable ŷ(t + τ) as if the variable were taken from the original system. Therefore, a
PID controller C(s) stabilizing the transfer function without delay, G(s), for both cases (13)
or (17) can be found (see Lemma 2). Therefore the most restrictive condition between the
convergence and control stages is the convergence stage, from which the conclusion of the
theorem follows.

4.3. Improved Stability Conditions

Considering a partition of the time delay, it is possible to improve the stability condi-
tions for some cases, [14]. In this way, the result presented in the previous sections can be
improved as follows. Consider the system (1) with the time delay partition given by,

Y(s)
U(s)

= G(s)e−τs = e−τ1sG(s)e−τ2s, (21)

The observer scheme given in Figure 2 can be modified as shown in Figure 3.

Lemma 4. Let us consider the system (21), Gs̄(s) = 1 and the observer scheme presented in
Figure 3. Then, there exist gains g1, g2, and a PID type controller C(s) such that the closed-loop

system Y(s)/R(s) is stable if and only if τ < 2
(

1
a −

1
b1
+
√

1
a2 +

1
b2

1

)
.

Proof. Note that Theorem 1 can be applied directly to a system with delayed input u(t− τ1)
since the convergence of the observer is not affected by adding the delay term e−τ1s

to the observer stage shown in Figure 3. That is, there are gains g1 and g2 such that
limt→∞[ω̂(t)−ω(t)] = 0 if and only if τ2 < 1

a −
1
b1
+
√

1
a2 +

1
b2

1
. Invoking the principle of
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separation for linear observers, and based on the adequate convergence of ω̂(t), Lemma 1
can be applied considering the estimated signal ŷ(t + τ2) to the design of the control stage.
That is, there exists a control C(s) of type PID that stabilizes the system with the delay τ1 if
and only if τ1 < 1

a −
1
b1
+
√

1
a2 +

1
b2

1
. Therefore, it can be concluded that the original time

delay limit τ is τ = τ1 + τ2 < 2
(

1
a −

1
b1
+
√

1
a2 +

1
b2

1

)
.

Figure 3. Proposed observer–predictor scheme for longer delays.

Corollary 2. Let us consider the system (21), Gs̄(s) with p ≥ 2, and the observer scheme presented
in Figure 3. There are gains g1 and g2 and a control C(s) of type PID such that the closed-loop
system Y(s)/R(s) is stable if and only if τ < 2

a −
2
b1
−∑

p
i=2

1
bi
+
√

1
a2 +

1
b2

1
+
√

1
a2 + ∑

p
i=1

1
b2

i
.

Proof. Theorem 1 can be applied directly to the observer of Figure 3 since the convergence
of the observer is not affected by the delayed input u(t− τ1). Thus, there are gains g1 and
g2 such that limt→∞[ω̂(t)− ω(t)] = 0 if and only if τ2 < 1

a −
1
b1
+
√

1
a2 +

1
b2

1
. Taking into

account the principle of separation for linear observers and based on the convergence of
ŷ(t + τ2), Lemma 1 can be applied to the control stage by considering the estimated signal
ŷ(t + τ2). Then, there is a PID type control C(s) that stabilizes the plant G(s) with a delay
τ1 if and only if τ1 < 1

a −∑
p
i=1

1
bi
+
√

1
a2 + ∑

p
i=1

1
b2

i
. Therefore, it can be concluded that the

original delay time limit is τ = τ1 + τ2 < 2
a −

2
b1
−∑

p
i=2

1
bi
+
√

1
a2 +

1
b2

1
+
√

1
a2 + ∑

p
i=1

1
b2

i
.

Remark 2. Since, in Lemma 4, the size of the delays τ1 and τ2 is bounded in the same proportion by
convergence and control conditions, it is suggested to set the partition as τ1 = τ/2 and τ2 = τ/2.
For the case of Corollary 2, it is suggested to set the delay partition as τ1 < τ2 since the proportion
of the bounds in convergence and control conditions is different.

5. Disturbance Rejection and Tracking Reference

The control strategy for disturbance rejection and tracking reference is analyzed in
this section. Note that once an adequate estimation is achieved, there can be proposed any
control strategy for the delay-free system (1) (Theorem 3) or with a part of the time-delay
(Lemma 4 and Corollary 2). To make the controlled system follow references and reject
disturbances, both step types, the following PID control is used,

C(s) = kp +
ki
s
+ kds, (22)

where kp, ki, and kd are the tuning parameters of the controller.
The control parameters in (22) are obtained considering the system G(s) (Theorem 3),

using a root locus diagram for G(s)C(s). It is recommended to locate the controller’s zeros
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in the left half-plane to ensure the existence of a region of stability. The control parameters
can be obtained by using the root locus analysis and considering a damping factor of ζ ≥ 1
as a specification performance of the delay-free process transfer function.

