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Abstract: The valve is a key control component in the oil and gas transportation system, which, due to
the environment, transmission medium, and other factors, is susceptible to internal leakage, resulting
in valve failure. Conventional testing methods cannot judge the service life of valves. Therefore, it is
important to carry out valve life prediction research for oil and gas transmission safety. In this work,
a valve service life prediction method based on the PCA-PSO-LSSVM algorithm is proposed. The
main factors affecting valve service life are obtained by principal component analysis (PCA), the least
squares support vector machine (LSSVM) is used to predict the valve service life, the parameters are
optimized by using particle swarm optimization (PSO), and the valve service life prediction model is
established. The results show that the predicted valve service life based on the PCA-PSO-LSSVM
algorithm is closer to the actual value, with an average relative error (MRE) of 16.57% and a root
mean square error (RMSE) of 1.2636. Valve life prediction accuracy is improved, which provides
scientific and technical support for the maintenance and replacement of valves.

Keywords: ball valve; life prediction; principal component analysis; particle swarm optimization;
least squares support vector machine

1. Introduction

As an important part of the oil and gas transportation pipeline [1], valves are widely
used in pipeline networks. However, due to improper operation and production processes,
defects and other factors can lead to valve spool pitting, surface damage, or overall fracture,
resulting in valve damage and failure. Many factors can affect valve life. In this paper,
the causes of valve failures in certain pipelines in China were obtained through statistical
analysis and are shown in Table 1.

Table 1. Reasons Affecting Valve Life.

Reason Result

(a) Problems in the design and manufacturing process

Poor sealing leads to valve leakage or
continuous discharge of small

flow rate

(b) Gate plate and sealing surface deformation

(c) Damage during manufacture, transportation,
inspection, installation and use

(d) Solid impurity in medium

(e) Containing corrosive substances such as H2S, Cl−

ions in the medium

Through the disassembly of more than 28 large-diameter ball valves that failed on
multiple gas transmission lines, the morphological characteristics of the internal leakage
failure sites of the ball valves were recorded in detail. By analyzing the morphological
characteristics of the internal leakage sites, we found that the main manifestation of valve
failure is related to ball damage and seat seal damage, with specific damage forms shown in
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Table 2. Comparing the damage to oil and gas pipeline ball valves at each station, we found
that the proportion of valve internal leakage at oil transmission stations is high, accounting
for 46.4%, while internal leakage of valve at gas transmission stations is relatively low,
accounting for 10.7%. The main form of failure is damage to the seal of the valve seat, with
the vast majority of gas pipeline ball valve seal damage resulting from varying degrees of
scratching and wear. Seal shear fracture and seal tear-off are the most prevalent types of
damage. Examples of different degrees of scoring and wear, shear fracture, and tearing of
the seal are shown in Figures 1–3, respectively. Valve failures lead to oil and gas leakage [2],
resulting in accidents [3] and causing serious economic losses and even casualties. Valve
failure will cause the valve to be ineffective and ultimately unusable. At this point, the
service life of the valve is the time to valve failure. Therefore, in order to prevent accidents
caused by valve leakage, it is important to carry out valve life prediction research to
achieve timely maintenance and replacement of valves and avoid the impacts caused by
valve leakage.

Table 2. Failure forms of internal leakage of ball valves.

Main Failure Mode The Specific Embodiment of Failure Form

Sphere damage

(a) The ball switch is not in place
(b) Severely scratched spherical surface
(c) Spherical coating abrasion
(d) Foaming of spherical coating

