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Abstract: Accurate parameter estimation of photovoltaic (PV) cells is crucial for establishing a
reliable cell model. Based on this, a series of studies on PV cells can be conducted more effectively
to improve power output; an accurate model is also crucial for the operation and control of PV
systems. However, due to the high nonlinearity of the cell and insufficient measured current and
voltage data, traditional PV parameter identification methods are difficult to solve this problem.
This article proposes a parameter identification method for PV cell models based on the radial basis
function (RBF). Firstly, RBF is used to de-noise and predict the data to solve the current problems
in the parameter identification field of noise data and insufficient data. Then, eight prominent
meta-heuristic algorithms (MhAs) are used to identify the single-diode model (SDM), double-diode
model (DDM), and three-diode model (TDM) parameters of PV cells. By comparing the identification
accuracy of the three models in two datasets in detail, the final results show that this method can
effectively achieve parameter extraction, with advantages such as high extraction accuracy and
stability, greatly improving the accuracy and reliability of parameter identification. Especially in
the TDM, the I-V data and P-V data obtained from the PV model established through the identified
parameters have very high fitting accuracy with the measured I-V and P-V data, reaching 99.58%
and 99.65%, respectively. The research can effectively solve the low accuracy problem caused by
insufficient data and noise data in the traditional method of identifying PV cells and can greatly
improve the accuracy of PV cell modeling. It is of great significance for the operation and control of
PV systems.

Keywords: parameter identification/extraction; PV cell; RBF; meta-heuristic algorithm; artificial
neural network; PV cell model

1. Introduction

Since entering the industrialized society, human science and technology have made
breakthrough development and maintained a very fast development speed. At the same
time, the massive development and large-scale use of fossil energy are the basic conditions
for maintaining the normal operation of industrial society. With the continuous growth
of the population and the rapid development of society, human demand for traditional
fossil energy is increasing. However, contrary to this, fossil energy is non-renewable and
not inexhaustible. Overexploitation and use of various fossil energy will lead to the global
energy crisis [1]. Moreover, due to the extensive use of fossil fuels can also cause huge
pollution, leading to environmental problems such as the greenhouse effect and ecological
destruction [2]. With a series of energy crises and environmental pollution problems
emerging one after another, it is urgent to change the energy consumption structure,
vigorously develop renewable energy, and take the road of sustainable development to
protect the environment, and countries around the world have reached a consensus [3].
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As is well known, solar energy is the most easily obtainable renewable energy in
daily life, with the characteristic of being inexhaustible, safe, reliable, and easily obtainable.
Therefore, the development and utilization of solar energy have great significance for global
development [4]. Among them, significant breakthroughs have been made in the research
of photovoltaic (PV) power generation technology. PV power generation technology mainly
utilizes the PV effect to directly convert solar energy into electrical energy through PV cells.
PV cell is the core components of PV power generation systems, and the efficiency of PV
power generation is not only related to the temperature and light intensity in the external
environment [5] but also closely related to the parameters of the internal structure of PV
cells. Therefore, precise modeling of PV cells and studying their internal model parameters
are of great significance for improving the power generation efficiency of PV systems [6–8].
At present, there are three most common models for PV cells, namely the single-diode
model (SDM) [9,10], the double-diode model (DDM), and the three-diode model (TDM) [11],
each with its unique features. Among them, SDM has the characteristics of a simple control
structure and low implementation cost, while DDM has the characteristics of simple hard-
ware implementation and low circuit complexity. TDM has the highest complexity, but the
curve fitting accuracy is also the most accurate. Among them, precise identification of some
cell parameters in the above-mentioned PV cell model is not only conducive to achieving
accurate PV cell modeling but also has significant significance for studying the output
characteristic of PV cells and improving the power generation efficiency of PV systems.
At present, there have been many studies on the identification of PV cell parameters. Due
to the high nonlinearity and multimodality of PV cells, it is difficult to obtain the optimal
solution using traditional optimization methods. Moreover, due to the special structure of
PV cells, the amount of measured current-voltage data is also very small, which greatly
increases the difficulty of PV cell parameter identification [12]. In addition, the insufficient
amount of measured data and noise data also make the traditional PV cell parameter iden-
tification accuracy low, which poses a serious challenge to the operation and control of PV
systems and the improvement of the output power of the system. The proposed heuristic
algorithm and radial basis function (RBF) can effectively solve the above problems. It has
the ability to search globally, can avoid falling into the optimal situation, and can accurately
identify the parameters of the nonlinear system. Reference [13] proposed an improved
cuckoo search algorithm for parameter identification of PV cell modules, constructed an
improved cuckoo search based on the cross-entropy method, and realized accurate PV cell
parameter identification using the cross entropy global optimization and cuckoo search
synergy. The final results show that this method can accurately identify PV cell param-
eters and also has fast convergence speed, high optimization accuracy, and good global
optimization performance. Reference [14] proposed a parameter identification method for
SDM and DDM based on the whale optimization algorithm. The parameters identified by
the whale optimization algorithm were compared and verified with the results obtained
from the simulation of PV modules, ultimately fully proving that the whale optimization
algorithm (WOA) can be effectively applied to the parameter identification of PV cells. In
reference [15], a PV cell parameter identification method based on an improved adaptive
particle swarm optimization algorithm was proposed, which can effectively solve the prob-
lems of local optimization and low identification accuracy when traditional particle swarm
optimization identifies PV cell parameters. The average relative error of the final results
is below 3%, fully proving its feasibility and effectiveness. Reference [16] proposed a PV
module parameter identification method based on the grey wolf optimization algorithm
(GWO), fully considering the impact of weather conditions on cell parameter extraction.
Finally, the identification results were compared with those obtained by particle swarm
optimization (PSO). Reference [17] proposed a PV cell parameter identification method
based on the imperialist competition algorithm (ICA), using ICA to study the SDM and
DDM of PV cells and considering the effects of radiation and temperature on PV cells. The
final results can prove its effectiveness and reliability in PV cell parameter identification.
Reference [18] proposed a JAYA algorithm for PV cell parameter identification, which
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quantifies the individual performance in the population using probability and then selects
the evolutionary strategy of each individual based on probability. Through the above
mechanism, the algorithm’s search and optimization capabilities are improved. Three
typical diode models were identified for parameters in the article, and the final results fully
demonstrate that the performance-guided JAYA (PGJAYA) algorithm has good robustness
and high accuracy in parameter identification. Reference [19] proposed a parameter identi-
fication of TDM of PV module based on the coyote optimization algorithm (COA), fully
considered the impact of temperature and radiant intensity on PV cell, and then conducted
parameter identification of TDM of two PV models, fully verifying the effectiveness of this
method in the field of parameter identification. Reference [20] proposed an improved equal-
izer optimization algorithm for PV cell parameter identification. The improved balance
optimizer uses a backpropagation neural network to predict the output data of PV cells,
which can achieve more efficient optimization and effectively improve the accuracy and
reliability of PV cell parameter identification optimization. Reference [12] proposed a PV
cell parameter identification method based on a data prediction heuristic algorithm. In this
paper, the limit learning machine is used to train and predict the measured data, providing
an accurate and reliable fitness function for the heuristic algorithm and enhancing its global
exploration and local search capabilities. The final results also show that the accuracy of
identification can be greatly improved, and the convergence speed can be accelerated. In
reference [21], a two-stage PV parameter cell identification method based on maximum
power matching and an improved airflow direction algorithm was proposed. Maximum
power matching (MPM) was used for coarse extraction, and the improved flow direction
algorithm (IFDA) was used for precise identification. The effects of various algorithms
were compared, and multiple repeated experiments were conducted. The final results also
proved that this method has good identification accuracy and robustness.

