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Abstract: With the development of the Internet of Things (IoT) and virtual reality (VR) technology,
the demand for high-precision gesture intelligent analysis of a human–machine interaction module
for IoT–VR systems is increasing. Therefore, random forest (RF) and convolution neural network
(CNN) algorithms are used in this study to build an intelligent gesture recognition model. The
experiments were conducted to test the application performance of the design model. The test results
show that the qualification rate of the analytical model designed in this study is significantly higher
than that of the comparative model. When the threshold is determined to be 43.26 mm, the analytical
qualification rates of the RF-CNN (the method of combining RF with CNN algorithms), faster regions
with CNN features (Faster-RCNN), and RF models are 82.41%, 76.10%, and 59.10%, respectively. The
calculation time of the RF–CNN model is between the two comparative models. From the test data,
it can be observed that the research results have certain significance for improving the accuracy of
gesture machine recognition technology in China’s VR Internet of Things (IoT) system.

Keywords: RF; CNN; gesture analysis; VR; IoT; human–computer interaction

1. Introduction

With the progress of science and technology, various types of computer equipment
play an increasingly prominent role in human life. All kinds of intelligent devices are
indispensable to human life [1,2]. The Internet of Things (IoT) and virtual reality (VR),
as the key technologies leading the future development of science and technology, are
increasingly used in different intelligent devices. How to realize an efficient human–
computer interaction in IoT–VR devices has become a hot topic. Visual gesture analysis
technology has considerable application value in this field [3]. Unlike other methods (such
as data and color gloves), visual-based visual gesture analysis technology does not need to
install any other devices for the user. Users can use this intelligent device under natural
conditions, which does not have a significant impact on other activities [4]. Therefore,
vision-based gesture analysis and visualization techniques are broadly used in human–
computer interaction modules for education, medical treatment, games, and intelligent
devices. However, many problems still exist in relation to the gesture analysis method.
For example, most of the analytical models used at present cannot accurately identify
different hand-joint points, because the overall difference in human hand skin is minor.
Moreover, human hands have many joints. In most cases, it takes about 20 joint points to
accurately describe hand movements. The existing gesture recognition models cannot solve
this problem well, which is also the motivation for this research. Therefore, the contribution
of this study is to attempt to improve the accuracy of human–machine interaction gesture
analysis for IoT–VR devices by constructing a hybrid algorithm analysis model. This study
can also provide a theoretical reference for the design of IoT–VR devices with good gesture
recognition capabilities in the commercial field in the future. In addition, the random forest
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algorithm is innovatively selected from numerous machine learning algorithms to extract
the details of gesture joints and provide high-quality initial-joint positions. The CNN
algorithm, which has a strong ability to extract global nonlinear feature relations, is used
to extract the original image data, so as to further improve the overall gesture recognition
accuracy of the model.

2. Related Works

Experts in the industry have conducted a considerable amount of research to improve
the working performance of gesture analysis and recognition models. Xia et al. [5] proposed
a human motion gesture recognition algorithm based on a deep neural network to solve
the low-efficiency result in the analysis of an intelligent analytical model of hand gestures
in a VR system combined with the Internet of Things (IoT–VR). Test experiments showed
that the gesture recognition accuracy of the motion gesture recognition algorithm was
significantly higher than that of the other model. Rzecki [6] proposed a new time-series
classification algorithm and tested its performance for human gesture recognition. This
algorithm provided better classification results than the other machine learning algorithms.
For the 22 different gestures of 10 volunteers, the error rate of the new algorithm was 37%
to 75% less than that of the other algorithms. Yang et al. [7] observed that the performance
of the hand motion recognition model in a VR human dance event was low. Therefore, a
new algorithm was proposed for hand motion recognition in dance studies. The results
show that the resolution accuracy of the gesture motion technology of the algorithm in
multiple VR dance videos was higher than that of the other model. The calculation time
was also significantly lower than the comparison algorithm, which had a high application
value. Zhang et al. [8] observed that complex human gestures were difficult to recognize
and learn by machine models. Therefore, a recognition model combining naive Bayes,
decision tree, and support vector machine models was proposed in the research. Based
on this model, a hand gesture recognition model that could be deployed on the Android
platform was developed. The test results show that the gesture recognition accuracy of the
model is high, and the recognition results are less affected by hand occlusion.