5.1. Tracking Reference

The following result guarantees that the controller is able to generate a response
allowing reference tracking.

Lemma 5. Let τ < 1
a −

1
b1

+
√

1
a2 +

1
b2

1
. Consider the system given by (1); the observer–

predictor scheme given by Figure 2, C(s) described by (22); and a step reference R(s) = δ
s .

Then, limt→∞y(t) = δ.

Proof. The transfer function in Figure 2 Y(s)/R(s) is given by

Y(s)
R(s)

=
C(s)G(s)e−τs

C(s)G(s)− 1
. (23)

Applying the final value theorem to (23), one obtains that

lim
t→∞

y(t) = lim
s→0

sY(s) = δ. (24)

That is, the scheme shown in Figure 2 is capable of following a step type reference.

5.2. Disturbance Rejection

The following result addresses the problem of rejecting disturbances.

Lemma 6. Let us cosider system (1) with τ < 1
a −

1
b1
+
√

1
a2 +

1
b2

1
; the predictor scheme given

by Figure 2, C(s) described by (22), the input reference R(s) = 0 and H(s) = β
s a step-type

disturbance. Then, limt→∞ y(t) = 0.

Proof. The transfer function in Figure 2 Y(s)/H(s) is

Y(s)
H(s)

=
G(s)e−τs(Gu(s)(Gstb(s)(g2 + Gs̄(s)) + g1)e−τs − Gstb(s)Gs̄(s) + 1)

(1− G(s))(Gu(s)e−τs(Gstb(s)g2 + g1) + 1)
, (25)

By applying the final value theorem to (25), one obtains

lim
t→∞

y(t) = lim
s→0

sY(s) = 0 (26)

This shows that the scheme shown in Figure 2 is able to reject step-type disturbances.

Note that the design of the controller C(s) involved in the control strategy developed in
Theorem 3 is carried out by using the delay-free system G(s). However, in the proposals of
Lemma 4 and Corollary 2, the controller C(s) must be carried out considering the delayed
system G(s)e−τ1s. Therefore, for the latter case, the parameters of the PID controller
corresponding to C(s) can be calculated using results related to Lemma 1. Furthermore,
reference tracking and disturbance rejection issues, both of the step type, can be proven for
the control strategies proposed in Lemma 4 and Corollary 2 by using a similar development
as that presented in the proofs of Lemmas 5 and 6.

6. Robustness with Respect to Uncertainty in the Time Delay

In practice, a control strategy that provides stability with respect to the uncertainties of
the model is desired. In this section, uncertainty with respect to the time delay is considered
for the proposed control strategy.
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Following [30], the robustness properties of the control strategy with respect to the
time delay are analyzed. For this purpose, let us consider a characteristic quasi-polynomial
of the form

p(s) = p0(s) + p1(s)e−τs + p2(s)e−τ0s, (27)

where its stability properties are established as a function of the delay times τ and τ0. Using
the results presented in [30], it is possible to give a general framework for our particular
case. Let T be the set of all points (τ, τ0) ∈ R2

+ such that p(s) (Equation (27)) has at least
one zero on the imaginary axis. Any (τ, τ0) ∈ T is known as a crossing point, and T is
the collection of all stability crossing curves. Consider now system (1) and the proposed
scheme shown in Figure 2 with Gs̄(s) = 1 and C(s) given by (22), τ being the delay time
at the observer, and τ0 being the delay time of the process. The closed-loop characteristic
equation is given by

pA(s) = pa(s) + pb(s)e−τs + pc(s)e−τ0s, (28)

with

pa(s) = (s− a)(s + b1)(s3 + (bkd + b1 − a)s2 + (bkp − ab1)s + bki),
pb(s) = b(s(kds + kp) + ki)(s2 + (bg1 + b1 − a)s + bg2 + bb1g1 − ab1),
pc(s) = −b(s− a)(s + b1)(s(kds− g1s + kp − g2 − b1g1) + ki).

Note that the characteristic Equation (28) has form (27), so it is possible to identify
the regions of (τ, τ0) ∈ R2

+ such that pA(s) is stable. Figure 4 shows a numerical example
of the stable region (τ, τ0) for the characteristic Equation (28). This figure illustrates the
interval of values τ0 such that the proposed observer-based controller remains stable for a
nominal delay τ at the observer stage.

