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Abstract: Range anxiety seriously restricts the development of electric vehicles (EVs). To address
the above issue, a hybrid battery swapping system (HBSS) is developed in this paper. In the system,
EVs can swap their battery at battery swapping stations or by the roadside via battery swapping
vans. The proposed scheduling strategy aims to achieve the best service quality for the HBSS by
controlling the mobile swapping service fee. In the model, the uncertainty of EV selection is managed
by leveraging the Sigmoid function. Based on proving the uniqueness of the solution, the particle
swarm optimization algorithm is used to solve the problem. Simulations validate the effectiveness
of the proposed strategy in alleviating range anxiety. Moreover, the impacts of maximum service
capacity and the operating rule have been analyzed.
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1. Introduction

Due to increasing energy demand and environmental pollution, new energy sources
have been sought all over the world [1]. In recent years, electric vehicles (EVs) have played
an essential role in the transformation of energy structures [2]. While new technologies
are constantly being developed, the market share of EVs have increased significantly. The
energy density of lithium-ion batteries increased more than eight times between 2008 and
2020 [3]. As a result, the range per charge of EVs has greatly improved. However, the
power replenishment of EVs is not yet as convenient as fueling cars. The problem of range
anxiety restricts EV development to a certain extent [4,5].

Currently, the main methods of EV refueling include a plug-in charging mode and a
battery swapping mode (BSM). For the former, the necessary AC charging piles are cheap to
install but have a charging rate. In contrast, DC chargers can provide fast charging services
as a result of their high power. However, DC charging requires specialized supporting
infrastructure and has strict requirements for the installation environment [6]. Moreover,
the high charging power has a severe impact on the grid [7,8]. As a result, the BSM has
received widespread attention from both industry and academia. In the battery swapping
station (BSS), the depleted battery (DB) carried by an EV can be replaced by a fully charged
battery (FB) in a matter of minutes [9]. Under the BSM model, the ownership of batteries is
separated from ownership of the EV [10]. As a result, EV owners do not have to endure
battery degradation costs. On the other hand, the charging time of batteries can be arranged
freely by the battery charging station (BCS); this method is more conducive to reducing
charging costs [11].

At present, most related studies assume that the EV swaps its battery in the BSS [12,13].
As with plug-in charging, EVs must drive to a designated location to receive services.
However, the battery capacity is strongly affected by temperature and lifespan. Drivers
often worry about the EV’s remaining power and the reachability of the BSS [14,15]. As a
result, range anxiety seriously affects travel plans and driving experience. On the other
hand, the original driving route of EVs may be altered for battery swapping due to the
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immovable characteristic of the BSS, especially in areas with fewer stations. This will lead
to an increase in the travel cost [16]. Currently, no mature technology can fundamentally
solve these obstacles, which constrain EV development.

In recent years, researchers have made many attempts to address the above issues.
Ferreira et al. [17] proposed the use of the V2Anything application, based on Information
and Communication Technology (ICT), for a fully electric vehicle (FEV) to provide informa-
tion and communication to the driver in order to alleviate range anxiety. Sarrafan et al. [18]
considered the factors that affect the driving range of EV, including temperature, weather,
and vehicle weight. Based on this, a model that can accurately reflect the State of Charge
(SOC) and a charging recommendation system was built. Xu et al. [19] focused on the siting
of charging stations. The team considered the path deviation of EVs caused by charging
and sought the optimal location of charging station by minimizing the accumulated range
anxiety. The above studies are based on current charging or swapping modes. However,
once the EV’s power runs out, none of these approaches will help.

Therefore, a novel mobile battery swapping (MS) mode was born, which changed the
fixed way of replenishing electricity into a mobile one. Utilizing a specific vehicle that can
carry charging or swapping facilities, the EVs can be provided with a battery replenishing
service at any location. Drivers do not have to change their routes and no longer need
to worry about running out of power anywhere. In the US, Lightning Mobile offers a
mobile charging service that can provide 80 kW of charging power to EVs and buses at
any location. Spark Charge provides roadside charging assistance for Tesla and Nissan
Leaf models. In China, automakers have established themselves in the MS field. Since 2018,
several patents for MS technology have been applied for by EV manufacturers, including
BAIC and NIO. The proposed battery swapping van (BSV) consists of three main parts: the
flatbed vehicle carrying the FB, the lifting mechanism, and the power swapping platform.

In academia, the MS mode has also attracted the interest of researchers. Huang
et al. [20] designed a mobile plug-in charger (MP) and MS system based on the NJN service
strategy. In the paper, the Ford Transit was used as a vehicle to carry the battery, and the
simulation was carried out on the Singapore road network. Raeesi et al. [16] considered
the logistic requirements of electric commercial vehicles (ECVs) under EU standards and
used BSVs to swap their DBs along the route taken by ECVs. Shao et al. [21] formulated a
mobile battery swapping architecture based on a specialized van and designed a scheduling
strategy to minimize the waiting time based on priority and satisfaction. Zhou et al. [22]
put forward an optimization model for the scheduling of mobile swapping vehicles and
used the genetic algorithm as a solution. However, the above literature puts all the focus
onto the MS mode, ignoring the fact that the stationary battery swapping (SS) mode (i.e.,
EV swaps batteries at BSS) will be dominant in the future. The MS mode is a necessary
complement to the SS mode, and both are bound to operate within an overall framework.
EVs will make free choices between the two coexisting modes. The coupling mechanism
and joint scheduling strategy of the two modes are less studied.