Damaged valve seat seal

(a) Shear fracture of seal ring
(b) Scratch of seal ring
(c) Ring tearing
(d) Sealing ring wear
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The pipeline environment is complex and variable, and there are many different
reasons for valve failure, resulting in different service life timeframes. Thus, the relationship
between the service life of the valve and the cause is nonlinear, and it is impossible to
directly calculate the service life of the valve with a single mathematical model. Therefore,
it is necessary to predict the service life based on a large amount of data and information.
Artificial intelligence (AI) is an activity dedicated to making machines intelligent, and
intelligence is the quality of a system that is necessary to have foresight and provide
appropriate functions in the environment in which it is placed. At present, big-data-driven
artificial intelligence technology can obtain highly accurate results by training big data,
learning processes, and learning functions. AI can effectively retain complex nonlinear
relationships between parameters and efficiently and accurately build predictive models of
nonlinear parameters [4,5]. As a classic machine learning method, SVM (Support Vector
Machine) can solve nonlinear problems. It is suitable for learning small sample data and
is widely used in fault diagnosis and life prediction. The research on Remaining Useful
Life (RUL) was used by Nuhic et al. [6] through SVM for prediction. Research on SVM’s
prediction of battery life cycle was also put forward by Venugopal, Deepak et al. [7].
The results of Nicholas Kwong Howe Su et al. [8] showed that SVM can provide higher
RUL accuracy than LSTM and artificial neural networks. De Cooman et al. [9] proposed
a transformer fault diagnosis method based on the improved gray wolf optimization
algorithm and support vector machine (SVM) to achieve optimization of penalty factors
and kernel parameters to reduce the error detection rate. Zhang et al. [10] proposed a
fault diagnosis method for high-voltage circuit breakers based on multi-class correlation
vector machines. Least squares support vector machine (LSSVM), as one of the SVM
methods, has the simplest equation, the fastest solution speed and the highest accuracy, and
is widely used to deal with regression analysis [11]. Zhang et al. [12] developed a sparse
learning machine based on Least Squares Support Vector Machine (LSSVM). However, the
prediction performance of LSSVM is very sensitive to the choice of characteristic parameters.
The traditional parameter choice is carried out through an iterative experiment, which
depends on the user’s experience, and prediction accuracy is greatly influenced by human
factors; thus, results are far below the target accuracy. In addition, a large number of
measurement data must be recorded to obtain the optimal feature parameters of LSSVM,
which further increases the prediction time. Fan et al. [13] proposed a novel deep structure
using continuous restricted Boltzmann machine and support vector machine (SVM) and
optimized the SVM using particle swarm optimization (PSO) algorithm model parameters.
Wang et al. [14] presented the research results of a hybrid fault diagnosis technique, which
utilizes and improves the particle swarm optimization (PSO) algorithm to perform further
based on qualitative reasoning through knowledge-based initial diagnosis and sample data
provided by an online simulation model diagnosis.

Valves are affected by various factors during use that will affect its service time,
such as the transport media, sealing materials, and valve connection methods. Therefore,
valve failure data collection takes a long time and information is limited. In view of the
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characteristics of the small samples of available valve data and the multiple factors affecting
valve service life, the least squares support vector machine (LSSVM), which is appropriate
for small sample data analysis, is used as the basis of the valve life prediction model.
Principal component analysis (PCA) is used to reduce the dimension of feature variables,
and then particle swarm optimization (PSO) is used to optimize the parameters of the
LSSVM algorithm to improve prediction accuracy and establish the PCA-PSO-LSSVM
valve life prediction model.

2. Method
2.1. Principle of Principal Component Analysis

There are seven factors that influence valve life prediction: transportation medium,
pipeline, functional position, valve type, sealing materials, connection methods, and leakage
classification. There is some information overlap between these factors, which affects the
accuracy of the prediction model. Therefore, the characteristic variables affecting valve life
are first processed using principal component analysis to reduce the dimensionality of the
input variables and serve to improve the calculation [15].

Principal component analysis (PCA) is a multivariate statistical method that is used to
study multiple correlated variables. By making full use of the original observation informa-
tion when studying complex system problems and simplifying multiple related variables
into unrelated principal component variables through data dimensionality reduction op-
erations, the information redundancy problem can be effectively solved and algorithm
efficiency improved. The main processes include data standardization, determination of
principal components, calculation of variance contribution of principal components and
cumulative variance contribution, and selection of principal components.

