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Abstract: In the chemical process, abnormal situations are precursor events of incidents and accidents.
Abnormal situation management (ASM) can effectively identify abnormalities and prevent them
from evolving into incidents or accidents, ensuring the safe and smooth operation of chemical
plants. In recent years, ASM has attracted extensive attention from the process industry and from
academia, and a lot of research work has been conducted. However, the intelligence level of ASM in
actual chemical plants is still relatively low, and industrial applications still face many difficulties
and challenges. This review first summarizes the concepts and involved in the contents of ASM.
Then, the latest research progress in various aspects of ASM is systematically reviewed. Finally, the
challenges and future research directions of ASM are analyzed based on the perspective of industrial
application. This review aims to provide the most cutting-edge reference for follow-up research on
ASM, and to promote the intelligent development and practical industrial application of ASM in the
chemical process.

Keywords: chemical process; abnormal situation management; fault detection and diagnosis; early
prediction and warning; root cause analysis; dynamic risk assessment; intelligence; industrial
application; digital twin system

1. Introduction

Due to the rapid advances in process control technology, the automation level of
modern chemical plants is constantly improving, but this has also made the plants larger
and more complex [1,2]. The automation system controls the normal operation of the
device by connecting sensors and actuators. Once a sensor or actuator malfunctions,
the process parameters will deviate. When deviation or disturbance exceeds the control
of the automation system and requires manual intervention, abnormal situations in the
chemical process occur. According to the investigation report of the Center for Chemical
Process Safety (CCPS) of the American Institute of Chemical Engineers (AIChE), almost all
chemical process accidents are caused by abnormalities of or deviations from the process
parameters [3]. In addition, even if the abnormality does not evolve into an accident, it
may still cause fluctuations or unplanned shutdowns of the device, seriously affecting the
normal operation of the device and causing huge economic losses. According to statistics,
abnormal situations cause USD 20 billion in economic losses to the US petrochemical
industry every year [4]. In China, abnormal situations result in unplanned shutdowns of
over 5 days per year for 600,000 tons of catalytic cracking units, resulting in economic losses
of over USD 1 million per day [5]. Therefore, strengthening the management of abnormal
situations is crucial for ensuring the normal operation of the device and preventing losses
caused by abnormalities.
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Abnormal situation management (ASM) is mainly achieved through the early predic-
tion and identification of abnormalities, timely diagnosis of the root cause of abnormalities,
and appropriate preventive and control measures to prevent abnormalities from evolving
into incidents or accidents, as shown in Figure 1. Its purpose is to restore the chemical
process to a normal state when process parameters have been deviated from, but they have
not yet triggered a safety shutdown or led to other serious consequences. Over the past
few decades, research has shown that effective ASM can protect chemical process systems
from harm and reduce the likelihood of incidents or accidents [6]. Therefore, ASM is an
important means of strengthening chemical process safety management (PSM) and risk
control, attracting wide attention from industry and academia.
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In 1994, Honeywell joined BP, ExxonMobil, Shell, Penn State, UOP, Human Centered
Solutions, Mary Kay O’Connor Process Safety Center, Nanyang Technology University, and
the University of Alberta to form the ASM Consortium, which aims to develop technologies,
products, and tools for preventing, monitoring, and mitigating chemical process abnormal-
ities [7]. Subsequently, in 1997, with funding from the National Institute of Standards and
Technology (NIST), the ASM Consortium developed and designed the Abnormal Events
Guidance and Information Systems (AEGIS), which utilizes fault diagnosis technology,
dynamic simulation technology, qualitative reasoning technology, and artificial intelligence
technology to achieve the early diagnosis of accident precursor events [8]. Since 1998, the
European Union has also launched the Advanced Decision Support System for Petrochem-
ical Manufacturing Processes (CHEM) project, which focuses on strengthening process
monitoring, data and incident analysis, and operational assistance in the petroleum and
chemical industry to avoid unplanned shutdowns and abnormal situations [9]. In 2013, the
former State Administration of Work Safety of China also issued guidance on strengthening
the safety management of chemical processes, which pointed out that strengthening the
monitoring and warning of abnormal situations, as well as using online safety monitor-
ing, automatic detection, or manual data analysis methods, can promptly determine the
root cause of abnormal situations and avoid accidents caused by improper handling [10].
After that, the SINOPEC Research Institute of Safety Engineering Co., Ltd. developed a
real-time safety operation system based on the identification and warning of abnormal
situations, achieving online monitoring of petrochemical plants and operational guidance
under abnormal situations [11].

In the past decade, a lot of research work has also been carried out in academia for
ASM, especially in the area of fault detection and diagnosis (FDD). For example, Dai et al.
proposed an ASM framework for the intelligent operation of chemical processes and dis-
cussed the future development direction of ASM [12]. Eljack et al. summarized the process
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safety aspects of abnormal situations in industrial facilities and introduced current efforts to
better manage abnormal situations [13]. Shu et al. systematically reviewed the development
of FDD, analyzed the challenges and opportunities faced by FDD in the era of big data, and
proposed a new FDD framework based on big data [5]. Arunthavanathan et al. analyzed
the relationship between FDD, ASM, and risk assessment (RA), providing a roadmap for
subsequent research on process safety [6].

Although existing research has yielded some achievements, most of them have not yet
been promoted and applied in actual chemical plants, and the intelligence level of ASM
still needs to be improved. The intelligence level of ASM refers to the degree to which
artificial intelligence technology and automation systems are used to improve the efficiency
and accuracy of management and decision-making when dealing with and responding to
various abnormal situations. ASM with a high level of intelligence can automatically predict
and identify abnormal situations, quickly determine the root cause of abnormal situations,
and formulate countermeasures, thereby reducing manual intervention. Currently, the
ASM in chemical plants mainly relies on the DCS alarm management system. When
the process parameter deviation exceeds the threshold value, the DCS system issues an
alarm. Then, the operator makes a timely judgment with manual experience and takes the
necessary emergency disposal measures. However, due to the serious alarm flooding and
interference alarms in the DCS system [14], as well as the increasing scale and complexity of
modern chemical plants, it is difficult for operators to make timely and accurate judgments.
Inexperienced operators, in particular, are more likely to make wrong judgments or take the
wrong actions in emergencies [15]. Therefore, the intelligence level of abnormal situation
management is still relatively low. Achieving intelligent and industrial applications of
ASM in chemical processes is still an urgent issue that needs to be addressed in current
research. However, there is no relevant research analyzing the challenges and opportunities
in achieving intelligence and industrial applications of ASM in chemical processes.