Based on the above, a hybrid battery swapping system (HBSS) model including the
MS mode and the SS mode is proposed in this paper. At the same time, the scheduling of
EVs participating in the battery swapping service is optimized. The contributions of this
paper are as follows:

• Based on ICT technology, a framework of the hybrid battery swapping system (HBSS)
is proposed. The cooperative operation of the MS and SS modes can significantly
alleviate range anxiety;

• The swapping cost is introduced for EVs participating in the HBSS model. Based on
this, a Sigmoid function is used to express the uncertainty of EVs’ selections;

• An optimal scheduling strategy, based on the swapping service fee, is established
to achieve the highest operational efficiency of HBSS. The existence of the unique
global optimal solution and the non-existence of the local optimal solution are proved
mathematically.
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2. Hybrid Battery Swapping System (HBSS) Model

The necessity of the HBSS model is the increasing demand for EV battery charge
replenishment and the rapid development of ICT. By combining the MS mode with the
current method that occurs inside BSS, EVs can achieve uninterrupted power consump-
tion in any situation and significantly alleviate the problem of range anxiety. The rapid
development of ICT technology has made it possible for vehicles and stations to interact
in real-time. As such, the scheduling center can learn the real-time swapping demand
generated in the nearby area, while information such as the service fee generated by its
strategy can be broadcast to each vehicle simultaneously. Thus, EVs can be guided to swap
their batteries [23,24].

The HBSS model consists of three parts: A BSV for MS services, a BSS for SS services,
and the swapping scheduling center (SSC) for scheduling. The overall structure of the
model is shown in Figure 1.
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In the HBSS model, EVs have two options when they generates a swapping demand.
Option one is to swap the battery through the MS service provided by the BSV. Once
confirmed, the EV continues to drive along its route to a designated location. At the same
time, a BSV carrying a FB will depart from a BSS to meet the EV. The BSV swaps the battery
and then returns to the BSS to replace the DB with a FB for the following MS service. In
option two, the EV can drive to a BSS for in-station battery swapping, i.e., the SS mode.
Similar to the gas station model, the service area of the HBSS is radiated outward from the
BSS. The SS mode may increase the length of the shortest route to the destination, resulting
in additional power consumption and time costs. The MS mode saves these costs for EVs,
but the battery swapping enterprise must pay vehicle and labor expenses to provide the
service. Therefore, drivers need to pay more for the swapping service.

An EV may run out of power, be too far away from the BSS, or be unable to change its
planned route. In these cases, MS service is necessary. On the other hand, a BSS may be
located along or close to the planned route. EV drivers may also be unwilling to pay the
additional service fee. Under these circumstances, the EV driver is likely to select the SS
mode. Therefore, the service fee is a factor that can influence EV selection.

ICT technology allows a tremendous amount of information to be shared between
vehicles or between the vehicle and the station. In the HBSS model, an EV that generates
battery swapping demand at any moment sends a request online. As the brain of the HBSS,
the SSC integrates all request information and ensures optimal scheduling. Except in some
particular cases (i.e., rule 1 and 2 in Section 4), EVs are, in principle, free to make their
selections between the two swapping modes. However, there are significant differences
in the willingness of EV drivers to select according to their situations. Therefore, the
uncertainty of driver choices must be considered in the optimal scheduling strategy. The
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SSC determines the optimal service fees through optimization. The service fee generated
in real-time is broadcasted to each EV. EV drivers respond to the optimal scheduling of
the SSC by choosing between the two modes based on the fee and their own will. The
response results are transmitted back to the SSC simultaneously. For the EVs that choose
the MS mode, the SSC arranges the corresponding BSVs to provide MS services within the
maximum service capacity.

Battery swapping demand is concentrated in some specific periods of the day. During
peak hours, the maximum service capacity is often unable to meet the demand in real-time.
In this paper, this means that the number of EVs selecting the MS or SS modes in a given
time slot exceeds the number of swapping facilities that BSVs or the BSS can provide. EVs
that exceed the maximum service capacity will be queued. Queuing will significantly
increase the time cost for drivers and reduce service quality.

The following assumptions are made in this paper to establish the HBSS model:

1. The whole scheduling horizon is divided into several time slots for analysis. This
paper takes the scheduling horizon as one day and the time slot as half an hour;

2. Without queuing, the battery swapping process is completed in one time slot.

3. Generation of Swapping Demand Scenario

The traffic network in a city can be abstractly represented in graph theory as G(N, E),
where N represents the nodes in the network and E represents the roads connecting the
nodes. There are usually multiple routes available between the origin and destination (OD)
of the EV. The shortest route is the one that takes the least time, regardless of traffic jams
and other abnormal situations. We use uniform distribution to generate the origins NO

i
and destinations ND

i of EVs that demand battery swapping. The problem of finding the
optimal route for the EV i ∈ It between two points can be transformed into the shortest
path problem. In this paper, the shortest path is calculated by the Dijkstra algorithm and is
denoted as dO,D

i . If the EV does not generate a battery swapping demand, its travel distance
will be dO,D

i . In the MS mode, the BSV will drive along the EV’s route to provide the
swapping service. Consequently, the MS service does not change the EV’s travel distance,
as given by:

dMS
i = dO,D

i (1)

However, if the SS service is selected, the EV will travel from the origin to the BSS
and then to the destination. Therefore, the shortest distance in the SS mode consists of two
parts:

dSS
i = dO,BSS

i + dBSS,D
i (2)

Since dO,D
i is already the shortest distance between OD, dSS

i ≥ dMS
i always holds. The

two distances can be equal because some of the shortest paths between the ODs happen to
pass through the node where the BSS is located. Choosing the SS mode will have a high
probability of causing an increase in the travel distance. The detour will cause additional
time cost and power consumption, which will affect EV driver’s choice of swapping mode.
The detour distance is calculated by:

dDET
i = dSS

i − dMS
i (3)

Overall, the battery swapping demand of the EV fleet shows regularities. These have
already been studied in other articles, including [25]. In this paper, the method in [26] is
used to describe the time distribution of the mean battery swapping demand in a day. The
random fluctuation of battery swapping demand obeys the Poisson distribution [27], as
given by:

P
(

Nde
t = n

)
=

(λt)
n exp(−λt)

n!
(4)



Processes 2023, 11, 1604 5 of 19

where P(·) is the probability, Nde
t is the number of EVs that generate swapping demand in

a time slot, and λt is the mean value of swapping demand. Based on the above method, the
quantity of battery swapping demand for each time slot in the scenario can be obtained.