(1) Data standardization: In a specific complex system, n sample data affected by m
variables

[
X1 X2 · · · Xm

]
form the original observation information matrix:

X =


x11 x12 · · · x1m
x21 x22 · · · x2m

...
...

...
xn1 xn2 · · · xnm

 =
[
X1 X2 · · · Xm

]
(1)

where m is the input sample dimension of valve life and n is the valve life sample dimension.
Considering the differences in the criteria used among variables, those with large

variance will cause greater interference in the principal component analysis; thus, the
original observations need to be standardized. The calculation formula is as follows:

x∗ij =
(xij − xj)

sj
(2)

where xij is the value of the valve service life input variable xj in the ith sample, xj =
n
∑

i=1
xij/n

is the sample average value of the valve service life input variable xj, sj =

√
1

n−1

n
∑

i=1
(xij − xj)

2

is the valve service life input sample standard deviation, and x∗ij is the standardized value
of xij to form a standardized data matrix X∗n×m.

(2) Principal component determination: the standardized observation information
matrix X∗ contains all the original observation values for valve service life, and the linear
combination of the input variables can obtain m uncorrelated new variables, that is, m
principal components, using the formula:
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y1 = c11X1 + c12X2 + · · ·+ c1mXm
y2 = c21X1 + c22X2 + · · ·+ c2mXm
...
ym = cm1X1 + cm2X2 + · · ·+ cmmXm

 (3)

where y1, y2, y3, · · · , ym are the 1st, 2nd, · · · , mth principal components of the original
variables X1, X2, · · · , Xm respectively, cij(i = 1, 2, · · ·m; j = 1, 2, · · ·m) are the original
valve service life input variables, Xi(i = 1, 2, · · ·m) is located in the principal component
yi(i = 1, 2, · · ·m) and is also the eigenvector corresponding to each eigenvalue of the
correlation coefficient matrix, which satisfies c2

i1 + c2
i2 + · · ·+ c2

im = 1.
(3) Principal component variance contribution and cumulative variance contribution

are calculated: the characteristic root of the correlation coefficient matrix is equal to the
variance of the corresponding principal component, which reflects the proportion of the
information contained in the corresponding principal component in the original observed
information. In this paper, the principal component variance contribution and cumulative
variance contribution are calculated based on the magnitude of the characteristic roots, as
shown in Equations (4) and (5):

qj = λj
/ m

∑
j−1

λj (4)

Qp =
p

∑
j=1

qj (5)

where λi(i = 1, 2, · · · , m) is the characteristic root of the correlation coefficient matrix.
From Equation (3), it can be seen that the expressiveness of the combined information

of the valve lifetime input variables is proportional to the variance contribution rate and,
combined with Equation (4), if the cumulative variance contribution rate of the first i
principal components is larger, the more information the first i principal components
contain about the original observation.

(4) In this paper, we make full use of the original observation information by principal
component analysis and solve the network parameter redundancy problem by reducing
the data dimensionality. Therefore, it is necessary to extract the principal components while
ensuring the cumulative variance contribution. Through principal component analysis, the
initial data set can be filtered out to cover most of the information, which ensures no data
loss while also reducing the complexity of model training and achieving the purpose of
reducing computational resources. Generally, no more than five or six principal components
are selected, and the cumulative variance contribution is not less than 80%.