The main contributions of this paper include two aspects. One is based on a summary
of the concept of ASM; a systematic review of the latest research progress in various aspects
of ASM in chemical processes is conducted, providing the most cutting-edge reference
for subsequent research on ASM. Regarding the other aspect, the challenges and future
directions of ASM research are analyzed from the perspective of achieving intelligence and
industrial applications, and the framework of the digital twin system for chemical process
ASM is proposed to address these challenges, promoting the development of intelligent
and industrial applications of ASM in chemical processes. The remaining part of this
article is arranged as follows: Section 2 summarizes the definition and related content
of ASM. Section 3 systematically reviews the latest research progress in various aspects
of ASM. Section 4 analyzes the future outlook of ASM research. Section 5 presents the
conclusions drawn.

2. Concept of ASM

What is ASM? The concept of ASM was first introduced by the ASM Consortium,
which refers to the use of mathematical reasoning and expert knowledge to locate the
cause of an abnormality and propose a solution to the problem once the chemical process
deviates from normal production conditions. Subsequently, the SAFEPROCESS committee
proposed that ASM is the continuous process of identifying deviations leading to faults
or fault conditions and restoring the chemical process to a normal state [16]. Based on
the above definition, Venkatasubramanian et al. gave a more specific definition of ASM,
defining ASM as the entire activity of the timely identifying of deviations or abnormalities,
diagnosing their root causes, and taking appropriate preventive and control measures to
restore the chemical process to a normal state [17]. This definition further clarifies the
content of ASM and has been widely accepted by researchers [5,13]. However, according
to Dai et al., risk assessment was also an important aspect of ASM [12]. Risk assessment
is used to identify all potential deviations that may lead to accident scenarios and predict
possible accident consequences, thus providing decision support for ASM.
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Through summarizing the existing definitions of ASM, we can conclude that ASM is
a series of safety management activities that prevent the occurrence of chemical process
abnormalities or faults and restore the system to normal operation from an abnormal
state, mainly involving the prediction of abnormal situations, identification of abnormal
situations, root cause diagnosis, risk assessment, and emergency disposal.

(1) Prediction of abnormal situations: A warning regarding the occurrence of abnormal
situations in advance by predicting the future trend of process parameters. The
abnormal situations prediction targets potential deviations or abnormalities in the
chemical process and can provide time for operators to take preventive measures in
advance, effectively reducing the probability of abnormal situations.

(2) Identification of abnormal situations: Based on expert knowledge, models, and process
data, a rapid and concise dynamic evaluation of chemical processes is conducted to
determine whether the chemical process is in an abnormal state. Identifying abnormal
situations as early as possible and taking effective measures can minimize the potential
losses and risks and improve production efficiency and system reliability.

(3) Root cause diagnosis: For the predicted and identified abnormal situations, the
analysis of the causal relationship between the variables of the abnormal situations,
determination of the propagation path of the abnormal situations, and diagnosis of
the root variables leading to the abnormal situations in a timely manner. Root cause
diagnosis can provide decision support for operators to correctly deal with abnormal
situations, thus quickly cutting off the path from abnormal situations to incidents
or accidents.

(4) Risk assessment: The calculation of the probability of occurrence of abnormal sit-
uations and evaluation of the expected losses caused by process parameter devia-
tions. The further combination of the probability and consequences to determine
the dynamic risk of abnormal situations. The dynamic risk assessment of abnormal
situations can capture the dynamic changes of risk with the deviation of process
parameters in real time, thus providing decision support for ASM.

(5) Emergency disposal: Based on the results of root cause diagnosis and risk assessment,
appropriate preventive or control measures are taken to avoid the occurrence of
abnormal situations or restore the chemical process from abnormal situations to a
normal state.

3. Review of Research Progress
3.1. Review Method

This section reviews the latest research progress in various aspects of ASM in the
past five years, including FDD, early prediction and warning of abnormal situations, root
cause analysis, and dynamic risk assessment, to provide cutting-edge references for future
research. For this purpose, a systematic literature review method is used, which mainly
includes the following three steps:

(1) Literature search

Web of Science, ScienceDirect, Scopus, IEEE Xplore, and ACS Publication databases
are used to search the relevant research literature. The publication period of the literature
is selected as 1 January 2018 to 1 March 2023. Keywords related to ASM are used in all
searches of the database, including chemical process, abnormal situation management,
fault detection and diagnosis, early prediction, root cause analysis, and dynamic risk
assessment, etc. In addition, a snowball method is also adopted to find more relevant
literature in the papers’ references.

(2) Literature screening

First, duplicate research articles are removed. Then, we review abstracts and full
texts of articles to exclude irrelevant articles. The screening criteria of the literature are
determined as follows: 1© The literature in the field of non-chemical process is excluded.
2© The literature that did not involve various aspects of ASM is excluded, and the reviewed
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literature related to ASM is included to obtain more relevant literature from their references.
3© Only peer-reviewed original literature is included, and the literature published in

conferences and so on is excluded.

(3) Literature classification and summary

According to the research content of the articles, we classify the screened literature
into four categories: FDD, early prediction and warning of abnormal situations, root cause
analysis, and dynamic risk assessment, and we analyze and summarize the research results
of the articles.

3.2. Fault Detection and Diagnosis

FDD refers to the process of identifying potential faults or abnormal states in chemical
processes and determining their specific causes. It is the key to ASM and is also the hottest
topic in current research. Through FDD, abnormal situations in the chemical process can be
effectively identified, avoiding process fluctuations and preventing the further evolution of
anomalies into accidents. The methods of FDD are divided into three types: model-based
methods, knowledge-based methods, and data-driven methods [17–20].