At present, research on PV cell identification mainly uses heuristic algorithms for
parameter identification, but there is less processing and research on measured data. This
paper proposes meta-heuristic algorithms (MhAs) for PV cell parameter identification
based on RBF, which de-noises, trains, and predicts through RBF data [22] and then uses
MhAs for parameter identification processing [23]. The final results also fully demonstrate
that the extraction accuracy after data de-noising and prediction is higher than that of
the original data. This article opens up a new direction for the identification of PV cell
parameters, starting from fitting data and studying the impact of measured I-V data on the
identification effect, providing new ideas for the research of PV cell parameter identification.
The contributions and innovations of this article can be summarized as follows.

1. Three types of PV models were established, and parameter identification was per-
formed on all three models;

2. Considering the impact of noise data on recognition accuracy, using RBF to de-noise
and identify the parameters of the three diode models under two conditions, original
data and de-noise data, respectively;

3. Considering the impact of insufficient measured I-V data on recognition accuracy,
using RBF to de-noise and identify the parameters of the three diode models under
two conditions, original data, and predicted data, respectively;

4. Based on the results of RBF data processing, the effectiveness of eight typical heuristic
algorithms in PV cell parameter identification is compared, and it was ultimately
proven that I-V data after data processing could greatly improve extraction accuracy
when used for parameter identification.

The remaining content of this article is as follows: Section 2 is the PV cell modeling
section, which mainly introduces three typical PV cell models and establishes objective
functions for parameter identification of each model; Section 3 introduces how RBF-MhAs
is applied to PV parameter extraction research, and then introduces RBF application for
data de-noising and data prediction; In Section 4, the parameter results obtained from the
final identification of three cell models are mainly presented; Section 5 is the discussion
section; Section 6 is a summary section, providing important conclusions and prospects.
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2. PV Modeling

Establishing a PV cell model is beneficial for deeper research on parameter identifica-
tion and output characteristic of PV cells. At present, there are three common models of PV
cells, namely SDM, DDM, and TDM [2].

2.1. Mathematical Modeling
2.1.1. SDM

SDM is composed of an ideal constant current source Iph, diode D, series resistor Rs,
and parallel resistor Rsh, as shown in Figure 1 [11].
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Figure 1. SDM of PV cell.

The relationship between the output current I and the output voltage V of the PV cell
SDM is as follows.

IL = Iph − Id

[
exp

(
VL + ILRs

aVT

)
− 1
]
− VL + ILRs

Rsh
(1)

VT =
KT
q

(2)

where VT represents thermal voltage, Iph is an ideal constant current source, q is the amount
of electronic charge, and the value is q = 1.6 × 10−19 C, K = 1.38 × 10−23 J/K represents
Boltzmann constant, T represents cell temperature, IL and VL represents the cell output
current and output voltage, respectively. Rsh represents shunt resistance, Id is the reverse
saturation current of the diode, a is the diode quality factor, and Rs is the series resistance,
respectively.

From the above equation, it can be seen that there are a total of 5 unknown parameters
in SDM that need to be identified, namely Iph, Id, Rs, Rsh, and a.

2.1.2. DDM

Compared to SDM, DDM has an additional diode in parallel, which has better accuracy
in performance, but the model is also relatively more complex. The schematic diagram is
shown in Figure 2 [24].
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The relationship between I and V in DDM is shown in the following equation.
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IL = Iph − Id1

[
exp

(
q(VL + ILRs)

a1VT

)
− 1
]
− Id2

[
exp

(
q(VL + ILRs)

a2VT

)
− 1
]
− VL + ILRs

Rsh
(3)

where Id1 is the reverse saturation current of diode D1, Id2 is the reverse saturation current
of diode D2, a1 is the quality factor of diode D1, and a2 is the quality factor of diode
D2, respectively.

Therefore, the parameters that DDM needs to recognize are Iph, Id1, Rs, Rsh, a1, Id2
and a2.

2.1.3. TDM

The schematic diagram of TDM is shown in Figure 3, which has the highest complexity
but also the highest accuracy among the three models.
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The relationship between I and V in TDM is as follows.

IL = Iph − Id1

[
exp

(
q(VL+ILRs)

a1VT

)
− 1
]
− Id2

[
exp

(
q(VL+ILRs)

a2VT

)
− 1
]

−Id3

[
exp

(
q(VL+ILRs)

a3VT

)
− 1
]
− VL+ILRs

Rsh

(4)

where Id1 is the reverse saturation current of diode D1, Id2 is the reverse saturation current
of diode D2, Id3 is the reverse saturation current of diode D3, a1 is the quality factor of diode
D1, a2 is the quality factor of diode D2, and a3 is the quality factor of diode D3, respectively.

Therefore, the parameters that TDM needs to recognize are Iph, Id1, Rs, Rsh, a1, Id2, a2,
Id3, and a3.