2.2. Least Squares Support Vector Machine

Least Squares Support Vector Machine (LSSVM) is a deformation algorithm based on
SVM proposed by Suykens et al. [16]. LSSVM deforms the optimization formulation of the
objective function using two paradigms and transforms the inequality constraint in SVM
into an equation constraint. Therefore, LSSVM turns the original quadratic programming
problem into a linear system of equations, which not only simplifies the computational
complexity but also reduces computational time. The basic principle is as follows [17–21].
To perform nonlinear regression on the training sample {xi, yi}, i = 1, 2, · · · , n, xi ∈ Rn,
a nonlinear mapping function ϕ(x) is introduced to map the training sample to a high-
dimensional feature space for linear regression. The LSSVM model in the feature space can
be expressed as:

y(x) = wT ϕ(x) + b (6)

where w is the weight vector and b is the bias. Its objective function is:

minJ(w, ξ) =
1
2

wTw +
1
2

γ
n

∑
i=1

ξ2
i (7)
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where ξ is the training set prediction error variable and λ > 0 is the normalization parame-
ter. The constraints to be satisfied are:

yi = wT ϕ(xi) + b + ξi, i = 1, 2, · · · , n (8)

Then, the Lagrange multiplier is introduced to convert the data into the Lagrange function:

L(w, ξ, α, b) = J(w, ξ)−
n

∑
i=1

αi[wT ϕ(xi) + b + ξi − yi] (9)

According to optimization conditions:

∂L
∂w

= 0,
∂L
∂ξi

= 0,
∂L
∂αi

= 0,
∂L
∂b

= 0

the following system of linear equations can be obtained:
0 1 1 · · · 1
1 K(x1, x1) + γ−1 K(x1, x2) · · · K(x1, xn)
1 K(x2, x1) K(x2, x2) + γ−1 · · · K(x2, xn)
...

...
...

...
1 K(xn, x1) K(xn, x2) · · · K(xn, xn) + γ−1




b
α1
α2
...

αn

 =


0
y1
y2
...

yn

 (10)

where K(x, xi) = ϕ(x)T ϕ(xi) is the kernel function, which is the inner product of the
high-dimensional feature space. The regression function of LSSVM can be obtained as:

y(x) =
n

∑
i=1

αiK(x, x1) + b (11)

The radial basis function K(x, xi) = exp(−‖x− xi‖2/(2σ2)) is selected as the kernel
function of LSSVM. For the LSSVM model of the RBF kernel function, the only parameters
to be determined are the kernel parameter σ and the normalization parameter γ.

2.3. Particle Swarm Optimization Algorithm

The particle swarm optimization (PSO) algorithm simulates birds in a flock by design-
ing a massless particle [22], so the particle only has two properties: speed v and position
u, where velocity represents the speed of movement and position represents the direction
of movement. The particle swarm updates the above two properties by tracking two
extreme values in the search process: the first extreme value is called the individual extreme
value pbest, which is the optimal solution searched by the individual particle, and the other
extreme value is called the global extreme value gbest, which is the optimal solution found
by the entire population so far. The formulas for updating speed and position are:

vi = ωvi + c1r1(pbest − xi) + c2r2(gbest − xi) (12)

ui = ui + vi (13)

where vi is the velocity of the ith particle, ui is the current position of the ith particle,
c1, c2 are the acceleration constants, where c1 represents the weight of the particle and its
own historical optimal value, so that its local search ability is expanded, c2 represents the
weight of the optimal value of the particle tracking group, which represents the process of
assistance and information sharing among individuals of the group, reflecting the global
search capability of the particle swarm. r1 and r2 are random numbers between [0, 1]. ω is
the inertia weight, which is used to maintain the original velocity and plays a great role
in the convergence of the PSO algorithm. The larger the value of ω, the larger the particle
leap, and the easier it is to miss the local search ability, whereas the stronger the global
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search ability. Conversely, the stronger the local search ability, the weaker the global search
ability. Therefore, the inertia factor is set larger at the beginning of the iteration and then
gradually decreases during the iteration. The decay formula is:

ω = ωmax −
n(ωmax −ωmin)

nmax
(14)

where n is the current number of iterations and nmax is the total number of iterations. The
fitness function f of the PSO algorithm is expressed as the mean square error of the particle
swarm, as:

f (u) =
1
n

n

∑
i=1

(yu(xi)− yi)
2 (15)