Figure 4. Stability region for τ and τ0 for the characteristic Equation (28).

7. Simulation Results
7.1. Example 1

Consider the following system with delay, which corresponds to an unstable chemical
reactor reported in [22],

G(s) =
3.433

103.1s− 1
e−20s. (29)
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In [22], a generalized predictor (GP) scheme is presented. The prefilters used in [22]
are given by K(z) = 3.29z−3.253

z−1 , K f (z) = 0.4559z−0.4446
z−0.9887 , and Fk(z) = 0.006231

(z−0.9938) which are

derived from K(s) = 3.29(43.87s+1)
43.87s , K f (s) = 3.29 20s+1

43.87s+1 , and Fk(s) = 1
(80s+1) , respectively,

by considering a sampling time T = 0.5s.
The GP scheme has performed better than many previous approaches, so the

observer–predictor scheme presented in this work is compared with the GP scheme. For
this example, a = 0.0096, b = 0.033, and τ = 20 are the parameters of the process. Thus,
using the observer–predictor scheme presented in this work, it is possible to stabilize
the process given by (29) due to the condition of Theorem 1 being satisfied. Using the
Corollary 1, the value g1 = 0.7 is chosen; this value guarantees the estimation of the
signal of interest. Additionally, to improve the output response, a two-degree-of-freedom
controller is used, which is defined by U(s) = C2DOF−PIDR(s) − CPID(s)Yf (s) where

C2DOF−PID(s) = αkp +
ki
s + βkds, with kp = 14.679, kd = 6.99, ki = 1.398, α = 0.6, and

β = 0.9.
For the simulation, a step-type input R(s) of amplitude 1, initial conditions for the

plant state of 0.01 and a perturbation acting at 250s are considered. Figure 5 shows the
output response of both strategies considering white noise effects; it is observed that
both strategies show a stable, steady-state output. It is also important to note that the
scheme proposed in this work improves the time to reach a steady state and shows better
performance with respect to disturbance rejection.
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Proposed observer strategy

GP base approach

Figure 5. System output response with perturbation of example 1.

In Figure 6, the behavior of the strategy reported in [22] and the proposed observer–
predictor scheme under uncertainties in the plant are shown; the uncertainty is set at the
unstable pole of the system with +200% of its nominal value.

Finally, Table 1 presents the evaluation results for different performance indicators:
the integral quadratic error criterion (ISE), the integral of quadratic error multiplied by
time (ITSE), the integral absolute error (IAE), and the integral of absolute error multiplied
by time (ITAE). It is observed that the results of the quantitative evaluation of the strategy
proposed in this work have better results in the performance indexes ITSE and ITAE for
the control action u(t) and in the performance indexes ISE, ITSE, and ITAE for the output
signal y(t) (nominal values) with respect to the work presented in [22]. For simulations
where uncertainties in the plant are considered, the evaluation results show that the
proposed observer–predictor scheme performance indexes ITSE, IAE, and ITAE are better
in the control action u(t); likewise, for the output signal y(t) it is observed that in all the
performance indexes, the proposed strategy presents minor error magnitude with respect
to [22].

On the other hand, Figure 7 shows the output responses of the proposed observer–
predictor scheme and the Filtered Smith Predictor reported in [23] with its respective

parameters given by C(s) = 3.29(43.87s+1)
43.87s , F(s) = 20s+1

43.87s+1 , and Fr(s) = (20s+1)2(93.16s+1)
(26s+12)(43.87s+1) .

It is observed that under non-zero initial conditions, the output response of the strategy
presented in [23] is unstable, while the response of the observer–proposed scheme is stable.
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Figure 6. System output response with uncertainty in the plant of example 1.

Table 1. Comparative table of quantitative evaluation of the two strategies of example 1.

Nominal Case Robust Análisis (+200% Plant Uncertainties)

System Y(s)
U(s) = 3.433

(103.1s−1) e−20s. Y(s)
U(s) = 3.433

(346.3s−1) e−20s.

Control Action u(t)

Tuning methods ISE ITSE IAE ITAE ISE ITSE IAE ITAE

Proposed strategy 217 1.087 × 105 408.1 1.584 × 105 3067 4.156 × 105 874.1 3.13 × 105

GP-based approach 265.5 1.116 × 105 394 1.6 × 105 1279 4.515 × 105 874.8 3.17 × 105

Output y(t)

Tuning methods ISE ITSE IAE ITAE ISE ITSE IAE ITAE

Proposed strategy 717. 7 2.585 × 105 695.7 2.51 × 105 814.9 2.65 × 105 726.1 2.51 × 105

GP based approach 725. 5 2.69 × 105 693. 7 2.56 × 105 918.7 2.90 × 105 744.2 2.56 × 105

Figure 7. System output response with uncertainty in the plant of example 1.