2.2. Objective Function

When quantitatively and effectively evaluating the effectiveness of PV cell parameter
identification, appropriate evaluation indicators are needed to evaluate the quality of the
results through evaluation criteria. This article selects root mean square error (RMSE) as
the objective function, and its calculation method is as follows.

RMSE(x) =

√
1
N ∑N

k=1( f (VL, IL, x))2 (5)

where x is the solution vector of the unknown parameter to be identified, and N is the
number of experimental data points.

In the article, parameter identification was conducted for three cell models, and the
objective functions and solution vector of each model were summarized as follows [11].

fSDM(VL, IL, x) = Iph − Id

[
exp

(
VL + ILRs

aVT

)
− 1
]
− VL + ILRs

Rsh
− IL (6)

fDDM(VL, IL, x) = Iph − Id1

[
exp

(
q(VL + ILRs)

a1VT

)
− 1
]
− Id2

[
exp

(
q(VL + ILRs)

a2VT

)
− 1
]
− VL + ILRs

Rsh
− IL (7)
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fTDM(VL, IL, x) = Iph − Id1

[
exp

(
q(VL+ILRs)

a1VT

)
− 1
]
− Id2

[
exp

(
q(VL+ILRs)

a2VT

)
− 1
]

−Id3

[
exp

(
q(VL+ILRs)

a3VT

)
− 1
]
− VL+ILRs

Rsh
− IL

(8)

x =


{

Iph, Isd, Rs, Rsh, a
}

SDM{
Iph, Id1, a1, Rs, Rsh, Id2, a2

}
DDM{

Iph, Id1, a1, Rs, Rsh, Id2, a2, Id3, a3

}
TDM

(9)

3. RBF-MhAs for PV Parameter Extraction
3.1. Principle of RBF

RBF neural network is a classic model of artificial neural networks belonging to
feedforward neural networks. It has good generalization ability and fast convergence
speed and can approximate any function with high accuracy. It is commonly used to fit
nonlinear maps [25]. It utilizes strict interpolation methods in multidimensional space
to provide a set of functions for hidden units, which construct an arbitrary basis for the
input vector when it is extended to the hidden space. The functions in this set are the base
functions. RBF is composed of an input layer, a hidden layer, and an output layer. The
input layer is composed of signal source nodes, connecting the external environment and
network. The transformation function of the hidden layer is the RBF, which is used as the
nonlinear transformation from the input vector space to the hidden layers [26,27]. The
output layer linearly combines the hidden layers to output certain vector target features.
The schematic diagram of RBF is shown in Figure 4.
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The expression of RBF is as follows [28].

f (x) ' f ∗(x) =
m

∑
k=1

λi ϕ(‖x − xk‖) (10)

where f ∗(x) is the approximation function, x is the input variable, m is the number of
sample points, and xk is the space vector of the kth sample point; λm×1 = [λ1, λ2, . . . λm] is
the undetermined coefficient of RBF, ‖x − xk‖ is the Euclidean norm, ϕ is a base function.

The commonly used RBF is a linear function, cubic function, and Gaussian function,
as shown in the following formula [29].

ϕ(‖x − xk‖) = r ∗ ‖x − xk‖ (11)

ϕ(‖x − xk‖) = (r + ‖x − xk‖)3 (12)
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ϕ(‖x − xk‖) = e−‖x−xk‖2∗r2
(13)

where r is the coefficient of RBF.
The undetermined coefficient of RBF λ is determined by the following equation.

φm×mλm×1 = Ym×1 (14)

φm×m =

 ϕ(‖x1 − x1‖) · · · ϕ(‖x1 − xm‖)
...

. . .
...

ϕ(‖xm − x1‖) · · · ϕ(‖xm − xm‖)

 (15)

Ym×1 = [ f (x1), f (x2), . . . , f (xm)] (16)

where m is the number of sample points.
The most special feature of RBF is it uses the basis of the hidden layer basis function

to form a hidden layer space. In this way, the input vector can be mapped to the hidden
space without weight, while the mapping from the hidden layer to the output space is
linear; that is, the output of RBF is a linear weighted sum of unit outputs. Different from
traditional data processing methods such as group method of data handling (GMDH),
GMDH increases the complexity of the research due to the interrelationships between
research data [30,31]. RBF has the advantages of simple structure, simple training, fast
learning convergence, and can approximate any nonlinear function.

3.2. RBF for I-V Data Preprocessing
3.2.1. RBF for I-V Data De-Noising

As is well known, the measured I-V data of PV cells inevitably contain noise under
various complex operating conditions and actual operating conditions. Due to the influence
of noise, the application of MhAs for parameter identification can lead to inaccurate final
identification results, seriously affecting the effectiveness of PV parameter identification
and PV cell modeling.

Therefore, in order to eliminate the impact of noise on the results, this article adopts
RBF to further link and reduce data noise by connecting the weights between the input layer
and the hidden layer [32]. The results of de-noising through RBF are shown in Figure 5. It
can be seen that the fitting accuracy of noise data and de-noise data is very high compared
to the original data, with the fitting correlation coefficients R2

N and R2
DN of 98.69% and

99.98%, respectively.

3.2.2. RBF for I-V Data Prediction

Identifying PV cell parameters essentially involves fitting I-V data, and the final
identification accuracy depends heavily on voltage and current data. However, it is difficult
to obtain actual cell voltage and current data. Therefore, this article uses RBF to train
existing I-V data and then perform data prediction to expand the data volume. The results
of prediction through RBF are shown in Figure 6. It can also be seen that the data predicted
by RBF also has extremely high fitting accuracy with the original data and the fitting
correlation coefficient R2

p is 99.98%.
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3.3. General Execution of Parameter Extraction

The general process of PV cell parameter identification based on RBF-MhAs in this arti-
cle mainly includes three parts: data collection, data preprocessing, and optimal parameter
extraction, as shown in Figure 7.
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The specific implementation process is as follows: collecting actual PV cell voltage and
current data, then training RBF for data prediction and data de-noising to obtain de-noising
current and de-noising current. In the end, using MhAs to optimize and iterate the data
of cell models, SDM, DDM, and TDM, respectively, and finally obtain the optimal model
parameters. Note that RMSE is used as the result evaluation standard in this article. The
specific steps for executing RBF-MhAs are shown in Table 1.