2.4. PCA-PSO-LSSVM Model Construction

Although the PSO algorithm can optimize the relevant parameters of LSSVM to find
the global optimal solution, when there are many network input parameters and there is a
strong correlation between the parameters and if the PSO-LSSVM model is directly used for
prediction, it will lead to network input that is too complex and over-fitting. This will result
in the possible introduction of model interference and lead to low model accuracy. The
PCA algorithm can effectively deal with the correlation between variables. On the premise
of retaining enough original observation information, the main factors can be extracted
and the data dimension can be reduced, thereby reducing network input and achieving
the purpose of simplifying the network. The LSSVM model in this paper adopts the radial
basis kernel function. The parameters to be determined are the kernel parameter σ and
the normalization parameter γ, so it needs to be optimized. The PCA algorithm is used to
reduce the dimensionality of the original sample data, and the processed data is used as
the input of the LSSVM model. The PSO algorithm is then used to optimize the parameters
of the LSSVM model, which improves the analysis of the LSSVM model. The specific steps
are shown in Figure 4.
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Step 1: Set up the training sample set and test a sample set of the model. After
pre-processing the factors affecting valve service life, principal component analysis is
performed, and the extracted main factors are used as inputs to the valve service life
prediction model.

Step 2: The initial parameters of the PSO and LSSVM algorithms are set, and the
particle swarm ui = [σi, γi], i = 1, 2, · · · , M with initialized M LSSVM model parameters is
obtained randomly. The initial velocity vi = [vi1, vi2], i = 1, 2, · · · , M of the particle swarm
is obtained.

Step 3: The training samples are trained using LSSVM, and the fitness function is the
mean squared error of prediction for each particle. The initial fitness value is used as the
current optimal fitness value for each particle, and the current position is recorded as the
individual optimal position. The best initial fitness value is taken as the current global
optimal fitness value, and the position of the current best initial fitness value is recorded as
the global optimal position.

Step 4: The velocity and position of the particle swarm are updated within a limited
range of velocity and position, and the adaptation value is calculated based on the currently
updated position.

Step 5: Update the individual optimum. Compare the current fitness value with the
particle optimal fitness value, and, if the current fitness value is better, the current position
of the particle is taken as its individual optimal position and the global optimum is updated.

Step 6: If the predefined maximum number of iterations is reached or the predefined
precision is reached, and if it is satisfied, then the search is finished; if it is not satisfied,
then repeat steps 4 and 5 to continue the search.

Step 7: The PCA-PSO-LSSVM model is built using the parameters corresponding to
the optimal position.

3. Data Forecasting and Discussion
3.1. Test Data

The data set used in this paper includes many pipelines with valve diameters of
4~40 inches, and the usage statistics of pipeline valves under different conditions (such
as transporting natural gas, refined oil and crude oil on trunk lines or bypass lines). The
statistical results are shown in Figure 5. The factors related to valve life, such as transmission
medium and functional pipeline, are taken as the input data set of the prediction model,
and the actual service life is taken as the output. The data set is divided into training
samples and test samples of the valve life prediction model to verify the feasibility of the
method proposed in this paper.

Two types of valves were investigated, of which ball valves accounted for 94% and
gate valves accounted for 6%. According to the statistics of valve usage, seven variables
such as conveying medium, pipeline, and valve functional position, are regarded as the
influencing factors of valve service life. These variables include 3 types of conveying
media, 13 pipelines, 2 types of functional positions, 4 types of sealing materials, 2 types of
valves, 2 types of valve connections, and 2 levels of leakage classification. With the factors
influencing valve service life as the input of the model, the use time of the valve as the
output of the model, and month as the measurement unit of the use time, the valve service
life prediction model is established.
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3.2. Principal Component Analysis

To achieve data dimensionality reduction, it is essential to conduct principal com-
ponent analysis (PCA) to determine the main factors affecting the valve service life. The
eigenvalues of the covariance matrix of the seven indicator variables are shown in Table 3,
and Figure 6 shows the histogram of the principal component contribution. From Table 3
and Figure 6, it can be seen that the cumulative variance contribution rate is 96.80% when 5
principal components are selected. At this point, 5 principal components are sufficient to
reflect the characteristic information of the original 7 variables. Compared with the 7 input
features of the original sample data, the extraction of principal components by PCA can
effectively reduce the dimensionality of the feature variable space, and at the same time,
retain most of the information of the original variables and avoid information redundancy
caused by cross-correlation of the original variables.