7.2. Example 2

Consider the unstable process with delay given by

G(s) =
1

(s− 0.5)(s + 1)
e−1.4s. (30)

For this example, b1 = 1, a = 0.5, b = 1, and τ = 1.4 are the parameters of the process.
Thus, by substituting and in condition of Theorem 1, we obtain

τ < 3.236.

This means that the maximal delay-time size allowed by the proposed control strategy
is τ < 3.236, and since the delay time of the process (τ = 1.4) is less than this bound,
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therefore the proposed control strategy can stabilize this process. Then, Corollary 1 can be
used to obtain the values of g1 and g2. For the simulation, g1 = 0.5 and g2 = 0.03 are used.
Further, for the simulation experiment, the parameters of the control C(s) given by (22) are
chosen as kp = 27.29, ki = 9.10, and kd = 18.19. An initial condition of 0.1 is used for each
of the plant states. A step input reference, R(s), with an amplitude 5, is set. Figure 8 shows
the behavior of the estimation error, and we see that eω(t) = 0 in the steady state.
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Figure 8. Convergence of the estimated signal from example 2.

To test the robustness with respect to uncertainty in the delay time, the analysis
presented in Section 6 is used. The interval of time delays that guarantees closed-loop
stability is given by 1.33 < τ0 < 1.467 where the nominal value of the delay is τ = 1.4. This
is shown in Figure 9. Figure 10 shows the response of the system to uncertainties in the
model parameters, and it can be seen that the system is stable with a parameter a = 0.5
greater than +34% of its nominal value of the unstable pole. Figure 11 shows the response
in which the tracking of the steady state reference can be observed. Likewise, it shows that
the system is robust to some uncertainty with respect to the nominal delay (τ = 1.4).

Figure 9. Stability region for τ and τ0 for example 2.
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Figure 10. Output response to plant uncertainty in example 2.
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Figure 11. Output response in example 2.

Finally, Figure 12 shows the output response when white noise effects are considered
at the output. In this figure, it can be observed that system stability prevails in the face of
such effects.
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Figure 12. Output response to noise effects of example 2.

7.3. Example 3

Consider the unstable high-order system with delay previously studied in [19],

Y(s)
U(s)

=
0.2

(s− 0.2)(s + 0.5)(s + 2)
e−0.5s. (31)
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In [19], an Active Disturbance Rejection Control (ADRC) is presented with a two-
degree of freedom scheme. The proposed control and observer gains for the ADRC are
Ko = [9406.895 998.3894 56.6806 1] and Lo = [9406.895 998.3894 56.6806 1]T . Likewise for
the two-degree of freedom strategy, the controller C = (2.07s + 1)(5s− 1)/(s + 1)2 and
N = e−0.939s/(s + 1)2 are proposed.

On the other hand, for this example, b1 = 0.5, b2 = 2, a = 0.2, b = 0.2, and τ = 0.5 are
the parameters of the process. Considering the observer–predictor presented in this paper,
the stability condition given in Theorem 3 is τ < 8.3, which is satisfied. Using Corollary 1,
we calculate the values of g1 and g2. In this example, the values of g1 = 10 and g2 = −5
are used. For the control C(s) given by Equation (22), the parameters used are kp = 3.94,
ki = 0.32, and kd = 6.57.

Additionally, in order to achieve a better response, a two-degree of freedom controller
of PID type [31] defined by U(s) = C2DOF−PIDR(s)− CPID(s)Yf (s) is considered, where

C2DOF−PID(s) = αkp +
ki
s + βkds, with kp = 3.94, kd = 6.57, ki = 0.32, α = 0.8, and β = 0.8.

For the simulation, a unitary step input reference R(s) = 1/s and a perturbation of
the actuators at 40 s is used. The output response of the control scheme proposed in [19]
and the output response of the observer–predictor scheme presented in this work are
shown in Figure 13 to noise effects. It can be seen that in the presence of a perturbation
acting at 40 s, both strategies allow perturbation rejection and reference tracking. It is
important to highlight that in [19], necessary and sufficient conditions are not provided to
stabilize systems with time delay, while in the observer–predictor presented in this work, it
is possible to control the system of example 2 with a delay τ < 8.3.
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Figure 13. Output response to noise effects of example 3.