Table 1. The identification steps of RBF-MhAs for PV parameter extraction.

1 Determine PV model;
2 Collect measured I-V data of PV;
3 Process measured I-V data by RBF;
4 Initialize population and parameters of various MhAs;
5 Set t = 0;
6 WHILE t ≤ tmax
7 FOR1 i = 1:n
8 Compute the fitness value of the ith individual via Equation (5);
9 END FOR1
10 Adjust the roles of all individuals according to their fitness values;
11 FOR2 i = 1:n
12 Update solution of the ith individual based on its searching rule;
13 END FOR2
14 Set t = t + 1;
15 END WHILE
16 Output optimal parameters for PV.

4. Case Studies

In this section, RBF and eight typical MhAs were used to extract the parameters of
three PV models, namely artificial bee colony (ABC) [33], bird swarm algorithm BSA [34],
equilibrium optimizer (EO) [20], GWO [35], moth-fire algorithm (MFO) [36], particle
swarm optimization (PSO) [37], water cycle algorithm (WCA) [38], and whale optimization
algorithm (WOA) [39], and the reasons for choosing these eight algorithms are explained
in Remark 1. Then, the actual operating conditions of the cell were set, especially low.
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This article considered the extraction of parameters due to insufficient data and noise data
extracted 26 pairs of data from R.T.C. France PV cell, based on the original 26 pairs of
I-V data. RBF was used for preprocessing, de-noising, and data prediction, respectively.
Lastly, 266 pairs of I-V data were ultimately predicted for parameter extraction research in
multiple data. The specific data preprocessing results are shown in Figures 5 and 6.

Remark 1. Based on a previous review article [11] on PV cell parameter identification, it is found
that these eight MhAs have advantages such as simple models and fast identification speed in the
field of parameter identification. Therefore, this study selected the above eight MhAs.

The operating conditions of PV cells and the specific model parameter settings for
various MhAs in this article are shown in Table 2. All studies were based on MATLAB
2022b and simulated using a personal computer with a performance of 3.0 GHz 12th Gen
Intel (R) Core (TM) i5-12500 and 64 GB RAM.

Table 2. Model and algorithms parameter settings.

Types Parameters Value

PV
Irradiance 1000 W/m2

Temperature 33 ◦C

Algorithms

Maximum iterations 500

Population size
30 (SDM)
50 (DDM)
70 (TDM)

Run times 10

4.1. SDM Parameter Extraction
4.1.1. Noised Data

Table 3 summarizes the SDM parameter extraction results obtained through eight
algorithms under different training data, where the symbol ‘N’ represents the results
obtained using noised data and ‘DN’ represents the results obtained using de-noised data.
From Table 3, it can be seen that after data de-noising, the RMSE obtained by the eight
algorithms is smaller than that obtained by using noise data. In particular, the MFO
algorithm has the largest decrease of 89.03%. The BSA algorithm has the smallest decrease,
at 22.45%.

In addition, Figure 8 shows the RMSE convergence curves obtained by eight algorithms
trained on two datasets. The results obtained based on data de-noising have smaller errors
than those obtained from noise data.

Considering the impact of two different training data on the results, Figure 9 shows the
boxplot of the RMSE distribution obtained by MhAs. It is obvious that after data noise re-
duction, the upper and lower bounds of the RMSE obtained by each algorithm or the RMSE
median have decreased to a certain extent, and the RMSE outlier obtained by BSA, MFO,
and WOA has disappeared. This sufficiently demonstrates that de-noising based on RBF
data can significantly improve the accuracy and stability of MhAs in parameter extraction.
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Table 3. Parameters identification results of noise data and de-noising data based on MhAs for SDM.

State Algorithms Data
Identified Parameters

RMSE
Iph (A) ISD1 (A) Rs (Ω) Rsh (Ω) a

SD
M

ABC
N 0.7658 1.0000 × 10−6 0.0318 76.2020 1.6019 2.9400 × 10−2

DN 0.7610 9.9400 × 10−7 0.0307 67.4567 1.6046 3.3000 × 10−3

BSA
N 0.7669 9.3400 × 10−7 0.0318 60.5889 1.5939 2.9400 × 10−2

DN 0.7605 2.1100 × 10−7 0.0385 54.6220 1.4397 2.2800 × 10−2

EO
N 0.7657 1.0000 × 10−6 0.0314 99.9999 1.6015 2.9300 × 10−2

DN 0.7612 7.5500 × 10−7 0.0320 60.3018 1.5726 3.3000 × 10−3

GWO
N 0.7670 6.5000 × 10−7 0.0356 85.4718 1.5521 2.9700 × 10−2

DN 0.7647 3.9800 × 10−7 0.0294 20.6894 1.5046 6.9000 × 10−3

MFO
N 0.7657 2.3800 × 10−7 0.0378 48.7267 1.4482 3.0100 × 10−2

DN 0.7610 9.8400 × 10−7 0.0307 71.3226 1.6032 3.3000 × 10−3

PSO
N 0.7651 6.4100 × 10−7 0.0338 98.6639 1.5504 2.9500 × 10−2

DN 0.7610 1.0000 × 10−6 0.0306 70.1421 1.6052 3.3000 × 10−3

WCA
N 0.7654 6.9700 × 10−7 0.0333 93.8116 1.5598 2.9500 × 10−2

DN 0.7610 9.1100 × 10−7 0.0311 68.7114 1.5941 3.3000 × 10−3

WOA
N 0.7662 5.9200 × 10−7 0.0333 82.9164 1.5417 2.9600 × 10−2

DN 0.7593 3.0300 × 10−7 0.0380 68.1910 1.4752 4.3000 × 10−3
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Figure 10 shows the I-V and P-V characteristic curves obtained by SDM using MFO
fitting among the eight algorithms under noise reduction data conditions. It can be seen
that the fitted data is very close to the actual data, demonstrating excellent parameter
identification accuracy. The correlation coefficient R2

I of I-V curve fitting is 99.57%, and the
correlation coefficient R2

P of P-V curve fitting is 99.67%.



Processes 2023, 11, 1606 13 of 27Processes 2023, 11, x FOR PEER REVIEW 13 of 29 
 

 

 
(a) 

 
(b) 

Figure 10. MFO for fitting curves based on de-noising data of SDM. (a) I-V curve and (b) P-V curve. 