Jin et al. [9] observed that hand-tapping and -holding movements were not easily
recognized by the visual system. Therefore, an improved hand gesture recognition model
was designed based on intelligent hybrid composite finger technology. After testing the
model in multiple datasets, the recognition accuracy of human knocking and holding
movements of the model was significantly higher than that of traditional machine learning
recognition and convolution neural network (CNN) models. Yang [10] observed that the
ability of intelligent devices to analyze hand gestures during rainfall was significantly
weakened. Therefore, an analytical model for hand gestures during rainfall was proposed,
which combined a Kalman filter and state transfer function. The performance test results
showed that the hand gesture resolution accuracy of the model during rainfall was much
higher than that of the traditional analytical model. The analytical results were also less
affected by ambient light.

Li et al. [11] observed that gesture recognition was of great significance for human–
computer intelligent interactions between the IoT and VR devices. Therefore, a hand
gesture recognition model based on an improved spatial fuzzy-matching algorithm was
proposed. The model had low requirements for the size of the training dataset. The error
of gesture recognition was 15.63% lower than that of the recognition model based on
the support vector machine algorithm. Fioranelli et al. [12] proposed a gesture analysis
algorithm based on short-time Fourier transform technology and a two-way recurrent
neural network. The effectiveness of the algorithm was tested using three common gesture
parsing data. It was proved that the accuracy of the gesture analysis of this model was
11.6~24.0% higher than that of the machine learning model. Velliangiri et al. [13] designed
an automatic detection model that combined CNN and crow search algorithms to solve
false-frame recognition in video images. The test results showed that the method had a
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false-frame-recognition accuracy of 97.21% on the experimental dataset, which was higher
than the other existing methods. The literature review is summarized in Table 1.

Table 1. Summary table for literature review.

Reference Number Author Title Contribution

[5] Xia Z, Xing J, Wang C,
Li X

Gesture Recognition Algorithm of Human
Motion Target Based on Deep Neural Network

A high-precision motion gesture
recognition algorithm is designed

[6] Rzecki K
Classification Algorithm for Person

Identification and Gesture Recognition Based
on Hand Gestures with Small Training Sets

A new time-series classification algorithm
is proposed, which has a stronger gesture

classification ability

[7] Yang W, Wang J, Shi J Video Quality Evaluation toward Complicated
Sport Activities for Clustering Analysis

A new algorithm is proposed for hand
motion recognition during a dance

[8] Zhang H, Xu W, Chen
C, Bai L, Zhang Y

Your Knock Is My Command: Binary Hand
Gesture Recognition on Smartphone

with Accelerometer

A mobile gesture recognition model
combining naive Bayes, decision tree, and

support vector machine models
is proposed

[9] Jin H, Dong E, Xu M,
Yang J

A Smart and Hybrid Composite Finger with
Biomimetic Tapping Motion for Soft

Prosthetic Hand

An improved hand gesture recognition
model based on intelligent hybrid

composite finger technology is proposed

[10] Yang Z

Unscented Kalman Filter (UKF)-Based
Algorithm for Regional Frequency Analysis of

Extreme Rainfall Events in a
Nonstationary Environment

A hand gesture analysis model for rainfall
events is designed by combining a Kalman

filter and state transition function

[11]
Li H, Wu L, Wang H,

Han C, Quan W,
Zhao J

Hand Gesture Recognition Enhancement
Based on Spatial Fuzzy Matching in

Leap Motion

A hand gesture recognition model based
on improved a spatial fuzzy-matching

algorithm is proposed

[12] Fioranelli F, Guendel
R G, Yarovoy A

Phase-Based Classification for Arm Gesture
and Gross-Motor Activities Using Histogram

of Oriented Gradients

A gesture parsing algorithm based on
short-time Fourier transform technology

and a bidirectional recurrent neural
network is established

[13] Velliangiri S,
Premalatha J

A Novel Forgery Detection in Image Frames of
the Videos Using Enhanced Convolutional

Neural Network for Face Images

A video false-frame detection model
combining CNN and crow search

algorithms is designed

In summary, various, improved hand gesture analysis and recognition models were
designed. However, most of these models were only applied to general-life scenarios. The
research results that can be applied to VR and IoT scenarios are quite rare. VR and IoT
devices will be widely used in the future. The gesture analysis and recognition models
must be able to support this application environment. Therefore, our research attempted
to design a gesture analysis model that could be applied to the gesture human–computer
interaction module of VR combined with IoT intelligent devices.