Figure 14 shows the output response under an uncertainty in the delay τ. It can be
seen that with a delay uncertainty of +100%, both strategies still have a stable output
response. However, at a delay uncertainty τ of +120%, it can be seen in Figure 15 that
the strategy presented in [19] is no longer stable, while the proposed observer–predictor
scheme preserves a stable response. Figure 16 shows the control signal u(t) response under
an uncertainty in the delay τ.

Finally, Table 2 shows the evaluation results for different performance indices. It
can be observed that the observer–predictor scheme presented in this work has better
performance indexes in the ITSE, IAE, and ITAE for the control action u(t) and ISE, ITSE,
IAE, and ITAE indexes for the output signal y(t) (nominal case) with respect to the work
reported in [19]. When a delay-time uncertainty is considered in the system, the proposed
observer–predictor scheme has better performance indexes ITSE, IAE, and ITAE in the
control action u(t) and the indexes ISE, ITSE, IAE, and ITAE for the output signal y(t) with
respect to the work presented in [19].
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Figure 14. Stable system output response with time delay uncertainty τ of example 3.
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Figure 15. Output response of example 3.

Figure 16. Control response of example 3.

Table 2. Comparative table of quantitative evaluation of the two strategies of example 3.

Nominal Case Robust Análisis (Uncertainty in the Delay τ of +100%)

System Y(s)
U(s) = 0.2

(s−0.2)(s+0.5)(s+2) e−0.5s. Y(s)
U(s) = 0.2

(s−0.2)(s+0.5)(s+2) e−1s.

Control Action u(t)

Tuning methods ISE ITSE IAE ITAE ISE ITSE IAE ITAE

Proposed strategy 255.1 1800 68.95 2818 262.4 1835 72. 07 2824

2DOF-ADRC 89.41 1866 73.97 2882 191. 8 3022 93. 55 3072

Output y(t)

Tuning methods ISE ITSE IAE ITAE ISE ITSE IAE ITAE

Proposed strategy 92.46 4843 94.99 4916 92. 67 4840 94. 99 4914

2DOF-ADRC 95.32 4951 96.61 4974 96. 25 4960 96. 6 4973
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7.4. Practical Contributions

In this section, we highlight some of the major practical contributions of the proposed
control strategy developed in this work.

1. When theoretical results (such as those provided in the present manuscript) are
taken in order to implement real-practical experiments, it is very important to know
quickly if the theoretical proposed control strategy can be used for solving the stability
problem or not. In this way, providing necessary and sufficient conditions for the
existence of the stabilizing control strategy allows one to obtain this information
immediately by making simple computations of the stated conditions. This facilitates
the task of the control design for the engineers, in contrast with control strategies
that are developed under heuristic methods or just present necessary or sufficient
conditions.

2. In general, the time-delays phenomenon due to measurement of variables, material
transportation, or teleoperation complicates the design of control strategies, however
in the particular case when the size of time-delay is greater than the dominant dynamic
of the system, the control design has an additional degree of complexity. This is
because, under this situation, the time delay has greater adverse effects than the
behavior of the controlled system when the delay time is small. As an example
of this problem, there are many proposed control strategies [11,24] that are well
performed for a “small” time delay, but these control strategies cannot be used for
controlling systems with large delay terms. This problem is illustrated and partially
solved in the new version of the work; see Example 3 (Figure 15). Therefore, in
this work, it is possible to control systems with greater delay size with respect to
previously reported works ([11,24]). For example, in [17], the maximum size of the

delay is τ < 1/a− 1/b1 +
√

1/a2 − 1/b2
1 for a second order delayed system, in the

present work, this bound is τ < 2
(

1/a− 1/b1 +
√

1/a2 − 1/b2
1

)
, i.e., the double of

the previous delay size. This practical advantage allows the controlling of a greater
variety of systems, ensuring closed-loop stability.

3. In practice, a control strategy that provides stability with respect to the uncertainties
of the model is desired. These problems arise mainly from model mismatching. In
this way, analytical robustness with respect to time delay is developed in Section 6.
Additionally, the proposed control strategy has been evaluated via simulations on
face-to-model mismatching of the process, obtaining positive results such as the
preservation of closed-loop stability under the adverse mentioned condition.