Table 3. Descending eigenvalues and contribution rates.

Main
Ingredient Eigenvalues Contribution

Rate/%
Cumulative

Contribution Rate/%

1 2.37657 33.95104 33.95104
2 2.00350 28.62149 62.57253
3 1.26736 18.10506 80.67759
4 0.62783 8.96897 89.64656
5 0.50074 7.15337 96.79993
6 0.22401 3.20007 99.99995
7 7.18 × 10−17 1.03 × 10−15 100
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The linear expression of the principal components can be obtained from Equation (3)
as Equation (16). The original feature input is reduced from 7 feature variables to 5, thereby
reducing the input of sample data.

y1 = 0.3414X1 + 0.3800X2 + 0.5744X3 + 0.1358X4
−0.0344X5 + 0.2293X6 + 0.5744X7
y2 = −0.4188X1 − 0.3415X2 + 0.3133X3 − 0.3926X4
+0.5967X5 − 0.0398X6 + 0.3133X7
y3 = −0.2904X1 − 0.2879X2 − 0.0251X3 + 0.5195X4
+0.0495X5 + 0.7478X6 − 0.0251X7
y4 = 0.2287X1 − 0.0624X2 − 0.0243X3 + 0.6643X4
+0.5584X5 − 0.4353X6 − 0.0243X7
y5 = −0.5670X1 + 0.7828X2 − 0.0899X3 + 0.0903X4
+0.2037X5 − 0.0011X6 − 0.0899X7


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On this basis, the original data vector with high-dimensional redundancy is dimen-
sionally reduced. The orthogonal transformation in linear programming is used to reduce
the original correlated variables to a few uncorrelated composite variables, which lays the
foundation for the subsequent model prediction of valve life.

3.3. Model Analysis

Data processed by PCA is used as the input of the valve prediction model, and the
valve service life is used as the model output to establish the valve service life prediction
model. The valve service life prediction results based on PCA-PSO-LSSVM are shown in
Figure 7.

Processes 2023, 11, x FOR PEER REVIEW 11 of 15 
 

 

Figure 6. Principal component contribution rate histogram. 

The linear expression of the principal components can be obtained from Equation (3) 

as Equation (16). The original feature input is reduced from 7 feature variables to 5, 

thereby reducing the input of sample data. 

1 1 2 3 4

5 6 7

2 1 2 3 4

5 6 7

3 1 2 3 4

5 6 7

4

0.3414 0.3800 0.5744 0.1358

0.0344 0.2293 0.5744

0.4188 0.3415 0.3133 0.3926

0.5967 0.0398 0.3133

0.2904 0.2879 0.0251 0.5195

0.0495 0.7478 0.0251

y X X X X

X X X

y X X X X

X X X

y X X X X

X X X

y

   

  

    

  

    

  

 1 2 3 4

5 6 7

5 1 2 3 4

5 6 7

0.2287 0.0624 0.0243 0.6643

0.5584 0.4353 0.0243

0.5670 0.7828 0.0899 0.0903

0.2037 0.0011 0.0899

X X X X

X X X

y X X X X

X X X










  


   
    

     

(16)

On this basis, the original data vector with high-dimensional redundancy is dimen-

sionally reduced. The orthogonal transformation in linear programming is used to reduce 

the original correlated variables to a few uncorrelated composite variables, which lays the 

foundation for the subsequent model prediction of valve life. 