3. Construction of Hand Gesture Analysis Model Based on Hybrid RF and Improved
CNN Algorithms
3.1. Design of Gesture Analysis Model Based on Hybrid RF and CNN Algorithms

One of the core elements in the human–computer interaction of the Internet of Things
is to interpret human-motion elements. On this basis, a virtual space model was designed.
The human hand has many joints, making it significantly more difficult to understand than
other parts of the body. Therefore, RF and CNN models were selected to build models that
could improve the accuracy of gesture-recognition technology in the human–computer
interaction of the IoT. CNNs have powerful feature-extraction capabilities, which are widely
used in gesture analysis tasks. This is also the main reason why the CNN algorithm was
chosen for the gesture feature extraction in this study. At present, in the intelligent analysis
of hand gestures, most of the regression results are directly output by the CNN network.
Figure 1 presents the gesture parsing process. The input of the model is the hand image and
the output is the joint node coordinate map. The disadvantage of this method is that a lot
of image details are lost. It is difficult to improve the accuracy of the results further [14–17].



Processes 2023, 11, 1348 4 of 17

Figure 1. Calculation flow of hand gesture analysis model based on the CNN.

Other scholars have attempted to provide an intelligent analysis of hand gestures
through RF algorithms. Compared to other machine learning algorithms, this algorithm
has a rapid training speed and low understanding difficulty. For example, support vector
machines have a high computational complexity and slow computational speed. Figure 2
presents the analysis process of the algorithm. In this model, the input is the hand image.
The output is the joint-point coordinate map. The algorithm extracts the feature of the joint
from the input image and outputs the offset corresponding to the joint point. The offset is
used by the initial joint to update the position of the subsequent moment [18].

Figure 2. Calculation flow of gesture analysis model based on RF.

The disadvantage of this model is that the initialization effect of joint points is poor.
The misplacement of prediction points easily occurs. To sum up, the hand joint can be
regarded as a hinge structure with certain integrity. It is suitable to use the CNN to
extract global features; however, the CNN’s ability to capture details is weak [19–22]. This
shortcoming can be solved by the RF algorithm. At the same time, the CNN algorithm can
also solve the poor initial joint-point effect of the RF algorithm and provide high-quality
initial-joint position images. Therefore, a hybrid gesture analysis model integrating RF
and CNN algorithms was proposed. The calculation flow of this algorithm is presented in
Figure 3. For this model, the hand image captured from the global joint feature information
in the CNN was first input. Then, the information and original image were entered into the
RF algorithm to extract the offset of the joint-point coordinates. Finally, the offset of the joint
point was used to update the gesture position to complete the gesture resolution [23–25].
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Figure 3. The calculation process of the hybrid gesture analysis model based on RF and
CNN algorithms.

The CNN part of the RF and CNN hybrid gesture analysis model is usually facilitated
by a 2D neural network structure. However, this traditional neural network structure is not
directly applicable to 3D regression tasks. Therefore, the neural network module needed to
be improved. The specific design of this part is presented in the following section. The rest
of the gesture recognition model is mainly explained here. First, the correction process of
the RF algorithm in the model was designed. In essence, the RF algorithm repeatedly trains
multiple interrelated decision tree models through the input data. The final calculation
results are generated from the calculation results of these models in a certain grass-roots
way. Since this algorithm is relatively common, it is not repeated here. After the CNN
algorithm output the initial results of the gesture, the initial joint position and depth map
were used to extract the features. Then, the results were input into the RF algorithm.