In recent years, many researchers have conducted relevant review studies on FDD
methods. For example, Park et al. conducted a systematic review of knowledge-based,
model-based, data-driven, and hybrid methods, and pointed out that fault diagnosis is
a key research area in the future [21]. Li et al. systematically reviewed the model-based
and knowledge-based approaches that are widely used in the literature and presented
their views on the challenges and opportunities in future research [22]. Alauddin et al.
conducted a bibliometric review of the data-driven FDD methods in process systems
and pointed out that only a few of the current methods have realized online industrial
applications [23]. Md Nor et al. focused on reviewing the multivariate statistical analysis
methods and machine learning methods and provided guidance on how to choose suitable
fault diagnosis methods [24]. Taqvi et al. reviewed all data-driven methods with supervised
learning and unsupervised learning, and indicated that the current method is mainly
applicable to the detection and diagnosis of a single fault and has not been extended to
multiple faults [25]. The latest review conducted by Bi et al. clarified the concept and
characteristics of intelligent FDD, analyzed the main challenges in implementing intelligent
FDD, introduced research results achieved by the team for the challenges, and focused on
summarizing deep learning FDD methods [26].

Since the existing research reviews describe various FDD methods in detail, this article
will not elaborate further. This article focuses on summarizing and analyzing the research
achievements and development trends of chemical process FDD in the past five years.
Table 1 lists some of the latest research results on FDD.

Table 1. Some of the latest research results on FDD.

Research Method Feature Apply

Dual attention bidirectional
generative adversarial network for

dynamic uncertainty process
monitoring and diagnosis [27]

Fault-sensitive bidirectional
generative adversarial
network (FSBiGAN)

Suitable for dynamic
uncertain industrial processes.

Tennessee Eastman
Process (TEP)

Exploring global attention
mechanism on fault detection and
diagnosis for complex engineering

processes [28]

Industrial Process
Optimization Vision

Transformer (IPO-ViT)

The transformer-based model
is first applied to FDD,

showing better performance
than other deep learning

models.

TEP

Dynamic-scale graph neural network
for fault detection [29]

Dynamic-scale graph neural
network (DSGNN)

Considering the diversity of
dynamic characteristics of

variables in complex chemical
processes.

Nonlinear dynamic
numerical case;

TEP
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Table 1. Cont.

Research Method Feature Apply

A novel deep learning model based
on target transformer for fault

diagnosis of chemical process [30]
Target Transformer

Applying the target attention
mechanism to modify the

decoder improves the FDD
performance.

TEP

XFDDC: eXplainable Fault Detection
Diagnosis and Correction framework

for chemical process systems [31]

eXplainable Fault Detection
Diagnosis and Correction

(XFDDC)

Using eXplainable Artificial
Intelligence (XAI) technology
enhances the interpretability

of the model.

TEP

Design and implementation of an
early-stage monitoring system for

iron sulfides oxidation [32]
Integrated system

Developed an early
monitoring system for iron

sulfide oxidation based on the
FDD model.

Iron sulfide oxidation

Fault monitoring using novel
adaptive kernel principal component

analysis integrating grey relational
analysis [33]

Adaptive kernel principal
component analysis

integrating grey relational
analysis (AKPCA-GRA)

Suitable for dynamic
monitoring of nonlinear
chemical process faults.

TEP

A novel orthogonal self-attentive
variational autoencoder method for
interpretable chemical process fault

detection and identification [34]

Orthogonal self-attentive
variational autoencoder

(OSAVA)

The method is capable of
performing an explanatory

analysis of the identified
anomalous variables.

TEP

Integrating feature optimization
using a dynamic convolutional neural

network for chemical process
supervised fault classification [35]

Dynamic convolutional
neural network based on a

genetic algorithm

It can not only solve the
problem of feature

redundancy and irrelevant
feature arrangement but also

fully extract the frequency
and time domain information

of the data.

TEP

Risk-based fault detection and
diagnosis for nonlinear and

non-Gaussian process systems using
R-vine copula [36]

R-vine copula model
Suitable for nonlinear and

non-Gaussian chemical
processes

TEP;
The RT 580 fault-finding

control system;
The industrial isomer

separator unit.

Process topology convolutional
network model for chemical process

fault diagnosis [37]

Process topology
convolutional network

(PTCN)

Improved the interpretability
of the model. TEP

Multistep Dynamic Slow Feature
Analysis for Industrial Process

Monitoring [38]

Multistep dynamic slow
feature analysis (MS-DSFA)

Fully considering the real
dynamic structure during the

dimensionality expansion
process, and accurately

monitoring non-stationary
states.

TEP;
XJTU-SY bearing data

sets

Incipient fault detection of nonlinear
chemical processes based on

probability-related randomized slow
feature analysis [39]

Probability-related
randomized slow feature

analysis (PRSFA)

Achieving efficient nonlinear
mapping and more sensitive
detection of initial changes.

Simulated continuous
stirred tank reactor

(CSTR) system

Fault monitoring for chemical
processes using neighborhood

embedding discriminative
analysis [40]

Neighborhood embedding
discriminative analysis

(NEDA)

Adaptively provide different
latent feature generation
mechanisms for different

monitoring samples.

TEP

Fault diagnosis of a semi-batch
crystallization process through deep

learning method [41]

Dynamic Time Warping and
Convolutional Neural
Network (DTW-CNN)

Suitable for non-Gaussian,
nonlinear, and unsteady

semi-batch crystallization
processes.

The semi-batch
crystallization process of

acetyl-salicylic acid
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Table 1. Cont.

Research Method Feature Apply

Fault detection and diagnosis to
enhance safety in digitalized process

system [42]

A hybrid model that
combines KPCA and deep

neural networks
(KPCA-DNN)

Improved classification
accuracy and reduced training

time.
TEP

Explainability: Relevance based
dynamic deep learning algorithm for

fault detection and diagnosis in
chemical processes [43]

Dynamic Deep Supervised
Autoencoder neural

networks and Layerwise
Relevance Propagation

(DDSAE-LRP)

Improved the interpretability
of the model. TEP

Transfer learning for process fault
diagnosis: Knowledge transfer from
simulation to physical processes [44]

Convolutional neural
network and transfer
learning (CNN-TL)

Solved the problem of lack of
fault sample data.