4. Many industrial solutions (such as chemical engineering applications) require the
regulation problem, which consists in keeping a variable at a desired value even
in the presence of disturbances. In this way, the capability of a control system for
tracking desired step-references and disturbance rejection is essential for solving the
regulation problem. Thus, the results provided in Section 5 are related to this issue
and illustrated in numerical simulations.

5. The control action and the output measurable variable performances are qualitative
and quantitatively evaluated using a numerical simulation; the control action can be
seen as the spent energy of the control stage to achieve the stabilization of the process,
which is a very important issue from a practical viewpoint.

8. Conclusions

Dynamic systems with relatively large delays with respect to the dynamics of the
system are tackled in this work. A control proposal based on a delay predictor (observer)
scheme is presented. A fundamental part of this work focuses on achieving the convergence
of the observer–predictor scheme. The approaches used in the study allow the obtaining of
necessary and sufficient conditions for the convergence of the scheme presented. Using this
scheme, it is possible to control systems with longer delays than those treated in previous
works [11,24].



Processes 2023, 11, 1613 18 of 24

For example, in the [11] the maximum limit on the size of the delay is τ < 1
a −

1
b1
+
√

1
a2 +

1
b2

1
)

for a second order delayed system. In the present work, it is possible to exceed the

aforementioned delay limit, reaching up to τ < 2
(

1
a −

1
b1
+
√

1
a2 +

1
b2

1

)
: as can be seen, the

allowable size in the present proposal surpasses the previous condition by a factor of two.
A similar improvement is achieved for high-order delayed plants. Finally, some results
concerning tracking the reference in the steady state and the rejection of disturbances, both
of the step types, are presented and validated via numerical simulations.
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Appendix A. Proof of Lemma 4

Proof. Sufficiency. Let us consider the discrete model of (1) including a zero order hold
and a sampling period T = τ

n with n ∈ N and the output injection strategy described by
Figure A1 (or its equivalent in Figure A2). Then,

Y(z)
U1(z)

=
α1α2b

ab1zn(z− eaT)
(
eb1Tz− 1

)
+ α1b

(
b1g1

(
eb1Tz− 1

)
+ α2g2

)Gs̄(z), (A1)

with α1 = eaT − 1 and α2 = eb1T − 1.

Figure A1. Discretized injection scheme.

Figure A2. Equivalent of the discretized injection scheme.

Under the assumption that Gs̄(s) has stable poles (previously assumed) and, as a con-
sequence, also Gs̄(z), the stability of (A1) only depends on the transfer function Y(z)/U2(z).
In this way, the characteristic equation of Y(z)/U2(z) is given by

α1

(
g1z− g1e−b1T + α2g2

)
+ zn

(
z− eaT

)(
z− e−b1T

)
= 0. (A2)

This lemma can be proved by showing that all the roots of Equation (A2) are inside the
unit circle if and only if τ < 1

a −
1
b1
+
√

1
a2 +

1
b2

1
when T → 0, or equivalently when n→ ∞.
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The general idea of the proof is presented below. Later, a formal analysis using a root
locus approach is presented.

Let us take n = 5, for simplicity and without loss of generality, in the analysis. Then,
in the following steps, consider the root locus diagram generated by the characteristic
Equation (A2).

Step 1. Assume g1 > 0 and g2 = 0. When g1 varies from zero towards positive values,
n− 1 poles located at the origin move towards infinity: one pole moves in the direction of
a breaking point located at the real axis, and the pole located at z = eaT also moves from
right to left on the real axis in the direction of to the breaking point, and for some values of
g1 > 0, the trajectory enters the stability region (unit circle). These trajectories are depicted
in Figure A3. In Figure A3, the gray points in the trajectories indicate the location of the
roots for a specific value of g1 > 0, denoted by ḡ1. Notice that the pole on the right real axis
(z = e−b1T) does not move since g1 has no influence on this pole.

Step 2. With g1 = ḡ1 and g2 > 0 variable. This step is explained by using Figure A4
when g2 varies from zero towards positive values, the pole located at z = e−b1T is involved
in the locus of the roots, which moves from left to the right on the real axis, causing a
breaking point with the relocated pole (originally the pole outside the unit circle) in step
one. Note that under these circumstances, a breaking point inside the unit circle is obtained.
Gray points in the trajectories in Figure A4 indicate the location of the roots for a specific
value of g2 > 0, denoted by ḡ2.

Figure A3. LGR with g1 > 0, g2 = 0.

The facts depicted in Steps 1 and 2 suggest that it is possible to obtain g1 = ḡ1 and
g2 = ḡ2 such that all the roots of the locus are inside the unit circle and therefore the discrete
injection scheme shown in Figure A2 is stable.