4.1.2. Insufficient Data 

Table 4 summarizes the SDM parameter extraction results obtained by eight algo-

rithms under both low and high data conditions, where the symbol ‘O’ represents the 

source data and ‘P’ represents the predicted data. It can be seen that, except for the WOA 

algorithm, which did not show a decrease in RMSE, the RMSE obtained by the other seven 

algorithms under the condition of predicted data is smaller than that obtained under the 

condition of source data. Among them, the BSA algorithm has the largest decrease, with 

89.47%. 

  

Figure 10. MFO for fitting curves based on de-noising data of SDM. (a) I-V curve and (b) P-V curve.

4.1.2. Insufficient Data

Table 4 summarizes the SDM parameter extraction results obtained by eight algorithms
under both low and high data conditions, where the symbol ‘O’ represents the source data
and ‘P’ represents the predicted data. It can be seen that, except for the WOA algorithm,
which did not show a decrease in RMSE, the RMSE obtained by the other seven algorithms
under the condition of predicted data is smaller than that obtained under the condition of
source data. Among them, the BSA algorithm has the largest decrease, with 89.47%.
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Table 4. Parameters identification results of original data and predicted data based on MhAs for SDM.

State Algorithms Data
Identified Parameters

RMSE
Iph (A) ISD1 (A) Rs (Ω) Rsh (Ω) a

SD
M

ABC
O 0.7610 9.9400 × 10−7 0.0307 67.4567 1.6046 3.3000 × 10−3

P 0.7608 6.3000 × 10−7 0.0329 70.6810 1.5517 1.9000 × 10−3

BSA
O 0.7605 2.1100 × 10−7 0.0385 54.6220 1.4397 2.2800 × 10−2

P 0.7632 5.6900 × 10−7 0.0330 42.5673 1.5410 2.4000 × 10−3

EO
O 0.7612 7.5500 × 10−7 0.0320 60.3018 1.5726 3.3000 × 10−3

P 0.7604 7.7600 × 10−7 0.0326 98.9046 1.5749 1.9000 × 10−3

GWO
O 0.7647 3.9800 × 10−7 0.0294 20.6894 1.5046 6.9000 × 10−3

P 0.7601 3.7300 × 10−7 0.0362 77.2725 1.4955 1.3000 × 10−3

MFO
O 0.7610 9.8400 × 10−7 0.0307 71.3226 1.6032 3.3000 × 10−3

P 0.7605 8.6000 × 10−7 0.0321 100.0000 1.5867 2.1000 × 10−3

PSO
O 0.7610 1.0000 × 10−6 0.0306 70.1421 1.6052 3.3000 × 10−3

P 0.7609 4.7700 × 10−7 0.0347 64.2417 1.5214 1.2000 × 10−3

WCA
O 0.7610 9.1100 × 10−7 0.0311 68.7114 1.5941 3.0000 × 10−3

P 0.7608 1.0000 × 10−6 0.0313 100.0000 1.6045 2.4000 × 10−3

WOA
O 0.7593 3.0300 × 10−7 0.0380 68.1910 1.4752 4.3000 × 10−3

P 0.7516 8.1800 × 10−7 0.0118 39.9892 1.5859 3.0700 × 10−2

Figure 11 shows the RMSE convergence curves obtained by eight algorithms on two
datasets, with smaller RMSE based on predicted data. However, due to the increase in
training datasets, the convergence speed of each algorithm slows down.
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Figure 12 depicts the RMSE distribution boxplot obtained by eight algorithms. It can
be seen that, except for the WCA algorithm, the upper and lower bounds of RMSE obtained
based on predicted data have decreased.

Processes 2023, 11, x FOR PEER REVIEW 15 of 29 
 

 

 
(b) 

Figure 11. Convergence curves of RMSEs obtained by MhAs for SDM under original data and pre-

dicted data. (a) predicted data and (b) original data. 

Figure 12 depicts the RMSE distribution boxplot obtained by eight algorithms. It can 

be seen that, except for the WCA algorithm, the upper and lower bounds of RMSE ob-

tained based on predicted data have decreased. 

 

Figure 12. Boxplot of RMSEs obtained by MhAs for SDM under original data and predicted data. 

4.2. DDM Parameter Extraction 

4.2.1. Noised Data 

Table 5 summarizes the parameter extraction results of the DDM model obtained by 

eight heuristic algorithms under the conditions of noise data and noise reduction data. It 

can be seen that the GWO algorithm obtained the highest RMSE amplitude, starting from 

3.2100 × 10−2 decreases to 3.5000 × 10−3, with a decrease of 89.10%. Under noise condi-

tions, the DDM model has the smallest error obtained by MFO under eight heuristic algo-

rithm optimizations, with an RMSE of 2.9100 × 10−2. Under noise reduction conditions, 

Figure 12. Boxplot of RMSEs obtained by MhAs for SDM under original data and predicted data.

4.2. DDM Parameter Extraction
4.2.1. Noised Data

Table 5 summarizes the parameter extraction results of the DDM model obtained
by eight heuristic algorithms under the conditions of noise data and noise reduction
data. It can be seen that the GWO algorithm obtained the highest RMSE amplitude,
starting from 3.2100× 10−2 decreases to 3.5000× 10−3, with a decrease of 89.10%. Under
noise conditions, the DDM model has the smallest error obtained by MFO under eight
heuristic algorithm optimizations, with an RMSE of 2.9100× 10−2. Under noise reduction
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conditions, the MFO algorithm and WCA algorithm achieve the smallest error, with an
RMSE of 3.3000× 10−3.

Table 5. Parameters identification results of noise data and de-noising data based on MhAs for DDM.