Experiments on
simulated CSTR;

plant-wide pulp mill
processes

Fault detection and diagnosis based
on transfer learning for multimode

chemical processes [45]
DNN-TL

Overcame problems with fault
data rarity and lack of labels

in some modes.
TEP

LDA-based deep transfer learning for
fault diagnosis in industrial chemical

processes [46]

Linear discriminant
analysis-based deep transfer

learning (LDA-DTN)

Considering the degree of
influence of feature variables
on the samples of the source

domain and the target
domain.

TEP;
real hydrocracking

process

Deep convolutional neural network
model based chemical process fault

diagnosis [47]

Deep convolutional neural
network (DCNN)

Effectively extract
spatiotemporal features. TEP

Fault detection and diagnosis using
empirical mode decomposition based

principal component analysis [48]

Ensemble empirical mode
decomposition based
principal component

analysis (EEMD-PCA)

Suitable for non-stationary
data, identifying and

diagnosing stochastic faults in
TE processes.

TEP

A deep belief network based fault
diagnosis model for complex

chemical processes [49]

An extensible deep belief
network (DBN)

Extracting fault features from
both spatial and temporal
domains simultaneously.

TEP

Bidirectional Recurrent Neural
Network-Based Chemical Process

Fault Diagnosis [50]

Bidirectional recurrent
neural network (BiRNN)

Using inverse RNN helps to
perceive variable deviations at

all time points.
TEP

Hierarchical Deep LSTM for Fault
Detection and Diagnosis for a

Chemical Process [51]

Deep LSTM Supervised
Autoencoder Neural

Network (Deep LSTM-SAE
NN)

Studied the application of
deep learning in hierarchical

structures.
TEP

Nonlinear Dynamic Process
Monitoring Based on Two-Step
Dynamic Local Kernel Principal

Component Analysis [52]

Two-step dynamic local
kernel principal component

analysis (TSD-LKPCA)

Simultaneous handling of
nonlinear and dynamic

features.

Numerically simulated
dynamic nonlinear

process;
TEP

A Novel Fault Detection Scheme
Based on Mutual k-Nearest Neighbor

Method: Application on the
Industrial Processes with

Outliers [53]

Mutual k-nearest neighbor
(MkNN)

Eliminates the impact of an
outlier on training data. TEP

An Intelligent Fault Diagnosis
Method Using GRU Neural Network
towards Sequential Data in Dynamic

Processes [54]

Gated recurrent units (GRU) Considering the correlation
between sequential data.

TEP;
Para-xylene (PX)
oxidation process
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Table 1. Cont.

Research Method Feature Apply

Fault Detection and Identification of
Blast Furnace Ironmaking Process
Using the Gated Recurrent Unit

Network [55]

GRU Fully capture dynamic
characteristics.

Blast Furnace
Ironmaking Process

Sequential Fault Diagnosis Based on
LSTM Neural Network [56]

Long short-term memory
(LSTM)

Directly classify the raw
process data without specific

feature extraction and
classifier design, and

adaptively learn the dynamic
information in raw data.

TEP

Fault Diagnosis for Distillation
Process Based on CNN–DAE [57]

Convolutional neural
network and deep

auto-encoder (CNN-DAE)

Combining the feature
extraction ability of CNN and

the classification ability of
DAE.

Distillation process of
depropanization

Intelligent Fault Diagnosis for
Chemical Processes Using Deep

Learning Multimodel Fusion [58]

Convolutional neural
network and long

short-term memory network
(CNN-LSTM)

Simultaneously extract
temporal and spatial features

TEP;
An industrial coking

furnace process

Fault Detection and Diagnosis Using
Combined Autoencoder and Long
Short-Term Memory Network [59]

Autoencoder and Long
Short-Term Memory
Network (AE-LSTM)

Combining the strong
low-dimensional nonlinear

representation of AE and the
powerful time series learning

ability of LSTM.

TEP

Identification of abnormal conditions
in high-dimensional chemical process
based on feature selection and deep

learning [60]

Generative adversarial
network, Spearman’s rank
correlation coefficient and

deep belief network
(GAN-SRCC-DBN)

Solving the insufficient
industrial data and missing

data, noise variables,
redundant process variables

and high coupling of data
problem.

TEP

Convolutional Long Short-Term
Memory Autoencoder-Based Feature

Learning for Fault Detection in
Industrial Processes [61]

Convolutional Long
Short-Term Memory

Autoencoder (CLSTM-AE)

Learning effective features
from complex process signals.

TEP;
Simulated CSTR

A novel kernel dynamic inner slow
feature analysis method for dynamic

nonlinear process concurrent
monitoring of operating point

deviations and process dynamics
anomalies [62]

Kernel dynamic inner slow
feature analysis method

Considering the nonlinear
correlation and serial

autocorrelation.

A numerical simulation
case;

An actual cold rolling
mill case

Data-driven process monitoring and
fault analysis of reformer units in

hydrogen plants: Industrial
application and perspectives [63]

Partial least squares
regression and principal

components analysis

Developing a reproducible FD
system

Large-scale industrial
reformer boxes of

hydrogen
manufacturing units

Though summarizing and analyzing existing research, as shown in Table 1, current
FDD research mainly focuses on the following aspects:

(1) Applying deep learning methods

Benefiting from the rapid development of artificial intelligence technology, data-driven
methods based on deep learning have shown unique advantages and potential in feature
identification and classification in the last five years, and are commonly applied in chemical
process FDD research. For example, in autoencoders (AEs), deep convolutional neural
networks (DCNNs), generative adversarial networks (GANs), deep belief networks (DBNs),
long short-term memory (LSTM) [56], gated recurrent units (GRUs) [54], etc. At the same
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time, some hybrid deep learning methods have been proposed to better adapt to the
characteristics of the data and improve the performance of FDD, such as CNN-DAE [57],
CNN-LSTM [58], AE-LSTM [59], GAN-SRCC-DBN [60], and CLSTM-AE [61].