The SOCs of DBs are generally maintained at a low level and vary from one another.
This variability affects the drivers’ choices of swapping mode in the HBSS model. When
the remaining energy is insufficient to reach the BSS, the EV can only choose the MS mode.
The SOC of each vehicle obeys a lognormal distribution [28]

P(SOCi = ξ) =
1

ξσ
√

2π
exp

[
− (ln ξ − µ)2

2σ2

]
(5)

where SOCi is the state of charge when EV i generates swapping demand; µ and σ are the
mean value and standard deviation, respectively.

Using the above methods, a battery swapping demand scenario within a scheduling
horizon can be generated.

4. HBSS Optimal Scheduling Strategy

The two modes in the HBSS system are not isolated from one another but have
a strong coupling. To generate the optimal scheduling strategy, we first establish the
battery swapping process with the queuing model. Then, the uncertainty of EV selection
is expressed by the swapping cost and Sigmoid function. Based on this, the service fee is
optimized to improve the efficiency of the system.

4.1. Battery Swapping Process

Figure 2 shows the battery swapping process constructed in this paper. An EV with
battery swapping demand will make either a passive selection or an active selection. The
swapping modes are divided into MS and SS. In a single time slot, the service objects of
each mode include not only EVs that choose this mode actively or passively but also EVs
queueing for this service in the previous time slot.
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Figure 2. Schematic diagram of Battery swapping process.

Passive selection means that the EV must submit to the arrangement of the SSC and
cannot make an autonomous choice between the two modes under some circumstances. In
order to reduce the range anxiety and maximize the usage of limited BSV resources, EVs
that meet the following rules will make passive selections:

• Rule 1: If the remaining battery power is not enough to reach the BSS when the EV
generates the swapping demand, it will necessarily select the MS service. It ensures
that EVs will not stop driving when the battery runs out, which is vital for alleviating
range anxiety.
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The remaining power when the EV reaches the BSS can be calculated by:

EREM
i = SOCiEbat −

dO,BSS
i S
100

(6)

where Ebat is the battery capacity and S is the power consumption per 100 km. If EREM
i is

negative, the EV must select the MS mode.

• Rule 2: Based on a positive EREM
i in rule 1, if the detour distance is less than a certain

threshold d
DET
i , the SS mode must be selected. This rule facilitates serving all BSVs to

EVs with higher service values. Considering the extra service fee charged by the MS
service, an EV with a small dDET

i will prefer the SS mode.

EVs that do not meet the above rules can make active selections. However, active
selections without SSC scheduling control are disordered, which may cause serious queuing
and reduce service quality. In the model of the swapping process, considering the number
of BSVs and swapping equipment in the BSS, there are upper limits of service capacity for
both swapping modes. When the number of EVs in a certain mode exceeds the upper limit,
those that cannot be served will queue up and delay to the next time slot. Queuing will
cause significant time waste for drivers; however, a reasonable scheduling approach can
reduce the severity of queuing.

The queuing model is formulated as:

N̂MS
t = NMS

t + N′MS
t + NQ,MS

t−1 (7)

N̂SS
t = NSS

t + N′SS
t + NQ,SS

t−1 (8)

NDE
t = NMS

t + N′MS
t + NSS

t + N′SS
t (9)

NQ,MS
t = max

(
N̂MS

t − Nmax,MS, 0
)

(10)

NQ,SS
t = max

(
N̂SS

t − Nmax,SS, 0
)

(11)

where (7) and (8) represent that the total EVs selecting a particular mode (N̂MS
t for MS

mode and N̂SS
t for SS mode) include three components: the EVs selecting actively (NMS

t or
NSS

t ) and passively (N′MS
t or N′SS

t ), as well as the queues generated in the previous time
slot (NQ,MS

t−1 or NQ,SS
t−1 ). EVs that have just requested swapping service will choose between

the two service modes, as expressed in (9). Equations (10) and (11) represent that the queue
length depends on the number of EVs that exceeds the maximum service capacity (Nmax,MS

or Nmax,SS).

4.2. Optimal Scheduling Strategy Considering Uncertainty

Based on the above model, queue length reduction is the key to improve the opera-
tional efficiency of the HBSS model. As a kind of commercial behavior, battery swapping
is bound to be influenced by price. The ability of price mechanisms to influence drivers’
charging behavior has been noted [29]. This paper proposes a method to characterize
uncertainty based on the swapping cost and the Sigmoid function, and a price control
strategy is formulated to optimize the active swapping selections of EVs.

Battery swapping may cause EV drivers to deviate from the shortest path between the
origin and destination. With detours of different distances, corresponding power losses
and time costs will occur. When a swapping demand is generated, the driver will have a
psychological expectation of the service fee according to the personal impact of the detour
distance. Due to the progress of ICT technology, the swapping cost caused by the detour



Processes 2023, 11, 1604 7 of 19

(including power loss and time cost) can be quantified in real-time, and the data will be
sent to the EV and the SSC simultaneously. The SSC integrates the information of each
vehicle in order to determine the service fee and broadcasts it to the EVs. The EV will
automatically calculate the premium of the service fee versus the swapping cost, allowing
the driver to decide the best course of action.