State Algorithms Data
Identified Parameters

RMSE
Iph (A) ISD1 (A) Rs (Ω) Rsh (Ω) a1 ISD2 (A) a2

D
D

M

ABC
N 0.7690 6.1500 × 10−7 0.0287 73.9055 1.6797 9.7100 × 10−7 1.6462 2.9200 × 10−2

DN 0.7617 6.4300 × 10−7 0.0320 62.8954 1.9905 6.9700 × 10−7 1.5689 3.4000 × 10−3

BSA
N 0.7666 7.5300 × 10−7 0.0331 73.1427 1.8821 4.8300 × 10−7 1.5312 2.9500 × 10−2

DN 0.7603 6.9600 × 10−7 0.0289 99.6245 1.6456 4.2500 × 10−7 1.5847 3.7000 × 10−3

EO
N 0.7682 8.1400 × 10−7 0.0277 58.5882 1.6717 1.0000 × 10−6 1.6794 2.9200 × 10−2

DN 0.7610 9.7600 × 10−7 0.0288 80.6085 1.6365 3.5200 × 10−7 1.6478 3.4000 × 10−3

GWO
N 0.7802 2.7100 × 10−7 0.0361 11.3510 1.4721 4.5500 × 10−11 1.0401 3.2100 × 10−2

DN 0.7616 2.3200 × 10−7 0.0340 48.2361 1.8255 4.4700 × 10−7 1.5202 3.5000 × 10−3

MFO
N 0.7670 1.0000 × 10−6 0.0276 100.0000 1.7098 1.0000 × 10−6 1.6699 2.9100 × 10−2

DN 0.7610 8.7400 × 10−7 0.0308 72.0866 1.5919 3.3800 × 10−7 2.0000 3.3000 × 10−3

PSO
N 0.7667 9.1900 × 10−7 0.0298 100.0000 1.6107 1.0000 × 10−6 1.8639 2.9200 × 10−2

DN 0.7607 2.6000 × 10−7 0.0295 99.2881 1.6540 1.0000 × 10−6 1.6278 3.4000 × 10−3

WCA
N 0.7664 1.0000 × 10−6 0.0300 100.0000 1.6099 1.0000 × 10−6 2.0000 2.9200 × 10−2

DN 0.7610 7.0700 × 10−7 0.0310 69.2606 1.6205 2.4200 × 10−7 1.5535 3.3000 × 10−3

WOA
N 0.7561 6.0700 × 10−7 0.0094 28.1439 1.7688 6.6100 × 10−7 1.5831 4.3000 × 10−2

DN 0.7599 2.5700 × 10−7 0.0410 77.2374 1.5831 5.9800 × 10−8 1.3593 2.7400 × 10−2

Figure 13 shows the RMSE convergence curves obtained by eight algorithms under
noise and de-noised data conditions. It can be seen that under the condition of de-noised
data, the RMSE of parameter identification results has decreased to a certain extent.
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Figure 14 shows the RMSE distribution boxplot obtained by DDM under two data
conditions. It can be seen that after data de-noising, the upper and lower bounds of the
RMSE distribution of other algorithms except for WOA have decreased, and the median
has also decreased to a certain extent.
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Figure 14. Boxplot of RMSEs obtained by MhAs for DDM under noise data and de-noising data.

Figure 15 shows the I-V curve and P-V curve obtained by DDM using the WCA
algorithm under de-noised data conditions. WCA obtained the lowest RMSE and highest
accuracy under de-noised data conditions. It can be seen from the figure that the fitting
accuracy is very high. The correlation coefficient R2

I of I-V curve fitting is 99.57%, and the
correlation coefficient R2

P of P-V curve fitting is 99.64%.
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4.2.2. Insufficient Data

Table 6 shows the identification results of eight algorithms for the DDM model under
both low and high data conditions. It can be seen that, except for the GWO algorithm, the
RMSE obtained by other algorithms has decreased to a certain extent, and the accuracy
is improving, especially low. The WCA algorithm has the largest downward decrease,
at 72.73%.
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Table 6. Parameters identification results of original data and predicted data based on MhAs for DDM.

State Algorithms Data
Identified Parameters

RMSE
Iph (A) ISD1 (A) Rs (Ω) Rsh (Ω) a1 ISD2 (A) a2

D
D

M

ABC
O 0.7617 6.4300 × 10−7 0.0320 62.8954 1.9905 6.9700 × 10−7 1.5689 3.4000 × 10−3

P 0.7613 6.8900 × 10−7 0.0341 92.4257 2.0000 4.7400 × 10−7 1.5256 2.8000 × 10−3

BSA
O 0.7603 6.9600 × 10−7 0.0289 99.6245 1.6456 4.2500 × 10−7 1.5847 3.7000 × 10−3

P 0.7619 5.3200 × 10−7 0.0334 50.7943 1.5374 1.1900 × 10−7 1.7620 1.8000 × 10−3

EO
O 0.7610 9.7600 × 10−7 0.0288 80.6085 1.6365 3.5200 × 10−7 1.6478 3.4000 × 10−3

P 0.7603 6.0400 × 10−11 0.0329 99.4188 1.8292 7.2900 × 10−7 1.5678 1.8000 × 10−3

GWO
O 0.7616 2.3200 × 10−7 0.0340 48.2361 1.8255 4.4700 × 10−7 1.5202 3.5000 × 10−3

P 0.7759 3.5500 × 10−7 0.0253 10.7062 1.6016 5.0800 × 10−7 1.5881 1.3500 × 10−2

MFO
O 0.7610 8.7400 × 10−7 0.0308 72.0866 1.5919 3.3800 × 10−7 2.0000 3.3000 × 10−3

P 0.7609 1.0000 × 10−6 0.0311 100.0000 1.6059 1.6900 × 10−7 2.0000 2.5000 × 10−3

PSO
O 0.7607 2.6000 × 10−7 0.0295 99.2881 1.6540 1.0000 × 10−6 1.6278 3.4000 × 10−3

P 0.7605 8.0200 × 10−7 0.0344 80.5873 1.9185 3.5500 × 10−7 1.4997 1.4000 × 10−3

WCA
O 0.7610 7.0700 × 10−7 0.0310 69.2606 1.6205 2.4200 × 10−7 1.5535 3.3000 × 10−3

P 0.7607 9.2800 × 10−7 0.0369 56.0609 1.9618 1.8900 × 10−7 1.4365 9.0000 × 10−4

WOA
O 0.7599 2.5700 × 10−7 0.0410 77.2374 1.5831 5.9800 × 10−8 1.3593 2.7400 × 10−2

P 0.7634 1.1900 × 10−7 0.0426 37.9834 1.8100 1.8100 × 10−7 1.4273 8.8000 × 10−3

Figure 16 shows the iterative curves obtained under two data conditions of DDM. It
is evident that the overall RMSE obtained under multiple data conditions is smaller than
that obtained under insufficient data conditions, but the convergence speed under multiple
data conditions is lower than that under insufficient data conditions.