(2) Establishing new FDD models

In the latest research, some new FDD models were proposed, such as transformer
and slow feature analysis (SFA). Transformer is a deep learning model that relies solely on
attention mechanisms [64]. Wei et al. proposed a target transformer-based fault diagnosis
model by introducing target attention in the decoder. Under the TEP, the model exhibited a
better performance than DCNN and attention-LSTM models [30]. Zhou et al. proposed a
vision transformer-based FDD model and verified its performance based on data extracted
from the actual R-22 fluorination production process and the TEP [28]. However, although
the transformer has excellent global feature learning ability, its local feature learning abil-
ity is insufficient, which can be improved in future research. Secondly, as a dimension
reduction method of unsupervised learning, SFA has also received extensive attention from
researchers due to its powerful dynamic information analysis ability and good interpretabil-
ity. SFA is a new method of learning invariant or slowly changing features from vector input
signals [65]. It can not only detect deviations from operating conditions by monitoring
steady-state distribution but also identify dynamic anomalies in the process based on time
distribution. Ma et al. proposed a multi-step dynamic SFA process monitoring method and
validated its effectiveness using the TEP and XJTU-SY bearing data sets [38]. To achieve
efficient nonlinear mapping and a more sensitive detection of initial changes, Deng et al.
proposed a PRSFA method and verified its better performance in fault detection rate, false
alarm rate, and time through the simulation of CSTR systems [39]. Considering nonlinear
correlation and sequence autocorrelation, Xu et al. proposed a nonlinear dynamic KSFA
model [62].

In addition, due to the lack of sufficient types and quantities of fault sample data,
some researchers have proposed the FDD model based on transfer learning. For example,
Li et al. proposed an FDD model based on CNN-TL [44]. This method first obtained a large
number of fault sample data through computer simulation and then used transfer learning
to reduce the mismatch between simulation and physical domain, effectively overcoming
the lack of fault sample data. Wang et al. proposed an LDA-DTN-based fault classification
method by considering the influence of feature variables on distinguishing between source
domain and target domain samples [46].

(3) Interpretable FDD models

The internal structure and algorithm of deep learning models are often highly com-
plex and abstract, making it difficult to provide a reasonable explanation of the results,
which raises skepticism about the results of the model. To overcome this problem, some
researchers also proposed interpretable FDD models. For example, Harinarayan et al.
proposed an XFDDC framework based on XAI technology [31]. Bi et al. proposed an FDD
model based on OSAVA, improving interpretability by allocating greater attention weights
to identify abnormal variables [34].

(4) FDD system development

The development of the system is the foundation for FDD technology to achieve
industrial applications. Some researchers have also begun to pay attention to the devel-
opment of FDD systems. For example, Bian et al. developed an early monitoring system
for iron sulfide oxidation, which can effectively monitor early oxidation during dynamic
exothermic processes [32]. Kumar et al. developed a replicable fault diagnosis system
for large heavy containers in hydrogen production plants, promoting the application of
data-driven FDD methods in the practical industry [63].

Although existing FDD research has made significant progress, analyzing the latest
research results (Table 1) shows that most studies are still only applied to simulation
cases, with only a few studies applied to actual industrial processes. Therefore, industrial
applications remain a major challenge for FDD.
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3.3. Early Prediction and Warning

The early prediction and warning of abnormal situations is also an important compo-
nent of ASM. Although FDD can identify abnormal situations in time, it is still a passive
method for managing abnormal situations [66]. In some cases, when abnormal situations
are detected, there may already be some degree of impact on the chemical process [67].
Therefore, FDD alone is not enough, and the early prediction and warning of abnormal
situations are necessary. Through predicting the future trend of process parameters, abnor-
mal situations can be predicted in advance of FDD, providing sufficient time for operators
to prevent the occurrence of abnormal situations and reducing the probability of abnormal
situations in chemical processes [68–70].

Traditionally, the prediction methods for abnormal situations include model-based
methods, knowledge-based methods, and data-driven methods [71]. Zhong et al. analyzed
the characteristics of various prediction methods in detail and elaborated on suitable
methods for different data features [72]. At present, model-based methods are difficult
in building accurate prediction models due to the high degree of coupling and strong
time-varying nature among variables. In addition, knowledge-based methods are also
difficult to apply to complex chemical processes since they demand extensive professional
expertise and years of accumulated experience to analyze and reason abnormal situations.
Data-driven methods can directly mine the hidden relationship between process parameter
data, and are becoming the most widely used methods. Early prediction based on data-
driven methods is essentially a prediction of multivariate time series data. George Box
and Gwilym Jenkins proposed the Box–Jenkins forecasting model for multivariate time
series data [73]. Then, an autoregressive integral moving average (ARIMA) method was
proposed based on the Box–Jenkins model [74]. However, ARIMA methods mainly focus
on linear chemical process data. To adapt to the nonlinear characteristics of chemical
process data, some more flexible data prediction methods have been proposed, such as
artificial neural network (ANN) [75], support vector machine (SVM) [76], and autoencoder
(AE) [77]. However, these methods cannot effectively extract time series features.

Currently, deep-neural-network-based prediction methods such as LSTM and GRU can
not only effectively extract time series features, but also avoid gradient disappearance and
explosion, and are thus favored by researchers [78–81]. For example, Arunthavanathan et al.
proposed a prediction method integrating CNN and LSTM, and applied TEP data to verify
the effectiveness of the method [82]. Bai et al. established a model that combines dynamic
inner principal component analysis (DiPCA) and LSTM to predict key alarm variables in
chemical processes [83]. Peng et al. established an LSTM-AM model by incorporating an
attention mechanism (AM) into LSTM to predict the future trend of process parameters [84].
Considering the impact of different input features at different times on output, Zhu et al.
proposed a hybrid model that integrates the spatiotemporal attention (STA) mechanism,
CNN, and BiLSTM to predict the trend of key parameter changes [85]. Xiang et al. pro-
posed a method for predicting the mid-term trends of key process parameters using small
datasets [86]. Inspired by the idea of iterative prediction, Bai et al. proposed a multivariate
and multi-step prediction method based on the transformer, and this study is also the
first to apply the transformer model to the prediction of multivariate time series data in
chemical processes [87].

In summary, some achievements have been made in the early prediction and warning
of abnormal situations, but the existing research mainly focuses on short-term prediction.
The smaller the prediction time step of the model, the less emergency response time is
provided for operators. Therefore, improving the prediction time of the model in future
research is of great importance to ASM.