Current business models for battery swapping services (e.g., the swapping price stan-
dard implemented by NIO from 2020) often divide the swapping price into two components:
the DB charging cost and the service fee. The DB charging cost is inversely proportional to
the remaining SOC of the battery. This part of the cost is generated by driving behavior
and cannot be changed. Therefore, we use the service fee to formulate the strategy. The
service fee must be generated by integrating all the swapping costs of EVs in a time slot.
The swapping cost is defined as the sum of the additional DB charging cost and the time
cost due to the detour. EVs selecting the SS mode will have the swapping cost while those
selecting the MS mode will not. When the swapping cost is higher than the service fee
broadcasted by the SSC, more drivers will inevitably select the MS service and vice versa.
The swapping cost is calculated by:

Ci = (α + β)dDET
i (12)

where α is the power consumption cost per km, which is taken as 0.05 USD/km in this
paper, based on the data of the 2021 Nissan Leaf. β is the time cost, which can be calculated
as 0.28 USD/km for a speed of 20 km/h, according to [30].

Of course, drivers’ selections cannot be fully controlled by the service fee and are
necessarily stochastic to some extent. Ge et al. [31] demonstrated that the Sigmoid function
is suitable for characterizing the mapping relationship between the cost or benefit and
the EV driver’s willingness to respond. Inspired by their research, this paper uses the
Sigmoid function to express the selection probability of EV drivers. The Sigmoid function
has an upper and lower bound that converges to one. It is monotonically increasing and
symmetric around the center. These characteristics make it suitable for the model of EV
driver selection. The function has a center point representing the EV owner’s psychological
expectation. For this paper, this is the swapping cost Ci (i ∈ It). When the service fee
lt at time slot t is equal to the swapping cost, the EV cannot receive more revenue by
choosing either method, so the selection probability is 50% for both. With the increase
of lt, it surpasses the swapping cost more and more. As a result, the benefit of selecting
the SS mode increases significantly. When the difference between lt and Ci is significant
enough, the probability of selecting the SS mode will be close to one, and will remain
basically unchangeable as lt continues to rise. The principle is the same when lt is lower
than the swapping cost. Therefore, the Sigmoid function value can appropriately express
the selection probability. The Sigmoid function is denoted as:

PSS
i (lt) =

1
1 + e−γ(lt−Ci)

(13)

where PSS
i (lt) is the selection probability of the SS mode when the service fee is lt, γ is

the built-in scale parameter of the Sigmoid function which determines the steepness of
the function, and Ci is the swapping cost of EV i, used as the center point of the function.
Figure 3 shows the variation of PSS

i (lt) for three EVs with different Ci and γ values. As
can be seen from Figure 3a, different Ci will produce different PSS

i (lt), even with the same
service fee. Figure 3b indicates that, as the value of γ increases, the sensitivity of EV to lt
will rise.
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Based on the Sigmoid function, the expected value of EV drivers selecting the SS and
MS mode in a specific time slot can be calculated by (14) and (15), respectively:

NSS
t = ∑

i∈It

PSS
i (lt) (14)

NMS
t = ∑

i∈Ωt

[
1− PSS

i (lt)
]

(15)

An unlimited service fee is not practical, so the range constraints of lt are expressed
by:

lmin
t ≤ lt ≤ lmax

t (16)

lmin
t = max

[
(α + β)

(
min
∀i∈It

dDET
i − ϕ

)
, l

min
]

(17)

lmax
t = (α + β)

(
max
∀i∈It

dDET
i + ψ

)
(18)

where ϕ and ψ are distance parameters set by the operator, which are used to calculate
the upper and lower limits of the service fee, respectively. Recall that α and β are the
coefficients of energy consumption cost and time cost per kilometer. As in Equation (12),
the coefficients and distance determine the service fee. For fairness, the service fee is unified
for all EVs generating swapping demand at the same time. The lower limit of distance
can be obtained by subtracting ϕ from the shortest detour distance among the EVs; after
this step, the lower limit of service fee can be calculated. Conversely, the upper limit can
be obtained by adding ψ to the longest detour distance. Note that if the shortest detour
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distance is too small, the service fee may be too low or even negative. To prevent this from

happening, the service fee must be higher than a given lower bound l
min

.
Equations (7)–(11) show that N̂MS

t and N̂SS
t are directly related to NQ,MS

t and NQ,SS
t in

adjacent time slots. Since the maximum service capacity Nmax,MS and Nmax,SS may present
various proportional relationships, the impact on the next time slot may be different even if
the total number of queues is the same. For example, assume Nmax,MS and Nmax,SS are two
and four, respectively. The queue length of the MS and SS in the first time slot is one and
two, respectively. In this case, both modes have half of the service capacity in the second
time slot. However, if the queue length of the two modes is two and one, although the
total number is the same, the service capacity in the second time slot will be completely
different. The MS mode cannot provide any additional service except to queuing EVs
and will continue queuing in the second time slot. Therefore, it is crucial for real-time
optimization to make the quantity of EVs selecting both modes fit the ratio of the maximum
service capacities as closely as possible. This ratio is defined by:

k =
Nmax,MS

Nmax,SS (19)

The service fee lt is the decision variable in the optimization. This strategy aims to
minimize the queue length by calculating the optimal service fee. Taking the objective
function as minimizing the deviation degree from k, the optimal scheduling strategy
established is formulated as:

Obj : min
lt

∣∣∣N̂MS
t − kN̂SS

t

∣∣∣ (20)

s.t. (1)–(19)

Note that the sigmoid function is non-convex. However, it can be proved that the
strategy has a unique global optimal solution, and that there is no local optimal solution.
The proof process is shown in Appendix A. On this basis, we use the Particle Swarm
Optimization (PSO) algorithm to solve the strategy accurately. The flowchart of the HBSS
optimal scheduling strategy is shown in Figure 4.
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5. Numerical Simulations

The traffic network used in the simulation is located near North China Electric Power
University in Beijing. As shown in Figure 5, the traffic network consists of 13 nodes and
21 roads; the BSS is located at node 11 in the center. Figure 6 shows the battery swapping
demand generated by the approach in Section 3. A total of 175 EVs participated in the
battery swapping throughout the day. It can be seen that 11:00–14:00 and 17:00–19:00 are
two peak periods of swapping demand in a day. Refer to the Supplementary Information
of this paper for detailed traffic topology and EV data. Other parameters in the simulation
are shown in Table 1.
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Table 1. Parameters in the simulation.

Parameter µ σ2 γ Ebat ϕ ψ ¯
l

min

Value 0.15 0.2 1.8 62(kWh) 1 3 2 3 2 1(USD)
1 Data from the 2021 Nissan Leaf. 2 According to the Sigmoid function, the EV with the longest detour distance has
a probability of 85.59% to swap its battery at the BSS when ψ = 3. The service fee needs to increase dramatically
if the probability is made to be closer to 1. Therefore, when ϕ = 3 and ψ = 3, the service fee can vary within a
relatively small range while achieving a good EV scheduling effect. In practice, many other factors should be
considered in the selection of parameter values, such as the consumption ability of EV drivers and the pricing
policies of the market.

It can be seen above that k has a significant impact on the swapping service capability.
Meanwhile, changing the threshold in rule two will affect the selections made by EV
drivers, which in turn affects the swapping service capacity. To verify the effectiveness of
the strategy and analyze the impacts of these key factors, five cases are studied, as shown
in Table 2.
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Table 2. Cases studied in the simulation.

Case Nmax,MS Nmax,SS ¯
d

DET

i /km Service Fee

1 4 6 0 Optimal
2 5 5 0 Optimal
3 6 4 0 Optimal
4 5 5 2 Optimal
5 5 5 0 Constant

In case 1 to case 3, the impact of k on the optimal scheduling of HBSS is analyzed.
While keeping the total maximum service capacity of the HBSS model unchanged, Nmax,MS

is less than, equal to, and greater than Nmax,SS, respectively. Case 4 keeps the same k as

case 2, but the threshold d
DET
i in rule two is increased to 2 km. To analyze the effectiveness

of the optimal scheduling strategy, the same parameters are set in case 5 and case 2. To
verify the superiority of the optimal service fee, we set the service fee as a fixed parameter
in case 5 for comparison purposes. The constant service fee is calculated by including the
mean detour distance of all EVs into (12).

5.1. Effectiveness Analysis of HBSS Optimal Scheduling Strategy

Case 2 and 5 compare the operation of the HBSS model under the optimal service fee
and a constant fee, respectively. The simulation results are shown in Figure 7 and Table 3.
When compared with case 2, the total queue length in case 5 increased by 2.53 times.
Among those queuing, 91.81% were for the SS mode. There is no significant difference in
the total number of EV drivers making active selections between the two cases. However,
by analyzing each time slot, it can be found that the active selections in case 5 did not
change adaptively as a result of the constant service fee. When EV drivers selecting one
mode approaches or exceeds the maximum service capacity, the swapping demand has not
transferred to the other mode through active selection. By contrast, case 2 can couple those
EV drivers who actively selected with the maximum service capacity through this strategy.
This results in a considerable difference in the queue length between the two cases.

Processes 2023, 11, x FOR PEER REVIEW  12  of  20 
 

 

 

(a) 

 

(b) 

Figure 7. Simulation results based on the optimal and constant service fee. (a) Case 2; (b) Case 5. 

Table 3. Simulation results. 

Case 
Queue length  Active Selection  Average  tl

/USD Total  MS  SS  MS  SS 

2  7.93  1  6.93  74.89  44.11  1.96 

5  27.96  2.64  25.32  72.12  46.88  1.81 

As can be seen from the simulation results, EVs in accordance with rule 1 receive MS 

service in time slots 26, 37, and 41. The HBSS model avoids all power depletion events 

throughout the day, so the range anxiety problem is successfully alleviated. 

It is worth noting that this strategy does not keep the ratio of  ˆ MStN   to  ˆ SStN   in strict 

balance with k in all time slots. For example, in time slot 26 of case 2,  SS
tN    is close to the 

SS maximum service capacity. However, there are still a few EV drivers selecting the SS 

mode actively, resulting in queuing. The reason is the uncertainty of EV selection reflected 

by the Sigmoid function. In this time slot, the  DET
id   of EV drivers participating in the ac‐

tive selection are 2.2, 3.1, 5.8, 10.7 and 12.4. Although the service fee has reached the lower 

limit, it is still very close to the swapping costs of EVs with small  DET
id . Therefore, the EV 

driver still has the possibility to select the SS mode. 

To further analyze the effectiveness and advantages of the optimal scheduling strat‐

egy, a Monte Carlo simulation (MCS) was used to obtain the typical time sequence of bat‐

tery swapping in cases 2 and 5, as shown in Figure 8. 