Figure 17 shows the distribution of RMSE obtained by DDM under multiple and
few data conditions. Except for the BSA algorithm, the difference between the upper and
lower bounds of RMSE obtained by the other seven algorithms is smaller than that under
insufficient data conditions. This fully demonstrates that after RBF data prediction, the
stability of parameter identification results can be improved.
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4.3. TDM Parameter Extraction
4.3.1. Noised Data

Table 7 shows the results obtained by eight heuristic algorithms for TDM under noise
and de-noising data conditions. It can be seen that after data de-noising, the RMSE of the
parameter extraction results of all eight algorithms decreased, with the WOA algorithm
having the largest decrease of 91.25%.

Figure 18 shows the RMSE iteration curves of the eight algorithms under the conditions
of noised and de-noised data. It can be seen that the RMSE obtained by the eight algorithms
has decreased.
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Table 7. Parameters identification results of noise data and de-noising data based on MhAs for TDM.

State Algorithms Data
Identified Parameters

RMSE
Iph (A) ISD1 (A) Rs (Ω) Rsh (Ω) a1 ISD2 (A) a2 ISD3 (A) a3

T
D

M

ABC
N 0.7683 1.0000 × 10−6 0.0249 67.7769 1.7591 9.2200 × 10−7 1.8027 1.0000 × 10−6 1.6893 2.9100 × 10−2

DN 0.7614 7.2100 × 10−7 0.0299 87.3333 1.5962 3.3300 × 10−7 1.7826 3.2000 × 10−7 1.7098 3.4000 × 10−3

BSA
N 0.7659 7.6100 × 10−9 0.0306 94.1495 1.9879 5.2900 × 10−7 1.9502 1.0000 × 10−6 1.6075 2.9300 × 10−2

DN 0.7647 1.4000 × 10−7 0.0295 26.8613 1.9087 9.9700 × 10−7 1.6086 2.5500 × 10−9 1.8855 5.3000 × 10−3

EO
N 0.7670 1.0000 × 10−6 0.0280 99.9999 1.9885 6.4500 × 10−7 1.6576 8.2100 × 10−7 1.6576 2.9100 × 10−2

DN 0.7611 5.3000 × 10−7 0.0314 67.0230 1.6802 4.0500 × 10−7 1.5436 1.8700 × 10−7 1.9785 3.3000 × 10−3

GWO
N 0.7741 4.9200 × 10−7 0.0304 20.3550 1.8385 6.4700 × 10−7 1.5731 1.4000 × 10−8 1.4351 3.0100 × 10−2

DN 0.7662 8.3600 × 10−7 0.0267 20.5201 1.5988 3.7700 × 10−7 1.7889 5.1600 × 10−8 1.9444 6.9000 × 10−3

MFO
N 0.7676 1.0000 × 10−6 0.0252 100.0000 1.7740 1.0000 × 10−6 1.7323 9.6000 × 10−7 1.7228 2.9000 × 10−2

DN 0.7610 1.0000 × 10−6 0.0278 99.9996 1.9999 9.7400 × 10−7 1.6195 1.0000 × 10−6 2.0000 3.3000 × 10−3

PSO
N 0.7667 2.3200 × 10−7 0.0299 90.7597 2.0000 1.0000 × 10−6 1.6114 9.3500 × 10−7 2.0000 2.9200 × 10−2

DN 0.7611 1.0000 × 10−6 0.0277 100.0000 2.0000 1.0000 × 10−6 1.6227 1.0000 × 10−6 2.0000 3.6000 × 10−3

WCA
N 0.7677 1.0000 × 10−6 0.0250 100.0000 1.7432 1.0000 × 10−6 1.7432 1.0000 × 10−6 1.7432 2.9000 × 10−2

DN 0.7610 9.0500 × 10−8 0.0310 69.0199 1.5923 1.6900 × 10−7 1.6066 6.6400 × 10−7 1.5936 3.3000 × 10−3

WOA
N 0.7704 1.2000 × 10−6 0.0326 28.5938 1.4334 4.9400 × 10−7 1.5416 1.8500 × 10−7 1.6259 2.9700 × 10−2

DN 0.7529 1.4900 × 10−8 0.0073 45.6208 1.7808 4.7200 × 10−7 1.6927 1.9500 × 10−7 1.4585 2.6000 × 10−2Processes 2023, 11, x FOR PEER REVIEW 22 of 29 
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Figure 19 shows the boxplot of the RMSE distribution obtained by TDM under eight
algorithms for parameter extraction. After data de-noising, the upper and lower bounds of
RMSE in all eight algorithms showed a certain degree of decrease, and the RMSE values of
abnormal results obtained by MFO and PSO algorithms were reduced. The accuracy and
stability of parameter extraction were improved.
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Figure 19. Boxplot of RMSEs obtained by MhAs for TDM under noise data and de-noising data.

Figure 20 shows the fitting curve obtained by WCA for TDM under noise reduction
data conditions. Among the eight algorithms, WCA has the highest parameter identification
accuracy, indicating very high fitting accuracy. The correlation coefficient R2

I of I-V curve
fitting is 99.58%, and the correlation coefficient R2
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Figure 20. WCA for fitting curves based on de-noising data of TDM. (a) I-V curve and (b) P-V curve.

4.3.2. Insufficient Data

Table 8 shows the parameter extraction results of eight TDM algorithms under both
low and high data conditions. All eight algorithms showed a decrease in RMSE, with the
WOA algorithm having the largest decrease of 81.92%.

Table 8. Parameters identification results of original data and predicted data based on MhAs for TDM.