3.4. Root Cause Analysis

After predicting or identifying abnormal situations, timely identifying the root cause of
abnormal situations is the key to ASM. Intelligent root cause analysis can provide effective
decision support for operators, quickly restore chemical processes to a normal state, and
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thus avoid greater losses. Correctly identifying the causal relationship between chemical
process variables is the basis and prerequisite for determining the root cause [88]. Currently,
causal relationship analysis methods include knowledge-based methods and data-driven
methods. Table 2 provides a detailed summary of the causal relationship analysis methods.

Table 2. Comparison of the causal relationship analysis methods.

Method Principle Advantages or Disadvantages References

Knowledge-based method

Signed Directed
Graph (SDG)

According to the SDG model,
the transmission process of

abnormal information is mined
to determine its propagation

path, and then the root cause of
abnormal situations is

determined.

The construction of SDG models
is usually subjective and

time-consuming, which limits
their applicability in large-scale

and complex processes. In
addition, the causal relationship
between variables may undergo

significant changes under
certain process conditions.

[89,90]

HAZOP based
method

Based on the HAZOP report
analysis, identify the causal

relationship between variables
and construct a topological
structure model to trace the

root cause of abnormal
working conditions.

Relying on high-quality
HAZOP analysis reports. [91]

Data-driven method

Bayesian network
(BN) method

Dynamically update the
Bayesian network through

process data, and then
determine the propagation

path and root cause of
abnormal situations based on

the changes in node
probabilities before and after

the update.

A large amount of historical
fault data is required, and the
root cause analysis results for

unknown faults are unreliable.

[92–94]

Granger causality
method

Based on time series data,
examine the causal relationship

between two variables.

It is not possible to consider
causality between all variables

from a global perspective and to
deal with indirect causality.

[95,96]

Deep learning
methods

Though adding attention
mechanisms to evaluate the

contribution of variables to the
results, the causal relationship

between variables can be
determined.

Capable of learning complex
nonlinear relationships and

long-term dependencies.
[97–99]

As can be seen from the analysis in Table 2, the knowledge-based methods mainly in-
clude SDG methods and HAZOP-based methods. However, due to the highly coupled and
strong time-varying characteristics between chemical process variables, it is difficult for the
knowledge-based methods to accurately analyze the causal relationships between variables
under abnormal situations in real time. In recent years, data-driven causal relationship
analysis methods have been the most widely used. For example, Gharahbagheri et al.
proposed a root cause diagnosis method that combines KPCA and BN [93]. Cheng et al.
proposed a root cause diagnosis method that combines time-delayed convergent cross
mapping (TCCM) and BN [94]. Chen et al. proposed a Granger causality analysis method
suitable for nonlinear processes by integrating Gaussian process regression into the multi-
variate Granger causality testing framework [95]. He et al. proposed a root cause diagnosis
method based on the attention mechanism and LSTM, inferring the causal relationship by
adding an attention mechanism between the input layer and the first hidden layer [97].
Bi et al. proposed a causal gating time series converter model by adding a causal gating
structure before the transformer model. The causal gating structure can evaluate the contri-
bution of each variable to the results, thereby determining the causal relationship between
variables [98].

Through reviewing the existing data-driven root cause analysis methods, we found
that the current BN method is mainly combined with other methods for the root cause
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analysis of abnormal situations. Secondly, for the Granger causality method, researchers
are devoted to methods that apply to nonlinear processes and multivariate variables.
Surprisingly, deep neural networks such as LSTM, the temporal convolutional network
(TCN), the transformer, and others have begun to be applied to the root cause analysis of
abnormal situations, providing the possibility for real-time online analysis of root causes
of ASM.

3.5. Dynamic Risk Assessment

When abnormal situations are detected, evaluating the risk of abnormal situations
in real-time is also an important step in ASM. The risk assessment of abnormal situations
can provide auxiliary decision-making support for managers to prevent accidents from
occurring. Since the risk of abnormal situations constantly changes with the deviation of
process parameters, traditional static risk assessment methods cannot effectively evaluate
the dynamic risk of abnormal situations. The dynamic risk assessment (DRA) method is
regarded as an important tool for assessing the risk of abnormal situations in chemical
processes [100]. Some researchers established dynamic BN by introducing time variables to
evaluate the risks of dynamic systems [101,102]. Some other researchers have proposed
DRA methods based on Petri nets, representing the dynamic behavior of complex systems
by introducing time constraints in transitions. However, both the DBN and DRA methods
based on Petri nets can only update the probability of failure (POF) and cannot update the
consequence of failure (COF).

To evaluate the system loss caused by process deviation, Hashemi et al. proposed a
real-time consequence assessment method based on loss function (LF) [103]. Furthermore,
by introducing a demand rate adjustment coefficient to consider the impact of deviation
on the probability of system failure, a DRA method for chemical processes was proposed,
which can update the dynamic changes of risk in real time according to the deviation of
process parameters [104]. However, system losses may be related to multiple variables. For
multivariable cases, Hashemi et al. proposed a multivariate LF based on the copula func-
tion [105]. Wang et al. further proposed a dynamic quantitative operational risk assessment
method for chemical processes by introducing the residual time to assess the impact of mul-
tiple key variables on loss probability, and then combining the multivariate LF to assess the
consequences of accidents [106]. To evaluate the dynamic economic loss under abnormal
situations, Zadakbar et al. proposed a dynamic economic consequence assessment method
based on the overall LF [107]. Combining the Bayesian tree augmented naïve Bayes (TAN)
algorithm to predict the time-dependent probability of process deviation, Adedgba et al.
further proposed a dynamic economic risk assessment method [108]. Recently, Amin et al.
proposed a dynamic operational risk assessment method integrating ANN, BN, and LF to
assess the impact of process deviation on the process system for nonlinear, non-Gaussian,
and multi-mode process operations [109]. Compared with existing methods, this method
has been proven to be the most comprehensive solution.

In the latest research progress, some researchers have conducted research on risk-
based abnormal situations warning and identification by moving forward with the DRA.
For example, Bhadriraju et al. combined DRA with operable adaptive sparse identification
of systems (OASIS) to establish an abnormal situation warning framework, which first uses
OASIS to predict the future state of the chemical process and then employs DRA to evaluate
the risk of the future state, thereby achieving the early warning of abnormal situations [66].