Figure A4. LGR with g1 > 0, g2 > 0.
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Now, considering the previous developments, the breakpoint derived from the afore-
mentioned analysis is calculated. Consider Step 2, where a breaking point is located in the
real axis between the pole located at z = e−b1T and the relocated pole that was moved into
the unit circle in Step 1. Then, to achieve closed-loop stability, the breaking point should
be inside the unit circle. Then, the location of the breaking point is calculated. This can be
done by solving for g2 from Equation (A1), and then its derivative is

dg2

dz
= b1

(
eb1Tz− 1

)(
azn + anzn−1

(
z− eaT

))
+ ab1eb1Tzn

(
z− eaT

)
+ α1bb1eb1T g1. (A3)

The breakpoint of interest is obtained by calculating the roots of Equation (A3). Indeed,
the breaking point of interest is one of the roots of the polynomial (A3). These roots are
analyzed by considering that the parameter g1 is variable. This allows studying the behavior
of the roots of (A3) through a root locus diagram. Note that this root locus diagram does
not depict the movement of the roots of the closed-loop injection scheme but the movement
of the breaking points related to the system. Then, it is possible to associate a fictitious
closed-loop system with Equation (A3). Let us consider an open loop system given by

Y3(z)
U3(z)

=
α1bb1eb1T

b1
(
eb1Tz− 1

)
(azn + anzn−1(z− eaT)) + ab1eb1Tzn(z− eaT)

. (A4)

With proportional action, R3(z) = U3(z)− g1Y3(z), it is possible to obtain the closed-
loop system given by

Y3(z)
R3(z)

=
α1bb1eb1T

b1
(
eb1Tz− 1

)
(azn + anzn−1(z− eaT)) + ab1eb1Tzn(z− eaT) + α1bb1eb1T g1

. (A5)

Note that the characteristic equation of the fictitious system (A5) is equivalent to
Equation (A3).

Then, in this new fictitious system (A5), it is possible to analyze the behavior of the
breaking points. Taking into consideration an analysis of the locus of the roots for the
system (A4) with g1 as a variable parameter, Figure A5 shows that there exists a breaking
point between the pole located within the unit circle and the pole located outside.

The location of the breaking point is obtained by solving for g1 from the characteristic
polynomial Equation (A5) and its corresponding derivative, provided by

dg1

dz
= −ae−b1Tzn−2

(
(eb1T(n + 1)(n + 2)z2 −

(
eT(b1+a) + 1

)
n(n + 1)z + eaTn2 − eaTn

)
. (A6)

Figure A5. LGR of the system (A5) by varying g1.
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One of the roots of (A6), defining the behavior of the breaking point of interest, is
given by

P(z) =

e−b1τ/n


√√√√n

((
n(n + 1)

(
e(b1+a)τ/n − 2

)
+ 8
)

e(b1+a)τ/n + n(n + 1)
)

n + 1
+ n

(
e(b1+a)τ/n + 1

)
2(n + 2)

. (A7)

In order to get closed-loop stability in the scheme shown in Figure 1, the breakpoints
derived from the fictitious system (A1) should be within the unit circle. Now, this issue is
analyzed and ensured.

It is important to note that the approach used in this proof guarantee that the break-
point falls within the unit circle when n → ∞, or equivalently T → 0. This is with the
intention of obtaining the stability conditions of the continuous time injection scheme
shown in Figure 1. Therefore, we can obtain

lim
n→∞

P(z) = 1. (A8)

From (A8), the breaking point is at the limit of stability. The key point is to determine
if the breakpoint (A8) tends to one from the left or from the right. Note that when the limit
of the Equation (A8) tends to 1 from the left, then the system has the breaking point within
the unit circle, and therefore there is a stability region.

Let us assume that the condition τ < 1
a −

1
b1
+
√

1
a2 +

1
b2

1
in the limit (A8). This implies

that the breaking point of interest is within the unit circle, and there exists a region of
stability. Finally, to end the proof, it is important to demonstrate that n− 2 roots of (A2) lie
inside the unit circle assuming the condition τ < 1

a −
1
b1
+
√

1
a2 +

1
b2

1
. Then, considering the

continuous case (n→ ∞, or equivalently, when T → 0) for the characteristic Equation (A2),
one obtains,

lim
n→∞

[
α1

(
g1z− g1e−b1T + α2g2

)
+ zn

(
z− eaT

)(
z− e−b1T

)]
= (z− 1)2 lim

n→∞
(zn + g1) = 0. (A9)

It is important to note that while two poles are close to z = 1, n− 2 poles lie close to
the point (−g1)

1/n inside the unit circle.
Necessity.
Let us consider the open-loop transfer function,

F(s) =
Yf (s)
U f (s)

= k
N(s)

svD(s)
e−τs, (A10)

with P+ unstable poles. Then the closed-loop system Yf (s)/R f (s) (with U f (s) = R f (s)−
Yf (s)) is stable only if the polynomial H(s) = eτs dm+1

dsm+1 [svD(s)e−τs] has its roots in the open
left half-plane (LHP), where m is the degree of N(s).