The random difference feature was selected as the form of feature extraction. However,
in the previous hand gesture analysis algorithms, the deviation between the initial and
actual positions of the joint could not be accurately estimated. Due to the high degree of
similarity between the joints, the features containing global information were extracted.
Therefore, differential features with global sampling were obtained. The random sampling
method was selected to reduce the high number of calculations obtained by the global
sampling method. Because the CNN algorithm was used to obtain the initial joint position
this time, the global regression problem was mapped to a local regression problem. There
was no need to extract the global features.

The dense difference feature was selected for the calculation. This method takes the
joint point as the center and selects a sampling area with a side length of w. In this area,
samples are obtained in a fixed step to obtain a lattice-style sampling result. The dense
difference can be regarded as a special case of random difference. Compared to the latter
method, the former has a stronger ability to describe the texture features of the gesture
depth map.

In the correction stage, the RF algorithm still needs the offset ∆Ji data to describe how
the current joint point moves to the real position. The index is calculated according to
Formula (1):

∆Ji = J∗i − J0
i (1)

In Formula (1), J∗i and J0
i represent the actual coordinate and predicted positions of the

i-th joint point output by the CNN network. i = 1, 2, . . . , C. C represents the total number
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of joints in the hand image. The data output by the RF algorithm during the prediction
process is also offset. For the i-th joint point, after obtaining the offset ∆i, position J0

i of the
joint point in the previous phase can be updated. Then, joint position Jp

i can be updated by
Formula (2):

Jp
i = J0

i + ∆i (2)

The correction phase in the gesture analysis model is completed.

3.2. Design of Improved 3D CNN for Gesture Analysis

The traditional 2D CNN cannot be directly applied to the 3D joint-point estimation.
The 2D neural network sets the values of depth maps to grayscale maps, while the convolu-
tional kernel only calculates features in the x− y plane. The information in the z direction
cannot be used. When using a 3D CNN, the depth map is viewed as a point that extracts
the features in a 3D space to solve the problem of 3D positioning. The study attempted
to design an improved 3D CNN dedicated to the intelligent analysis of hand gestures in
IoT–VR human–computer interaction. Figure 4 presents the calculation process of the CNN
algorithm. The algorithm presented in Figure 4 first maps the input depth map to a point
cloud. The distance function with projection was used to describe the point cloud data,
and the processed point cloud data was entered into the 3D CNN. Finally, the final 3D
coordinates of the joint points were output.

Figure 4. Calculation flow of 3D CNN.

The data obtained by a depth camera can be regarded as 2.5D point cloud. The depth
camera cannot perceive the back data, while the front scanning result is in the form of
a point cloud. Although 2.5D data can best describe the original information, it cannot
be directly input into a 3D convolutional neural network. Therefore, the greatest role
of the 3D description is to map a 2.5D point cloud into a form that can be processed in
a 3D neural network and describe the hand features in a 3D space. However, it is very
time-consuming to accurately calculate the value of a truncated signed distance function
(TSDF) with a projection. The TSDF with directional projection was used to replace the
TSDF. The design process is analyzed in detail below. To calculate a directional projection
TSDF with a M × M × M dimension, the length, width, and width of the axis aligned
bounding box (AABB) of the point cloud were aligned with the x, y, and z directions of the
point cloud. The center of the AABB coincided with the center of gravity of the point cloud.
The side length of AABB is l, which can be calculated according to Formula (3):

l = max
{

lx, ly, lz
}

/M (3)

In Formula (3), lx, ly, and lz are the side lengths of the AABB in the three point cloud
directions. lx, ly, lz is the resolution of the cube. The TSDF divides AABB into several
grids. There is a value in each grid. The value is truncated to be between −1 and 1, and
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the TSDF is mapped according to the calculation direction presented in Figure 5. The red
line in Figure 5 represents the object to be described. The data in the mesh represent the
distance from the mesh to the object surface. Each grid x in the space has an intersection
point p connected to the camera. The explanation for the character variables in Figure 5 is
presented in the lower part of Figure 5.

Figure 5. Example of calculating TSDF in the z direction. The gray dotted line is the camera’s line of
sight. The space in the figure is divided into four sections, namely, a white surface, a green visible
space, a red object occlusion, and a gray invisible space.