In this section, recent research progress in various aspects of ASM are reviewed,
including FDD, early prediction and warning, root cause analysis, and dynamic risk
assessment. It can be found that the early prediction and warning of abnormal situations
has attracted more and more researchers’ attention, because it can provide operators with
sufficient time to prevent the occurrence of abnormal situations, which is more meaningful
for ASM. Secondly, data-driven methods are widely used in all aspects of ASM. However,
most of the methods are only applied to simulated cases and are not applied in actual
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chemical processes. Therefore, data-driven methods should use more operational data
from actual chemical processes in future research.

4. Future Prospects for ASM

Although existing research has achieved some results, it is still mainly in the theoretical
research stage, and most of the research results have not yet been promoted and applied in
actual chemical plants. In most chemical plants, the application of artificial intelligence and
big data technology is less prevalent and ASM still relies heavily on manual experience.
For example, the operator subjectively judges whether an abnormal situation occurs, and
the root cause of the abnormal situation. Therefore, the intelligence level of ASM is still
relatively low. Based on the above research progress review, this paper analyzes the
challenges and future directions for the ASM in chemical processes from the perspective of
achieving intelligence and industrial applications.

4.1. Improving the Adaptability and Generalization of Models

According to the review of research progress on ASM, data-driven methods are the
most popular in FDD, early prediction and warning, and root cause analysis research.
However, this method heavily relies on the quantity and quality of data [110]. Due to
the lack of sufficient types and quantities of abnormal situation sample data, as well as
significant differences between industrial datasets and simulated datasets, models with
good performance in research often cannot be directly applied to industrial processes,
resulting in poor self-adaptability and generalization. Therefore, in future research, the
generalization and adaptability of models should be improved, which can be considered
from the following aspects: firstly, future research should focus more on using real datasets
collected from factories to build models. Secondly, in response to the problem of the poor
quality of real datasets, suitable methods can be selected to denoise the original dataset,
such as wavelet threshold, ensemble empirical mode decomposition, etc. Through data
noise reduction, the model can better understand the data, improving its generalization
and adaptability. In addition, for the lack of sample data of abnormal situations, although
some researchers have used transfer learning to solve the problem of lack of sample data,
successful knowledge transfer still requires more sample data of abnormal situations in the
actual process. Therefore, data sharing between multiple factories and similar processes is
necessary in the future.

4.2. Establishing the Model Suitable for Long-Term Prediction

Early prediction can provide emergency response time for operators, and the longer the
prediction time step, the more meaningful it is for ASM. However, current research mainly
focuses on short-term predictions, which are too short to meet the needs of operators’ emergency
response. Therefore, more attention should be paid to the study of long-term prediction
models, such as iterative prediction, in future research.

4.3. Online Root Causes Diagnosis of Abnormal Situations Based on Real-Time Data

The current root cause diagnosis methods are mainly based on historical process data
to extract causal relationships between variables. However, due to the different control
strategies and the response of the control system, the causal relationship between variables
may undergo significant changes, resulting in an inconsistency between the root cause
diagnosis results of abnormal situations and the actual situation. Therefore, the causal
relationship network, established based on historical data, is still insufficient to meet the
real-time online root causes diagnosis. Future research should consider how to effectively
use real-time data to extract the causal relationship between variables, thereby realizing
online root causes diagnosis of abnormal situations.
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4.4. Establishing the Hybrid Method Combining Process Knowledge and Data-Driven Models

Data-driven models are often referred to as “black box” models, which learn patterns
and regularities in the data set to predict or classify new data. However, the internal
structure and algorithms of models are often highly complex and abstract, making it
difficult to provide a reasonable explanation of the results, which reduces the credibility of
the model. In contrast, methods based on process knowledge can provide interpretable
results. Therefore, in future research, more attention should be paid to the integration of
data-driven methods and process-knowledge-based methods. A data-driven model guided
by process knowledge can improve interpretability and generalization, and better leverage
the advantages of data-driven models in data mining, making it more suitable for complex
chemical processes.

4.5. ASM in Chemical Processes Based on Digital Twins

With the advent of the fourth industrial revolution (Industry 4.0), modern factories
are gradually transforming into intelligent factories [111,112]. As the key technology and
important guarantee of intelligent factory construction, digital twin technology can digitally
create virtual entities of physical objects, and then use historical data, real-time data, and
algorithm models to simulate, verify, predict, and control the life cycle process of physical
entities [113–115]. At present, digital twin technology has been widely applied in fields
such as aviation and aerospace [116], electricity [117], ships [118], urban management [119],
construction [120], manufacturing [121], oil and gas [122], etc. Therefore, in the wave of
Industry 4.0, ASM in chemical processes based on digital twins is also an important research
direction for intelligence and industrial applications. Our research team has also been
committed to research in this direction, and based on the theory of digital twin technology
and the demand for ASM, this article proposes a digital twin system framework for ASM
in chemical processes, as shown in Figure 2.

The digital twin system framework for ASM in the chemical process proposed in this
paper consists of five layers: physical entity layer, virtual model layer, data interaction
layer, twin data layer, and decision service layer. The functions of each layer and their
relationship with each other are as follows:

(1) Physical entity layer

The physical entity layer refers to the actual running chemical plant, which is the
basis of the whole digital twin system. It provides basic information for virtual model
layer modelling, and is also the implementation goal of the entire digital twin system.
The ultimate goal of the digital twin system is to predict, monitor, and control abnormal
situations during the operation of physical chemical plants, thus ensuring the safe operation
of chemical plants. In this layer, real-time process data is collected and transmitted to the
data interaction layer. At present, chemical plants are equipped with distributed control
systems (DCSs), safety instrument systems (SISs), manufacturing execution systems (MESs),
and other automatic control systems, which can collect the process parameter data of
chemical plants in real time and solve the physical entity data requirements of the digital
twin system.