State Algorithms Data
Identified Parameters

RMSE
Iph (A) ISD1 (A) Rs (Ω) Rsh (Ω) a1 ISD2 (A) a2 ISD3 (A) a3

TD
M

ABC
O 0.7614 7.2100 × 10−7 0.0299 87.3333 1.5962 3.3300 × 10−7 1.7826 3.2000 × 10−7 1.7098 3.4000 × 10−3

P 0.7636 7.3500 × 10−7 0.0345 48.5524 2.0000 3.3600 × 10−7 1.4965 7.7900 × 10−7 2.0000 2.6000 × 10−3

BSA
O 0.7647 1.4000 × 10−7 0.0295 26.8613 1.9087 9.9700 × 10−7 1.6086 2.5500 × 10−9 1.8855 5.3000 × 10−3

P 0.7610 4.4300 × 10−8 0.0334 70.2150 1.4577 3.7400 × 10−7 1.5370 4.8700 × 10−7 1.7586 1.7000 × 10−3

EO
O 0.7611 5.3000 × 10−7 0.0314 67.0230 1.6802 4.0500 × 10−7 1.5436 1.8700 × 10−7 1.9785 3.3000 × 10−3

P 0.7596 5.7000 × 10−11 0.0352 98.8942 1.8563 4.2400 × 10−7 1.9774 3.9100 × 10−7 1.5038 1.4000 × 10−3

GWO
O 0.7662 8.3600 × 10−7 0.0267 20.5201 1.5988 3.7700 × 10−7 1.7889 5.1600 × 10−8 1.9444 6.9000 × 10−3

P 0.7559 9.6600 × 10−8 0.0451 85.4750 1.9566 3.2000 × 10−8 1.2794 1.2700 × 10−9 1.7431 5.8000 × 10−3

MFO
O 0.7610 1.0000 × 10−6 0.0278 99.9996 1.9999 9.7400 × 10−7 1.6195 1.0000 × 10−6 2.0000 3.3000 × 10−3

P 0.7606 4.6700 × 10−7 0.0356 65.2163 2.0000 6.0000 × 10−8 1.4026 3.5800 × 10−7 1.5560 2.4000 × 10−3

PSO
O 0.7611 1.0000 × 10−6 0.0277 100.0000 2.0000 1.0000 × 10−6 1.6227 1.0000 × 10−6 2.0000 3.6000 × 10−3

P 0.7612 6.2800 × 10−8 0.0303 100.0000 2.0000 1.0000 × 10−6 1.6110 7.0900 × 10−7 2.0000 2.9000 × 10−3

WCA
O 0.7610 9.0500 × 10−8 0.0310 69.0199 1.5923 1.6900 × 10−7 1.6066 6.6400 × 10−7 1.5936 3.3000 × 10−3

P 0.7607 1.2600 × 10−16 0.0375 56.5387 1.0000 5.8700 × 10−10 1.1327 4.5500 × 10−7 1.5359 2.4000 × 10−3

WOA
O 0.7529 1.4900 × 10−8 0.0073 45.6208 1.7808 4.7200 × 10−7 1.6927 1.9500 × 10−7 1.4585 2.6000 × 10−2

P 0.7657 9.9900 × 10−7 0.0334 26.7065 1.9672 4.0300 × 10−7 1.5327 2.9500 × 10−8 1.4372 4.7000 × 10−3

Figure 21 shows the RMSE iteration curves obtained by TDM under two different
data conditions. It can be seen that after data prediction, the results obtained from pa-
rameter identification are more accurate. However, under insufficient data conditions, the
convergence speed of the algorithm is faster.
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Figure 21. Convergence curves of RMSEs obtained by MhAs for TDM under predicted data and
original data. (a) predicted data and (b) original data.

Figure 22 shows the distribution of TDM to RMSE under two data conditions. After
data prediction, the algorithm identifies a smaller range of RMSE. Especially for WCA and
WOA algorithms, the difference in RMSE between low and high data results is very signifi-
cant, which fully demonstrates that data prediction can not only improve the accuracy of
parameter identification but also improve the stability of identification algorithm perfor-
mance.
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5. Discussion

Table 9 is the summary of recent research in the field of PV cell parameter identification.
Most studies did not consider the impact of both data volume and noise data on identifica-
tion accuracy simultaneously. Compared to previous studies, the advantage of this article
lies in considering both the insufficient measured I-V data and the impact of noise data
and verifying three diode models [40,41]. Overall, due to the search randomness of MhAs,
there are inevitable that a few RBF-MhAs were not ideal when extracting parameters from
the three models of PV cell in this article. As shown in Table 3, using the WOA algorithm
to extract parameters from SDM, the RMSE obtained based on predicted data conditions is
greater than the RMSE obtained from insufficient data, resulting in abnormal situations.

Table 9. Summary of recent research on PV cell parameter identification.

Approach Year Cell Type
Data Process Model Type

Data De-Noising Data Prediction No SDM DDM TDM

WOA [14] 2020 KC200GT PV
√ √

ELM-MhAs [12] 2021 R.T.C. France PV
√ √

BP-IEO [20] 2021 R.T.C. France PV
√ √ √ √

APSO [15] 2022 MONO-SM110
√ √ √ √

In addition, by identifying the parameters of the three models, it can be distinctly
seen that as the amount of data increases, the convergence speed of MhAs decreases, but
the decrease is relatively small. However, after predicting and processing the data, the
algorithm has improved to a certain extent in terms of parameter identification accuracy
and stability. In addition, the study did not consider the effects of temperature and radiance
on parameter identification accuracy. Future research should fully consider the impact of
these environmental factors on PV cells.

6. Conclusions

This article uses a combination of RBF and MhAs to identify the parameters of PV cells,
including SDM, DDM, and TDM. RBF is used to de-noise and predict the data and extract
the parameters. The results are then compared with the original data extraction results. The
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final results fully demonstrate that data processing can improve the accuracy and stability
of parameter identification, especially with significant improvements. After data de-noising,
TDM achieved an accuracy improvement of 91.25% compared to the source data, while
SDM achieved an accuracy improvement of 89.03% after data de-noising. Compared with
the previous research, the progressiveness of this paper is that the insufficient measured
I-V data and the influence of noise data on the parameter identification accuracy are fully
considered, and RBF and eight typical MhAs are used to identify the parameters of three
diode models.

Therefore, in future research on PV cell parameter identification, analysis, and pro-
cessing of measured current and voltage data can be carried out, which is conducive to
improving the accuracy and stability of parameter identification. In addition, in practical
applications, due to limited equipment and difficulty in obtaining measured data, using
RBF for data prediction and parameter identification can solve the problem of data shortage
to a certain extent and help reduce research costs.
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