The distance of x and p in the z direction is sd fz(x); the calculation method is presented
in Formula (4):

sd fz(x) = camz(x)− depth(pic(x)) (4)

In Formula (4), pic(x) represents the projection point of x on the image. pic(x) is
the depth value corresponding to the intersection of the projection point in the projection
direction and the plane. The reason why the TSDF value needs to be truncated is that, if
it is too far away, this causes the relationship between the value and object surface to not
be obvious, thus affecting the description of the object. The TSDF value TSDFz(x) in the z
direction can be calculated according to Formula (5):

TSDFz(x) = max
(
−1, min

(
1,

sd fz(x)
t

))
(5)

TSDFx(x) and TSDFy(x) can be obtained in the same way.
Figure 6 presents the structure of the 3D CNN. Different-colored matrices represent

different processing sets. The horizontal arrow represents the data flow. The arrow direction
was used to describe the direction of the data flow. The vertical arrow represents the format
of the data flow. The matrix splicing presented in Figure 6 concatenates multiple matrices
along the channel dimension. Figure 6 describes the calculation process and structure of
the neural network in detail.
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Figure 6. Structure diagram of improved 3D CNN.

The loss function of the 3D neural network is presented below. The training set is
(Xn, Φn, Ψn). Xn, Φn, and Ψn represent the depth map, joint coordinates, and gesture types
of the depth map in the camera coordinate system. Yn = 1, 2, . . . , N. The depth map Xn can
be mapped to Vn by zonal projection. Then, Φn is converted from the camera coordinate
system to the cube coordinate system to obtain Yn. The calculation method is presented in
Formula (6):

Yn = Tvol
cam(Y

∗)/M + 0.5 (6)

In Formula (6), Tvol
cam(·) is the conversion matrix of the camera coordinate system to the

directional projection coordinate system. The loss function loss in the form of two-norm
was selected to construct the CNN. The calculation method is presented in Formula (7):

loss =
N

∑
n=1
‖Yn − Γ(Xn)‖2 (7)

In Formula (7), Γ(Xn) represents the prediction result of the neural network. To
prevent the over-fitting phenomenon of the neural network, the random discard module
was incorporated. Each neuron p has the potential to stop working. Before this step is
performed, neuron i satisfies Formulas (8) and (9):

z(l+1)
i = w(l+1)

i yl + b(l+1)
i (8)

y(l+1)
i = f

(
z(l+1)

i

)
(9)

z(l+1)
i is the total input corresponding to the i-th neuron in layer z(l+1)

i . w(l+1)
i is the

neuron weight coefficient. yl is the output of the l-th layer connected to the corresponding
neuron. b(l+1)

i is the bias coefficient of the corresponding neuron. y(l+1)
i is the corresponding

prediction result of the neuron. f (·) represents the activation function. When the book-
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discarding operation is performed, according to the discarding probability p, the output
calculation process of the neurons is presented in Formulas (10) and (11):

z(l+1)
i = w(l+1)

i ỹ(l) + b(l+1)
i (10)

y(l+1)
i = f

(
z(l+1)

i

)
(11)

ỹ(l) is the neuron following random discarding in the l-th layer. To prevent the
neural network from over-fitting, the regularization term is added. The commonly used
regularization methods are one-norm regularization Lre1 and two-norm regularization. The
calculation method is presented in Formulas (12) and (13), respectively:

Lre1 = L + λ‖θ‖ (12)

Lre2 = L + λ‖θ‖2 (13)

In Formulas (12) and (13), θ is the parameter to be optimized. λ is the weight attenua-
tion coefficient. λ is the loss function. The two-norm regularization term can suppress the
size of the parameters while the known parameters are not zero and can also prevent the
model from being too sparse. Therefore, the two-norm regularization term was selected to
design the neural network. Finally, the training method of the 3D CNN was designed. The
objective function is λ. It is determined that the optimal network parameter is the existence
of θ∗ satisfaction in Formula (14):

θ∗ = arg min
θ

L (14)

The gradient descent method was used to optimize the network. In the calculation
process, the derivative of λ was first calculated to obtain the gradient. Then, the gradient
was used to update the model until the model completed the convergence. The calculation
process is presented in Formula (15):

θj+1 = θj +
lr·∂L
∂θj

(15)

In Formula (15), θj is the model parameter when the iteration reaches the j-th time.
∂L
∂θj

is the calculated gradient. ∂L
∂θj

is the learning rate of the neural network. The IoT–VR
human–computer interaction gesture recognition model based on RF and improved CNN
algorithms was established. The calculation process is presented in Figure 7.