Processes 2023, 11, x FOR PEER REVIEW  12  of  20 
 

 

 

(a) 

 

(b) 

Figure 7. Simulation results based on the optimal and constant service fee. (a) Case 2; (b) Case 5. 

Table 3. Simulation results. 

Case 
Queue length  Active Selection  Average  tl

/USD Total  MS  SS  MS  SS 

2  7.93  1  6.93  74.89  44.11  1.96 

5  27.96  2.64  25.32  72.12  46.88  1.81 

As can be seen from the simulation results, EVs in accordance with rule 1 receive MS 

service in time slots 26, 37, and 41. The HBSS model avoids all power depletion events 

throughout the day, so the range anxiety problem is successfully alleviated. 

It is worth noting that this strategy does not keep the ratio of  ˆ MStN   to  ˆ SStN   in strict 

balance with k in all time slots. For example, in time slot 26 of case 2,  SS
tN    is close to the 

SS maximum service capacity. However, there are still a few EV drivers selecting the SS 

mode actively, resulting in queuing. The reason is the uncertainty of EV selection reflected 

by the Sigmoid function. In this time slot, the  DET
id   of EV drivers participating in the ac‐

tive selection are 2.2, 3.1, 5.8, 10.7 and 12.4. Although the service fee has reached the lower 

limit, it is still very close to the swapping costs of EVs with small  DET
id . Therefore, the EV 

driver still has the possibility to select the SS mode. 

To further analyze the effectiveness and advantages of the optimal scheduling strat‐

egy, a Monte Carlo simulation (MCS) was used to obtain the typical time sequence of bat‐

tery swapping in cases 2 and 5, as shown in Figure 8. 

Figure 7. Simulation results based on the optimal and constant service fee. (a) Case 2; (b) Case 5.



Processes 2023, 11, 1604 12 of 19

Table 3. Simulation results.

Case
Queue length Active Selection Average

lt/USDTotal MS SS MS SS

2 7.93 1 6.93 74.89 44.11 1.96
5 27.96 2.64 25.32 72.12 46.88 1.81

As can be seen from the simulation results, EVs in accordance with rule 1 receive MS
service in time slots 26, 37, and 41. The HBSS model avoids all power depletion events
throughout the day, so the range anxiety problem is successfully alleviated.

It is worth noting that this strategy does not keep the ratio of N̂MS
t to N̂SS

t in strict
balance with k in all time slots. For example, in time slot 26 of case 2, N′SS

t is close to the SS
maximum service capacity. However, there are still a few EV drivers selecting the SS mode
actively, resulting in queuing. The reason is the uncertainty of EV selection reflected by
the Sigmoid function. In this time slot, the dDET

i of EV drivers participating in the active
selection are 2.2, 3.1, 5.8, 10.7 and 12.4. Although the service fee has reached the lower limit,
it is still very close to the swapping costs of EVs with small dDET

i . Therefore, the EV driver
still has the possibility to select the SS mode.

To further analyze the effectiveness and advantages of the optimal scheduling strategy,
a Monte Carlo simulation (MCS) was used to obtain the typical time sequence of battery
swapping in cases 2 and 5, as shown in Figure 8.

Processes 2023, 11, x FOR PEER REVIEW 12 of 20 
 

 

 

(b) 

Figure 7. Simulation results based on the optimal and constant service fee. (a) Case 2; (b) Case 5. 

Table 3. Simulation results. 

Case 
Queue length Active Selection Average tl

/USD Total MS SS MS SS 

2 7.93 1 6.93 74.89 44.11 1.96 

5 27.96 2.64 25.32 72.12 46.88 1.81 

As can be seen from the simulation results, EVs in accordance with rule 1 receive MS 

service in time slots 26, 37, and 41. The HBSS model avoids all power depletion events 

throughout the day, so the range anxiety problem is successfully alleviated. 

It is worth noting that this strategy does not keep the ratio of ˆ MS

tN  to ˆ SS

tN  in strict 

balance with k in all time slots. For example, in time slot 26 of case 2, SS

tN   is close to the 

SS maximum service capacity. However, there are still a few EV drivers selecting the SS 

mode actively, resulting in queuing. The reason is the uncertainty of EV selection reflected 

by the Sigmoid function. In this time slot, the DET

id  of EV drivers participating in the ac-

tive selection are 2.2, 3.1, 5.8, 10.7 and 12.4. Although the service fee has reached the lower 

limit, it is still very close to the swapping costs of EVs with small DET

id . Therefore, the EV 

driver still has the possibility to select the SS mode. 

To further analyze the effectiveness and advantages of the optimal scheduling strat-

egy, a Monte Carlo simulation (MCS) was used to obtain the typical time sequence of bat-

tery swapping in cases 2 and 5, as shown in Figure 8. 

 

Figure 8. Time sequence of battery swapping generated by MCS. 

In the peak period of swapping demand, the strategy will lead to the swapping time 

being advanced overall. When compared with case 5, four and three EVs in case 2 swap 

Figure 8. Time sequence of battery swapping generated by MCS.

In the peak period of swapping demand, the strategy will lead to the swapping time
being advanced overall. When compared with case 5, four and three EVs in case 2 swap
batteries in advance (i.e., transferred from orange area to light blue area) during time slots
23–30 and 37–39, respectively. Therefore, the strategy improves the operational efficiency
and service quality of the HBSS model.

The PSO algorithm is effective in solving the optimal scheduling strategy of the HBSS
model. Using time slot 31 of case 2 as an example, Figures 9 and 10 show the convergence
process and optimization process, respectively. Since there is a unique global optimal
solution and no local optimal solution, the strategy can be solved quickly and accurately.
The PSO solving process converges at the 12th iteration.
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Figure 10. Optimization process. (a) Sigmoid functions of EVs selecting actively; (b) Deviation from
k with different lt.