3.3. Model Analysis 

Data processed by PCA is used as the input of the valve prediction model, and the 

valve service life is used as the model output to establish the valve service life prediction 

model. The valve service life prediction results based on PCA-PSO-LSSVM are shown in 

Figure 7. 

 

Figure 7. PCA-PSO-LSSVM prediction result graph. Figure 7. PCA-PSO-LSSVM prediction result graph.

In order to verify the prediction effect of PCA-PSO-LSSVM, the PCA-PSO-LSSVM
model is compared with the PSO-LSSVM model, and the prediction results of the PSO-
LSSVM model are shown in Figure 8. The relative error obtained is shown in Figure 9.
As can be seen from Figure 9, the PCA-PSO-LSSVM model has a smaller relative error
associated with the prediction results compared with the PSO-LSSVM model, indicating
that the PCA algorithm for data dimensionality reduction can effectively improve the
prediction accuracy of the model.
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At the same time, in order to verify the optimization effect of the particle swarm
optimization (PSO) algorithm, the prediction results of the PSO-LSSVM and LSSVM models
are compared. The prediction results of the LSSVM model are shown in Figure 10, and
the relative error is shown in Figure 11. As can be seen from Figure 11, the PSO-LSSVM
model has a smaller relative error associated with the prediction results than the LSSVM
model, indicating that the PSO algorithm can effectively optimize the model parameters
and establish a more reliable and effective model.
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The mean relative error (MRE) and root mean square error (RMSE) of PCA-PSO-
LSSVM, PSO-LSSVM, and LSSVM are obtained, and the prediction results of PCA-PSO-
LSSVM, PSO-LSSVM, and LSSVM are compared, as shown in Table 4. From Table 4, it
can be seen that the MRE and RMSE of PSO-LSSVM are improved by 16.97% and 3.0943,
respectively, compared with LSSVM. The MRE of PCA-PSO-LSSVM is 16.57%, which is
improved by 3.15% and 20.12%, respectively, compared with PSO-LSSVM and LSSVM. The
RMSE of PCA-PSO-LSSVM is 1.2636, which is improved by 2.5201 and 5.6144 compared
to PSO-LSSVM and LSSVM, respectively. It can be seen that PCA-PSO-LSSVM can more
accurately predict the service life of valves.

Table 4. Comparison of evaluation indicators of various prediction methods.

Method MRE RMSE

PCA-PSO-LSSVM 16.57% 1.2636

PSO-LSSVM 19.72% 3.7837

LSSVM 36.69% 6.8780

4. Conclusions

This work investigated the method of valve service life prediction. Firstly, through
analysis of the reasons for valve failure, the prediction model of influencing factors and
valve life is established, and the service life of the valve is predicted based on the PCA-
PSO-LSSVM algorithm. A PCA algorithm was used to perform principal component
analysis on the original sample data to obtain five features containing the main information
to realize data dimensionality reduction; the five-dimensional data after dimensionality
reduction contained more than 95% of the information of the original sample data. Then,
the parameters of the LSSVM model were optimized using a PSO algorithm to improve the
prediction accuracy of the model, and a valve service life prediction model based on PCA-
PSO-LSSVM was established. The PCA-PSO-LSSVM, PSO-LSSVM, and LSSVM models are
compared. The results show that the valve life prediction values based on PCA-PSO-LSSVM
are closer to the actual values, and the MRE of the prediction results are improved by 3.15%
and 20.12% compared with PSO-LSSVM and LSSVM, respectively; the RMSE is improved
by 2.5201 and 5.6144 compared with PSO-LSSVM and LSSVM, respectively. Results show
that the proposed method has higher accuracy than PSO-LSSVM and LSSVM, which can
improve the reliability of valve life prediction, and provide guidance and suggestions for
the maintenance and replacement of valves. Thus, the utilization rate of valves can be
effectively improved to avoid accidents.
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