Figure 7. Computation flow of human–computer interaction gesture recognition model of IoT–VR
based on RF-CNN.
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4. Experiment on the Application Effect of the Gesture Analysis Model Using Mixed
RF and Improved CNN Algorithms
4.1. Verification of Parameter Selection for the Gesture Analysis Model

The purpose of this section was to determine the appropriate operating parameters for
the gesture analysis model, including loss probability, learning rate, and weight attenuation
coefficient. To verify the performance of the gesture analysis model designed in this study,
an experiment was designed. The dataset in the experiment was obtained from the backend
user database of domestic IoT–VR applications. These data were recorded when users
played tactile games using VR devices, with the user’s permission. This dataset contained
79,450 gesture depth maps from 10 different users. Each user’s data map can be divided
into 8 categories based on their different gestures, abbreviated as C1~C8. The joints in the
depth maps were annotated using semi-manual methods. These data were used to train
and test the recognition effects of each gesture recognition model.

The joints in the depth map were marked in a semi-artificial way. In the study,
the classic RF and Faster-RCNN algorithms were selected to build a comparison model.
Based on personal neural network training experience, the parameters in the gesture
interpretation model were set as follows. The model test and training sets were randomly
selected according to the 3:7 ratio, and the batch size was set to 32. The Initial values of the
learning rate, dropping probability, and weight attenuation coefficient of the model needed
to be obtained by analyzing the test run results. Different discard probabilities were used
and the average error change curve of the joint points in the training process is presented
in Figure 8. Because numerous drop probability schemes exist, they are presented in
two subgraphs.

Figure 8. Average error change curve of joint points under different discard probability schemes.

The horizontal axis represents the number of iterations and the vertical axis represents
the average errors of the joint points in the training set. Different line-types represent
different drop probability schemes. With the increase in the number of iterations, the
average errors of the model joint points under each discarding probability scheme present
an overall downward trend. However, when the number of iterations is high, the average
errors of joint points of each model gradually converge. This shows that the training process
of the model is good and avoids the local optimal solution. From the perspective of the
loss probability, with the increase in the loss probability value, the average error values of
the joint points after model training present a trend of decreasing first and then increasing.
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When the number of iterations is 100, the average error values of the corresponding joint
points with loss probabilities of 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5 are 8.86, 8.77, 8.34, 8.49, 8.95,
and 9.57, respectively. It shows that 0.2 is the most appropriate loss probability.

Different initial learning rate parameters were set to conduct the training experiments,
and the results are presented in Figure 9. The results of the horizontal and vertical axes
presented in Figure 8 are consistent. From the change curve of the average joint error
of each scheme, it can be observed that the curve does not show a significant rebound
effect, indicating that the model did not fall into the local optimal solution. From the initial
learning rate, it can be observed that, when the initial learning rate is less than 0.005, the
lower the initial learning rate, the smaller the average error value of the joint point of the
model. However, when the initial learning rate is 0.003, the average error value of the joint
points is higher than that of the scheme with the parameter of 0.005. Therefore, it was
appropriate to determine the initial learning rate of 0.005 in the model.

Figure 9. Training effects of RF-CNN algorithm under different initial learning rate parameters.

The statistical results of the model training under different weight attenuation coef-
ficients are presented in Figure 10. Different weight attenuation coefficients correspond
to different model training effects. In 100 iterations, the average error values of the joint
points corresponding to the weight attenuation coefficients of 0.0, 0.0005, 0.0001, and 0.0001
were 9.24, 8.72, 8.41, and 8.28, respectively. Therefore, it was appropriate to determine the
weight attenuation coefficient as 0.0001.
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Figure 10. Comparison of training effects under different model weight attenuation coefficients.