One EV driver selects the SS mode passively during this time slot, and there was
no queueing EVs in the previous time slot. Figure 10a shows the probability curves for
all EVs selecting actively, with the swapping cost being 5.8 USD, 8.5 USD, and 16.9 USD,
respectively. Figure 10b shows that EVs are more inclined to select the SS mode as lt
increases. The optimal expected values of NMS

t and NSS
t are obtained when lt converges to

2.36 USD. At this point, the ratio of N̂MS
t to N̂SS

t is precisely equal to k.
.

5.2. Impact Analysis of Key Factors on HBSS Operation

The impacts of key factors on the HBSS model are compared between case 1 and case 4.
The simulation results are shown in Figure 11 and Table 4.
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Figure 11. Simulation results based on different k and d
DET
i . (a) Case 1; (b) Case 2; (c) Case 3;

(d) Case 4.
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Table 4. Simulation results.

Case
Queue Length Active Selection Average

lt/USDTotal MS SS MS SS

1 2.16 0.8 1.36 63.12 55.88 2.37
2 7.93 1 6.93 74.89 44.11 1.96
3 35.7 1.07 34.63 83.11 35.89 1.65
4 13.28 1 12.28 72.83 33.17 1.95

Case 1, 2, and 3 are used to analyze the influence of k on the HBSS model operation.
The queue length of case 1 and case 2 accounted for 6.05% and 22.21% of case 3, respectively.
It shows that the queuing situation becomes more and more severe as k increases. This
is because there is a greater number of EVs following rule two than those following rule
one (i.e., N′SS

t is larger than N′MS
t ). When the maximum service capacity of the SS mode is

reduced, EV drivers selecting the SS mode passively occupy a large amount of SS service
resources. In the peak period of swapping demand, the adjustment space left to active
selections by EV drivers becomes smaller, resulting in an increasing expected value of queue
length. The strategy actively balances out the adverse effects of k growth. In cases 2 and 3,
21.05% and 35.77% of EV drivers who select the SS mode actively change their selections,
respectively. The queuing length of the SS mode is reduced while the queuing length of the
MS mode does not increase; this shows that the strategy has an adaptive ability.

The impact of d
DET
i on HBSS operation is analyzed by comparing case 2 and case 4.

Although the k is the same, the queue length in case 4 increases by 67.47% when compared

to case 2. It is because a higher d
DET
i results in the growth of N′SS

t , thereby increasing
the probability of exceeding the maximum service capacity of the SS mode. Therefore, in
addition to choosing the k value reasonably and according to the actual demand in the
planning of the HBSS model, service efficiency can still be adjusted by changing the rules
during operation.

Figure 12 shows the optimal MS service fees of case 1 to case 4 generated by strategy.
The service fee is generally inversely proportional to the trend of swapping demand in a
scheduling horizon. The reason is that the growth of N′SS

t leads to a simultaneous growth
of NMS

t in order to reduce the queue length at the SS during peak hours. The lower lt
makes it more attractive than the swapping cost, thus increasing the probability of actively
selecting the MS mode. By analyzing case 1 to case 3, it can be seen that the service fee
gradually decreases the value of k increases. This is because maintaining a higher NMS

t can
offset the negative impact brought by the decline of the maximum service capacity in the
SS mode. The lt of case 2 and case 4 are basically the same, indicating that k and lt have a
stronger correlation.
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tively. It shows that the queuing situation becomes more and more severe as k increases. 

This is because there is a greater number of EVs following rule two than those following 

rule one (i.e., SS

tN   is larger than MS

tN  ). When the maximum service capacity of the SS 

mode is reduced, EV drivers selecting the SS mode passively occupy a large amount of SS 

service resources. In the peak period of swapping demand, the adjustment space left to 

active selections by EV drivers becomes smaller, resulting in an increasing expected value 

of queue length. The strategy actively balances out the adverse effects of k growth. In cases 

2 and 3, 21.05% and 35.77% of EV drivers who select the SS mode actively change their 

selections, respectively. The queuing length of the SS mode is reduced while the queuing 

length of the MS mode does not increase; this shows that the strategy has an adaptive 

ability. 

The impact of DET

id  on HBSS operation is analyzed by comparing case 2 and case 4. 

Although the k is the same, the queue length in case 4 increases by 67.47% when compared 

to case 2. It is because a higher DET

id  results in the growth of SS

tN  , thereby increasing 

the probability of exceeding the maximum service capacity of the SS mode. Therefore, in 

addition to choosing the k value reasonably and according to the actual demand in the 

planning of the HBSS model, service efficiency can still be adjusted by changing the rules 

during operation. 

Figure 12 shows the optimal MS service fees of case 1 to case 4 generated by strategy. 

The service fee is generally inversely proportional to the trend of swapping demand in a 

scheduling horizon. The reason is that the growth of SS

tN    leads to a simultaneous 

growth of MS

tN  in order to reduce the queue length at the SS during peak hours. The 

lower tl  makes it more attractive than the swapping cost, thus increasing the probability 

of actively selecting the MS mode. By analyzing case 1 to case 3, it can be seen that the 

service fee gradually decreases the value of k increases. This is because maintaining a 

higher MS

tN  can offset the negative impact brought by the decline of the maximum ser-

vice capacity in the SS mode. The tl  of case 2 and case 4 are basically the same, indicating 

that k and tl  have a stronger correlation. 