Proof. Let us consider the existence of stabilizing parameters g1 and g2 for the injection
scheme. Consider a system (A10) with k = bg1, v = 0, m = 1, N(s) = s + g2/g1 + b1,
D(s) = (s− a)(s + b1), and U f (s) = R f (s)− Yf (s). Then Yf (s)/R f (s) has the same char-
acteristic equation as (6). Thus, the stability of the injection scheme of Figure 1 implies that
H(s) = τ2s2 +

(
(b1 − a)τ2 + 4τ

)
s− ab1τ2 + (2b1 − 2a)τ + 2 has stable roots. Then, the sta-

bility condition for the second-order polynomial H(s) implies that τ < 1
a −

1
b1
+
√

1
a2 +

1
b2

1
is a necessary stability condition for the injection scheme.



Processes 2023, 11, 1613 22 of 24

Appendix B. Proof of Corollary 1

Assume that the stability condition of Lemma 3 is satisfied, i.e., τ < 1
a −

1
b1
+
√

1
a2 +

1
b2

1
.

Then, in order to ensure the stability of the system (1) with the injection scheme presented
in Figure 1, it is required to obtain the values of the parameters g1 and g2 of the system (A1).
First, the value of g1 is calculated. Consider a root locus of the fictitious system (A4) together
with the proportional action R3(z) = U3(z)− g1Y3(z) (this can be seen in Figure A4), where
the parameter that varies is g1. Since g1 varies from zero to positive values, the roots move
in such a way that there is a breakpoint between the pole located inside the unit circle and
the pole located outside it, which is calculated in Equation (A7). Extending the analysis to
the continuous case, in this case, the breaking point tends to one from the left, as can be
seen in Equation (A8). Therefore, it is possible to obtain the value of g1 by solving for g1 in
the characteristic equation of the fictitious system (A5) taking z = 1 and limn→∞ g1. This
procedure can be carried out as follows. First, the value of g1 is given by

g1 =
e−b1T

(
−b1

(
eb1Tz− 1

)(
azn + anzn−1(z− eaT))− ab1eb1Tzn(z− eaT))

α1bb1
, (A11)

taking z = 1, one obtains

g1 =
a
(
eaT − 1

)
− e−b1T

(
eb1T − 1

)(
a− a

(
eaT − 1

)
n
)

α1b
, (A12)

and taking the limn→∞ g1, it is found that

lim
n→∞

g1 =
b1(aτ − 1) + a

b
. (A13)

Since limn→∞ g1 = (b1(aτ − 1) + a)/b, the value of g1 with the trajectories and/or
poles inside of the unit circle has to be greater than this value, therefore the lower bound of
g1 is set as

b1(aτ − 1) + a
b

< g1 <
b1(aτ − 1) + a

b
+ ε1, (A14)

for some ε1 > 0.
Finally, to obtain the parameter g2, a similar procedure is performed. Consider a

diagram of the locus of the roots associated with the closed-loop system (A1). It is possible
to obtain the value of the parameter g2 by solving for g2 from the characteristic equation of
the system (A1) taking z = 1 and by applying limn→∞ g2. The procedure is developed as
follows. First, the value of g2 is

g2 = −
b1

(
eb1Tz− 1

)(
azn(z− eaT)+ α1bg1

)
α1α2b

, (A15)

with z = 1,

g2 =
b1

(
1− eb1T

)(
α1bg1 − aeaT + a

)
α1α2b

, (A16)

and considering limn→∞ g2, one obtains

g2 =
b1(a− bg1)

b
. (A17)
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Performing the same analysis as that used to obtain g1, the value of g2 is given by

b1(a− bg1)

b
< g2 <

b1(a− bg1)

b
+ ε2, (A18)

for some ε2 > 0.
The values of g1 and g2 ((A14) and (A18)) stabilize the injection scheme shown in

Figure 1.
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