4.2. Analysis of Performance Test Results of the Gesture Analysis Model

The purpose of this section is to analyze the performance of the gesture analysis model
designed in this study during the training and testing stages. The indicators involved in-
clude qualified threshold, gesture type, average joint error, analysis time, and experimental
parameters not involved. After training the model, according to the optimal parameter
combination, Figure 11 compares the qualified rate of gesture resolution of different models
under different thresholds. When the threshold in Figure 10 reached 100 mm, the resolu-
tion qualification rate of the RF-CNN model reached 100%. This was because the sample
with the highest resolution error corresponded to an error value lower than the judgment
threshold of 100 mm, which is classified as a resolution qualified sample. Therefore, in this
case, all samples were classified as samples with qualified resolutions. The horizontal axis
represents different qualification rate judgment thresholds. The vertical axis represents
the qualification rate under the corresponding experimental scheme. Different styles of
icons represent different analytical models. “RF-CNN” represents the gesture analysis
model designed in this study that combines RF and improved CNN algorithms. The other
two are analytical models of contrast gestures. The gray dotted line is the guideline for
the viewing data. Each data point in the figure represents the pass rate value of a certain
gesture analysis model under the corresponding threshold parameter. For example, when
the threshold value was determined to be 43.26 mm, the error between the output joint
position of the recognition model and label position was less than 43.26 mm, which is
considered to be qualified.
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Figure 11. Pass rate of gesture analysis results of each model under different thresholds.

The analytical qualification rates of the RF-CNN, Faster-RCNN, and RF models were
82.41%, 76.10% and 59.10%, respectively. Whether it was the RF-CNN analytical model
or the Faster-RCNN and RF comparison models, there was a monotonically increasing
relationship between the qualified rate of interactive gesture resolutions and the threshold
of the IoT–VR system. Specifically, when the threshold was approximately less than
40 mm, the analytical qualification rate of each analytical model increased with the increase
in the qualified threshold. The growth rate continued to accelerate. However, when the
threshold was greater than 40 mm, the analytical qualification rate of each analytical model
still increased with the increase in the qualification threshold; however, the growth rate
gradually decreased. Moreover, the growth rate of the qualification rate of the analytical
model designed in the study decreased to 0 at the earliest stage. From the absolute value
of the qualification rate, the analytical model designed in this study was always the best.
Considering the practical application requirements, setting a threshold of 70 mm was
reasonable. During this time, the analytical qualification rates of the RF-CNN, Faster
RCNN, and RF models were 98.03%, 94.26%, and 91.40%, respectively. Subsequent research
was conducted under this condition.

The results of the analytical model for various gestures are shown in Figure 12. The
horizontal axis in Figure 12 was used to present different gesture categories and the average
items in all gesture categories. The vertical axis was used to present the average errors of
joint points in each category. Different icons represent different gesture parsing models.
To improve the reliability of the gesture analysis results, various experimental schemes in
this experiment were repeated 10 times. The calculation results are displayed by the mean
values and standard deviations of the errors. The RF-CNN model presented in Figure 11 is
a comparative model used to verify the rationality of selecting the CNN as the algorithm for
extracting gesture features, where “BP” represents the back-propagation neural network.
In Figure 12, the average joint error of each recognition model is significantly lower in the
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C2 and C3 gesture types. These two types of gestures are more complex and have the most
occluded parts, making parsing the most difficult method. However, the average joint
error of the RF-CNN analytical model designed in this study was higher than that of the
RF analytical model for various gestures. The average joint error of the RF-CNN model in
most categories was higher than that of the Faster-RCNN analytical model. However, from
the perspective of various overall projects, the average joint error of the RF-CNN model
was greater than that of the other models. Moreover, the average error of the overall joint
points of the RF-CNN model was also lower than the algorithm designed in this study,
proving the rationality of selecting the CNN algorithm to extract the gesture features.

Figure 12. Resolution quality of analytical models for various gestures.