 

Figure 12. MS service fees in case 1 to case 4.
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6. Conclusions

To solve the problem of range anxiety, this paper proposes a new EV battery swapping
system. An HBSS model based on the combination of MS and SS modes is constructed.
The uncertainty of EV selection is captured by the Sigmoid function. The simulation results
validate the effectiveness of the proposed strategy and lead to the following conclusions:

1. The HBSS model can effectively alleviate range anxiety. The EVs that will run out of
power can be accurately identified and served by MS services. The HBSS model can
realize the cooperative operation of two battery swapping modes;

2. The MS service fee has an important influence on the EV driver’s selection and
utilization efficiency of battery swapping facilities. The queue length under the
proposed strategy is reduced by 71.64% when compared with that under the fixed
service fee;

3. During the planning stage of the HBSS model, the maximum service capacity of both
modes and the threshold in rule 2 must be carefully determined based on practical
factors, including the investment scale and traffic topology. Since more EV drivers
will still select the SS mode, SS service capacity should be increased and the threshold
in rule 2 should be kept low.

The scheduling of the battery swapping van (BSV) is not discussed in depth, which
is the limit of this work. Although the route planning of each BSV is not the focus of this
paper, it may affect the quality of the hybrid battery swapping service. Therefore, it is
necessary to further study the operational strategy of the BSV, taking into account the
capacity constraint, energy consumption, and service revenue during BSV service.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr11061604/s1, detailed traffic topology and EV data.
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version of the manuscript.
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Nomenclature

dMS/SS
i Shortest driving distance of EV i in MS/SS mode

dO,D/O,BSS/BSS,D
i Shortest distance between origin-destination/origin-BSS/BSS-destination

dDET
i Detour distance of EV i

N̂MS/SS
t Total number of EVs selecting MS/SS service at time t

NMS/SS
t Number of EVs that actively select MS/SS service

N′MS/SS
t Number of EVs that passively select MS/SS service

NQ,MS/SS
t−1 Number of queueing EVs in MS/SS mode

lt Service fee of mobile swapping
Parameters
Nde

t Number of EVs that generate swapping demand at time t
SOCi SOC of EV i when generating swapping demand
EREM

i Remaining power when EV i reaches BSS
Ebat Battery capacity
S Power consumption per 100 km

d
DET
i Shortest detour distance for EVs to accept MS service

https://www.mdpi.com/article/10.3390/pr11061604/s1
https://www.mdpi.com/article/10.3390/pr11061604/s1
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Nmax,MS/SS Maximum service capacity of MS/SS service
Ci Swapping cost of EV i
lmin/max
t Minimum/maximum service fee

l
min

Lower bound of service fee set by the operators
ϕ/ψ Distance parameters used to calculate the minimum/maximum service fee
k Ratio of the maximum service capacities
Acronyms
EV Electric vehicle
HBSS Hybrid battery swapping system
MS Mobile battery swapping
SS Stationary battery swapping
BSM Battery swapping mode
BCS Battery charging station
DB Depleted battery
FB Full-charged battery
BSS Battery swapping station
SOC State of Charge
BSV Battery swapping van
SSC Swapping scheduling center
OD Origin and destination

Appendix A

The proof is shown as follows. Since the expression of Sigmoid function in (13) is
PSS

i (lt) = 1
1+e−γ(lt−Ci)

Its derivative to lt can be given by

dPSS
i (lt)
dlt

= γe−γ(lt−Ci)[
1+e−γ(lt−Ci)

]2

= γPSS
i (lt)

[
1− PSS

i (lt)
] (A1)

Let

g(lt) = N̂MS
t − kN̂SS

t

= ∑
i∈Ωt

[
1− PSS

i (lt)
]
+ N′MS

t + NQ,MS
t − k

[
∑

i∈Ωt

PSS
i (lt) + N′SS

t + NQ,SS
t

]
(A2)

Bring (A1) into the derivative of g to lt, we have

dg
dlt

= ∑
i∈Ωt

γPSS
i (lt)

[
PSS

i (lt)− 1
]
+ k ∑

i∈Ωt

γPSS
i (lt)

[
PSS

i (lt)− 1
]

= (1 + k) ∑
i∈Ωt

γPSS
i (lt)

[
PSS

i (lt)− 1
] (A3)

In any bounded solution space of lt, PSS
i (lt) ∈ (0, 1) always holds. And considering

k ≥ 0, we have
dg
dlt

< 0 (A4)

Therefore, g monotonically decreases in the bounded solution space.
According to (16) and (A4), min

lt

∣∣N̂MS
t − kN̂SS

t
∣∣ has the following three situations.

1. g(lmax
t ) ≥ 0

In this case, |g| is non-negative and monotonically decreasing in the closed interval[
lmin
t , lmax

t
]
. Therefore, there is no local optimal solution and the unique global optimal

solution is argmin
∣∣N̂MS

t − kN̂SS
t
∣∣ = lmax

t .

2. g
(
lmin
t
)
≤ 0
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In this case, |g| is non-negative and monotonically increasing in the closed interval[
lmin
t , lmax

t
]
. Therefore, there is no local optimal solution and the unique global optimal

solution is argmin
∣∣N̂MS

t − kN̂SS
t
∣∣ = lmin

t .

3. g
(
lmin
t
)
≥ 0 and g(lmax

t ) ≤ 0

Since g is monotonically decreasing, it has a unique zero point in the closed interval.
Hence, there is no locally optimal solution and the unique global optimal solution is
argmin

∣∣N̂MS
t − kN̂SS

t
∣∣ = argmin 0.

In summary, the strategy has a unique global optimal solution, and there is no local
optimal solution.
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