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The desired changes in flow characteristics are obtained by flow control, which implies
manipulating flow behavior such as drag reduction, mixing augmentation, or noise atten-
uation, employing active or passive devices. The active devices are operated by external
means and hence require an additional power source, whereas passive controls do not have
such requirements. However, passive techniques are associated with significant drawbacks,
such as the thrust penalty in the case of jet mixing enhancement. The typical active flow
control methods include oscillation and flow perturbation, acoustic excitation, synthetic jet,
plasma actuator, and Lorentz force. Apart from active flow control, this Special Issue also
deals with the active process control of parameters that are not necessarily about fluids
only, for instance, the active control of process parameters in freight trains.

This Special Issue concerns active flow control and related processes or those that
can be actively reconfigured or optimized using machine-learning algorithms and sensors
that cooperatively work under the broad framework of the Internet of Things. Most of
the work focuses on data-intensive machine (or deep) learning methods and possible
utilization of the industrial internet. The editors have curated a series of articles to aid in
upgrading state of the art in multiple areas involving these broad themes. This edition
begins with a paper by Tayyaba et al., carried out by a team of researchers from Pakistan,
Qatar, UAE, and China [1]. In this study, under the 10T-based environment, the authors
simulated and fabricated bio-engineered, bio-endurable, and bio-compatible microchannels
for implantation in the varicose veins in such a way that avoids tissue damage. It has
been demonstrated that such channels may replace varicose veins to allow natural blood
flow in the veins. Such an active flow management for natural blood flow is an important
contribution. Although not covered in this article, machine learning and the Internet of
Things may provide requisite data to avoid tissue damage when the flow process challenges
are well-categorized for microchannels for varicose veins. Next, Brezulianu et al. describe
how railway companies efficiently manage their logistical operations to reinforce their
strategically advantageous positions in the market and for maximizing profit [2]. This
article classifies the whole system into three parts, which are used to transmit the status
and the operating information to a web server and can be viewed in real-time for efficient
coordination and appropriate response.

This work is followed by an article by Jinag et al., which highlights the importance
of dynamic reconfiguration of integrated modular avionics for aircraft configuration and
also to act as an appropriate tool to manage resource failures [3]. A three-step procedure
is developed and successfully tested on a case study. Such a technique is advantageous
to validate dynamic reconfiguration at the start of system design, and is cost-effective.
Reconfiguration under resource failure conditions requires active process control, and
naturally, under multiple constraints, the available prior data, industrial internet, and
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machine-learning algorithms may additionally aid in an improved reconfiguration process.
Following this, Tkáčik et al. elaborate on a new frontend device (FRED) framework to
enable possibly connecting customized electronics to standard and existing SCADA systems
for modern distributed control systems, which reduces the load on the SCADA systems as
the FRED performs the bulk of the computations [4]. Next, Kim et al. propose a discrete
wavelet transform-based stacked auto-encoder-based CNC machine tool diagnosis [5],
utilizing the well-known benefits of machine-learning algorithms in cutting tool wear
prediction, diagnostics, and prognostics. Next, Wang et al. [6] present test results for
an accurate droplet judgment method using an advanced machine-learning technique
based on dimensionalized data and a logistics classifier for improved infusion monitoring
equipment without adopting advanced signal processing circuits that may increase the
equipment cost and power consumption. Consequently, the hospitals under study have
set up several devices for infusion monitoring. In this work, the authors have stipulated a
method for accurately measuring the droplets without increasing the cost.

Another article by Kaushik et al. looks into the mixing characteristics of cold and flame
jets. Jet mixing has many applications, from household appliances to rocket science [7].
Mixing fuel and an oxidizer in the combustion chamber should occur efficiently and within
a small distance to begin efficient burning. Moreover, it is also vital to investigate the mixing
behavior of fuels and oxidizers in the presence of sustainable combustion. Given these
aspects, the authors numerically investigated three inline jet configurations with a methane
jet (center) and two peripheral oxygen jets, with and without combustion. Interestingly, the
results reveal that the combustion significantly impacts jet mixing characteristics.

A mobile wireless sensor network (MWSN) is vital in many military and civil applica-
tions, for instance, to cover designated arenas using a swarm of unmanned aerial vehicles
(UAV), as addressed by Wang et al. [8]. An active process flow in this application is essential
for efficient trajectory tracking, which can be further improved with machine-learning
techniques. Subsequently, Chen et al. reconsider the Q-Learning method for discrete-time
linear systems’ quadratic optimal control problem [9]. Through various applications, this
article discusses the possibility of actively improving the process flow by selecting existing
Q-Learning based controllers and modifying them through ridge regression using model-
free methods. Identifying reconfigurable manufacturing systems (RMSs) introduces the
difficulty of adequate and swift modification to resolve dynamic updates in a manufac-
turing setup using an active process flow reconfiguration, as addressed by Kaid et al. [10].
Following this, Karodi et al. utilize the available data accumulation and data dependency
analysis and puts forward subsequent steps in a proactive and non-invasive decision and
control solutions for reduced energy consumption in water treatment processes [11]. Fur-
thermore, Li et al. discuss the problem of the parameter stability region of linear active
disturbance rejection control (LADRC) controllers [12]. The dual-locus diagram method
helps find the upper limit of the LADRC bandwidth for both first-order and second-order
time-delay systems. Finally, Deb et al. present a detailed review of different mathematical
models of microbial fuel cells available in the literature [13], which aid in pollutant removal
purposes using microorganisms as bio-catalytic contents with suitable parametrizations of
three different variants, and are attractive options for power generation and also cheaper
mechanisms for extracting clean water.

The above papers provide a detailed technical repertoire of the interplay of several
essential fields such as active flow control, machine learning, and the Internet of Things.
With many applications currently under development in active process flows, we are
confident in the continued relevance of these topics. We thank all the contributing authors,
the funding agencies which facilitated their work, the Editor-in-Chief for support on the
Special Issue, and the editorial staff of Processes for their dedicated efforts. The Guest
Editors, Dr. Valentina E. Balas and Dr. Dipankar Deb, are also thankful to Dr. Mrinal
Kaushik for participating in this editorial along with us.
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