Table 2 presents the analytical efficiency results obtained for each model. The average
and maximum analysis times obtained for the RF-CNN analytical model are between the
Faster-RCNN model and RF. The relationship between the number of gesture images to
be parsed and the parsing time was not a simple linear correlation, but a fuzzy positive
correlation. The parsing time of a single image decreased as the number of parsed gesture
images increased. The Faster-RCNN analytical model presented the lowest computational
efficiency; however, the model was stable, because the maximum calculation time presented
the smallest increase compared to the average analytical time under the same conditions.
When all the gesture images to be parsed belonged to the test set (i.e., 23,835), the average
and maximum parsing times of the RF-CNN, Faster-RCNN, and RF models were 24,770,
51,232, 21,765, 30,385, 60,255, and 64,552 ms, respectively. The SVM presented in Table 2
represents the support vector machine algorithm. The calculation time of the SVM is
much higher than that of the RF-CNN algorithm designed in this study, which verifies the
rationality of the algorithm design.
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Table 2. Comparison of the analytical efficiency results of each model.

Number of Gesture
Images to Be Parsed

Average Parsing Time/ms Maximum Parsing Time/ms

RF-CNN Faster-
RCNN RF SVM-CNN RF-CNN Faster-

RCNN RF

10 16 46 13 89 21 61 15
100 125 296 107 765 175 376 256

1000 1180 2674 983 7420 1852 3109 2199
10,000 11,963 25,514 10,668 73,664 17,740 38,510 26,416
23,835 24,770 51,232 21,765 145,210 30,385 60,255 64,552

To further validate the effectiveness of the model, the designed recognition and com-
parison algorithms were deployed in C language to a VR hardware system based on the
IoT. A total of 100 volunteers were invited to participate in testing each model. After the
test was completed, the data were collected and analyzed using Python programming
language. Table 3 presents the volunteer group that received the highest satisfaction results
with the RF-CNN algorithm model designed in this study. A total of 58 people chose the
“satisfactory” evaluation level. The average joint error of this model was 11.88, which is
significantly higher than the other comparative models.

Table 3. Comparison of test results based on hardware devices.

Algorithm
Distribution of Satisfaction Level Personnel Average

Error of
Joint PointsDissatisfied Relatively

Dissatisfied Neutral Satisfied

RF-CNN 2 5 35 58 11.88
Faster-RCNN 7 15 44 34 11.37

RF 11 25 38 26 10.28
SVM-CNN 14 27 40 19 10.54

RF-BP 9 22 37 32 11.09

Finally, the response time of each algorithm model was analyzed. Due to the concise
data obtained, statistical charts were not provided in this study. When the number of
calculation samples was 23,835, the response times of the gesture recognition models based
on the RF-CNN, Faster RCNN, RF, and SVM-CNN algorithms were 26, 58, 37, and 104 ms,
respectively. The RF-CNN algorithm designed in this study had the shortest response time.

5. Conclusions

Aiming at solving the problem of the insufficient accuracy of gesture resolution in an
IoT–VR system, an intelligent gesture resolution model integrating RF and improved CNN
algorithms was designed. To test the application performance of the model, a performance
test experiment was designed. The experimental results show that the dropping probability
is 0.2, the initial learning rate is 0.005, and the weight attenuation coefficient is 0.0001 for the
model designed in the study. The analytical error of the average joint point on the training
set was the lowest. The designed model was trained with the optimal parameters. The
analytical effect on the test set was compared to that of the contrast model. Statistically, the
performance of the design analytical model was always the best from the absolute value of
the qualification rate. When the threshold was 43.26 mm, the analytical qualification rates of
the RF-CNN, Faster-RCNN, and RF models were 82.41%, 76.10%, and 59.10%, respectively.
The average errors of the joint points of each recognition model in C2 and C3 gesture
types were significantly lower. However, the average joint errors of the RF-CNN analytical
model designed in the study were higher than that of the RF analytical model for all kinds
of gestures. From the perspective of various overall projects, the average joint errors of
RF-CNN were higher than that of the other models. Moreover, the average and maximum
analysis times of the RF-CNN analytical model were between the Faster-RCNN and RF
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models. However, due to the research limitations, a commercial-level IoT–VR system
intelligent gesture analysis model was not designed. The performance in real application
scenarios was not verified. The abovementioned two points should be considered for future
research directions.
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