(2) Virtual model layer

The virtual model layer refers to the establishment of a corresponding digital simula-
tion model based on a physical chemical plant. It is a digital mirror of a physical chemical
plant and an important component of achieving the intelligent control of abnormal sit-
uations in chemical processes. This model is synchronized with the physical chemical
plant and updated synchronously according to the operational changes of the physical
chemical plant. The virtual model layer also transmits real-time simulation data to the data
interaction layer by establishing a data interface for the digital simulation model. With the
advancement of computer software technology, chemical process simulation software has
also developed rapidly, and many powerful simulation software have emerged, such as
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Aspen Plus, ProMax, Pro II, UniSim, etc., providing strong guarantees for the construction
of digital simulation models in the virtual model layer.
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(3) Data interaction layer

The data interaction layer realizes the connection and mapping between the physical
entity layer and the virtual model layer. In this layer, real-time interactive perception is
achieved between the actual collected data and the simulated data, and the interaction data
is further transmitted to the twin data layer. The transfer learning algorithm can map the
features in the field of physical entity data and simulation data to make them closer in the
feature space, realizing the interactive perception of data.

(4) Twin data layer

The twin data layer is the data center of the entire system. The stored data consists
of historical and real-time data generated by physical chemical plants, digital simulation
models, and interactions with each other. With the accumulation of historical data, the deep
learning model is continuously trained and optimized, and the performance of the model
is continuously enhanced. The twin data layer also preprocesses data, through methods
such as data denoising and feature extraction, to improve data quality and then inputs the
preprocessed data into the deep learning model.

(5) Decision service layer

The decision service layer is equivalent to the “Nerve Center” of the whole system,
and the deep learning algorithm model is embedded in this layer. The intelligent control of
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abnormal situations in chemical processes is achieved through deep learning algorithm
models. The specific functions include the early prediction and warning of abnormal
situations, fault detection and diagnosis, root cause diagnosis, and dynamic risk assessment,
providing intelligent decision support for operators. According to the research progress
review, with the rapid progress of artificial intelligence technology, a large number of deep
learning models have been constructed, demonstrating good performance in classification
and prediction, and providing important technical support for the intelligent decision-
making of the digital twin system.

This section analyzes the future research direction of ASM from the perspective of
realizing intelligence and industrial applications, including improving the adaptability
and generalization of models, establishing the model suitable for long-term prediction, the
online root causes diagnosis of abnormal situations based on real-time data, establishing
the hybrid method combining process knowledge and data-driven, and ASM in chemical
processes based on digital twins. In addition, a digital twin system framework for ASM
in the chemical process is proposed. As the analysis shows, to realize industrial applica-
tions and improve the intelligence of ASM, researchers should pay more attention to the
use of real data sets from chemical plants and establish adaptive methods based on the
characteristics of real data sets.

5. Conclusions

In recent years, researchers have conducted extensive research on ASM in chemical
processes and achieved a large number of research results. However, ASM still faces many
difficulties and challenges in intelligence and practical industrial applications. On the basis
of summarizing the concept of ASM, this article reviews the latest research progress in
ASM in chemical processes from four aspects: FDD, early prediction and warning, root
cause diagnosis, and DRA. Benefiting from the rapid progress of artificial intelligence and
big data technology, data-driven methods, especially deep learning methods, are playing a
very important role in the fields of early prediction, FDD, and root cause analysis. However,
most of the data-driven methods are still only applied in simulation cases and not in
real industrial processes. To improve the intelligence level of ASM in actual chemical
plants, the future research direction of ASM is proposed from the perspective of industrial
applications. In future research, researchers should pay more attention to improving the
adaptability and generalization of data-driven models, to the development of long-term
prediction models, to root cause analysis based on real-time data, to the development of
data-driven models incorporating process knowledge, and to the development of digital
twin systems, which provide a cutting-edge reference for subsequent ASM research. Finally,
this paper also introduces the framework of the digital twin system for ASM in the chemical
process proposed by the author, including a physical entity layer, virtual model layer, data
interaction layer, twin data layer, and decision service layer, which lays the theoretical and
technical foundation for the landing application of the digital twin system in the field of
chemical process ASM. With the rapid progress of computers, artificial intelligence and
big data technology, and the unremitting efforts of researchers, we firmly believe that
intelligent ASM in real factory chemical processes will be achieved in the near future.
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Abbreviations

CCPS Center for Chemical Process Safety
AIChE American Institute of Chemical Engineers
ASM Abnormal situation management
PSM Process safety management
NIST National Institute of Standards and Technology
AEGIS Abnormal Events Guidance and Information Systems
CHEM Advanced Decision Support System for Petrochemical Manufacturing Processes
FDD Fault detection and diagnosis
RA Risk assessment
DCS Distributed control system
FSBiGAN Fault-sensitive bidirectional generative adversarial network
TEP Tennessee Eastman Process
CSTR Continuous stirred tank reactor
IPO-ViT Industrial process optimization vision transformer
DSGNN Dynamic-scale graph neural network
XFDDC Explainable fault detection diagnosis and correction
XAI Explainable artificial intelligence
AKPCA Adaptive kernel principal component analysis
GRA Grey relational analysis
OSAVA Orthogonal self-attentive variational autoencoder
PTCN Process topology convolutional network
MS-DSFA Multistep dynamic slow feature analysis
PRSFA Probability-related randomized slow feature analysis
NEDA Neighborhood embedding discriminative analysis
DTW Dynamic time warping
CNN Convolutional neural network
PCA Principal component analysis
DNN Deep neural network
DDSAE Dynamic deep supervised autoencoder neural networks
LRP Layer-wise relevance propagation
TL Transfer learning
LDA Linear discriminant analysis
DTN Deep transfer network
EEMD Ensemble empirical mode decomposition
BiRNN Bidirectional recurrent neural network
TSD-LKPCA Two-step dynamic local kernel principal component analysis
MkNN Mutual k-nearest neighbor
AE Autoencoder
DCNN Deep convolutional neural networks
GAN Generative adversarial networks
DBN Deep belief network
LSTM Long short-term memory
GRU Gated recurrent units
ANN Artificial neural network
DiPCA Dynamic inner principal component analysis
AM Attention mechanism
STA Spatiotemporal attention
SDG Signed directed graph
BN Bayesian network
TCCM Time-delayed convergent cross mapping
TCN Temporal convolutional network
DRA Dynamic risk assessment
POF Probability of failure
COF Consequence of failure
LF Loss function
TAN Tree augmented naïve Bayes
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OASIS Operable adaptive sparse identification of systems
SIS Safety instrument system
MES Manufacturing execution system
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