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Abstract: In the proposed study, agro-waste biomass oat straw (OS) was considered a potential adsor-
bent for Cu(II), Zn(II), and Se(IV) removal from aqueous solutions. In order to obtain material with
better adsorption abilities, the OS was modified by a deep eutectic solvent (DES). Structural changes
caused by the applied modification route were considered by pHpzc, SEM, FTIR, and DSC/TG
analysis. These methods discovered that lignocellulosic biomass degradation and material function-
alization were achieved by DES treatment. Preliminary adsorption tests showed an over fourfold
increase in capacity upon modification. The kinetic parameters implied that adsorption on modified
material followed the pseudo-second-order kinetic model. Different isotherm models were applied
to experimental data, while the Sips isotherm model best describes the equilibrium of the adsorption
process on the tested modified material. According to this isotherm model, the maximum achieved
adsorption capacities of Cu(II), Zn(II), and Se(IV) were 48.21, 55.06, and 87.85 mg/g, respectively. The
summarized experimental results revealed that the adsorption process of selected cations on modified
OS was predominantly caused by chemisorption, while, in addition to chemisorption, electrostatic
forces were also responsible for Se(IV) removal. Desorption test showed that the prepared material
could be reused for at least 3 cycles, with minimal efficiency loss. Briefly, this study reinforces that
DES-modified agro-waste biomass could be used as a promising adsorbent for cations and oxyanions
from wastewater.

Keywords: waste biomass; metals and metalloids removal; DES modification; adsorption mechanism

1. Introduction

Water pollution caused by industrial effluent discharge into natural watercourses
becomes a significant global problem. Various physical, chemical, or biological pollu-
tants pose a serious risk to human health, animals, and the environment. Due to their
persistency, non-degradability, high toxicity even at low concentrations, and bioaccumula-
tion, heavy metals in industrial effluents pose a potential threat to the environment and
living organisms [1–3]. For these reasons, there is an urgent global demand to find an
appropriate method for purifying industrial wastewater containing heavy metals before
its discharge. So far, numerous different purification methods, such as coagulation, floccu-
lation, membrane filtration, and chemical precipitation, have been utilized [2]. However,
these traditional methods exhibit certain operational drawbacks that hinder the motivation
for their application.

For this reason, novel, environmentally acceptable techniques for wastewater treat-
ment are considered. Among all the techniques, adsorption has been recognized as a
highly selective, efficient, and cost-effective technology for pollutant removal from aqueous
effluents. In recent decades, the application of natural materials as adsorbents has attracted
increasing scientific attention.
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Recently, the exploitation of waste biomass as an adsorbent has become particularly
attractive due to the valorization of low-cost, easily available, renewable, and sustainable
materials [1]. Numerous different waste materials were investigated as potential biosor-
bents. Thus, Fan et al. used weed as an efficient adsorbent for Cu ion removal [4], while
Aguilar et al. utilized waste coffee pulp, banana pseudo-stem, and corn cob as poten-
tial Zn adsorbents [5]. Previous research revealed that waste biomass as an adsorbent
material displays high efficiency due to its large surface area, porosity, low mass, and
unique properties. The surface of such adsorbents is abundant with functional groups,
such as carboxyl, phenolic, and amine, which represent suitable sites for pollutants binding
through hydrogen bonds, electrostatic interactions, and coordinated bond formation [6].
One of the advantages of waste biomass utilization is the ability to combust used material
before its disposal, and thus reduce the amount of waste that needs to be managed. Besides,
waste biomass after the regeneration of metals from its surface can be further converted to
value-added carbon-rich materials.

Concerning additional enhancement of sorption ability, previous studies recom-
mended different methods of tailoring the biomass’s structure in order to increase surface
area and provide more binding sites. In order to achieve improvement, biomass is often
modified with alkaline solutions. Consequently, Simić et al. [1] achieved a 2.23-times higher
capacity of corn silk for Cd(II) ion removal after modification with KOH. Neem biomass
chemically pretreated with NaOH and citric acid was confirmed as an efficient biosorbent
to remove Pb(II) ions from aqueous solutions [7]. However, recently attention has been
devoted to deep eutectic solvents (DES) as innovative green solvents for lignocellulose
biomass treatment to procure the desired characteristics for potential further application.
The adoption of DES for these purposes has numerous advantages, among which are high
chemical and thermal stability, high purity, nontoxicity, high ionic strength, low volatility,
recyclability, and high biodegradability [8,9]. DES is composed of hydrogen bond donors
and acceptors, which provide the ability to fractionate biomass, especially due to its high
solubility of lignin. After DES treatment, a more porous and accessible cellulose structure
remains in comparison to raw biomass and is therefore a more suitable material for further
applications [10].

Oat straw is a low-cost, widely available waste co-product that is left behind after
the harvesting of oat (Avena sativa) [11]. Since waste straw is produced in large quantities
during agri-food processing to reduce environmental impact and create economic value,
its appropriate utilization is of great importance. For this reason, numerous studies have
investigated its potential applications. Consequently, Borrega et al. [11] investigated the
potential valorization of oat straw as an alternative source of lignocellulosic fibers. On
the other hand, Szufa et al. [12] have considered oat straw after torrefaction treatment as
a potential energy source and additive to organic fertilizers, while Onyenwoke et al. [13]
applied steam explosion pretreatment to oat straw to improve the quality of biofuel pellets
generated from these feedstocks. In addition to the mentioned applications, it should
consider the potential utilization of waste oat straw as an adsorbent of various pollutants,
primarily heavy metals. Although oat husks have been investigated as potential biosorbents
of heavy metals from aqueous solutions, there is a lack of data on the valorization of oat
straw as a sorbent in the literature. As for other lignocellulosic biomaterials, the main
constituents of straw are macromolecules such as lignin, cellulose, and hemicellulose.
These constituents are available for interaction with different pollutants and thus provide
potential and promising adsorption materials. In addition to lignocellulose, this material
also contains minerals such as magnesium, calcium, and sodium, which contribute to ion
exchange with selected pollutants [14].

The main ambition of this study is the valorization of waste oat straw as a novel bio-
based sorbent for highly toxic pollutants (Cu(II), Zn(II), and Se(IV)). In order to improve
its adsorption properties and applicability, for the first time in the literature, DES (L-
arginine + choline chloride/urea) modification of oat straw was applied. Two particular
objectives were achieved by DES treatment: (i) degradation of the rigid and complex
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lignocellulosic structure of biomass and/or (ii) functionalization of the oat surface with
new functional groups. In order to investigate the influence of the treatment on the
morphological properties of the resulting bio-based sorbent, detailed pHpzc, SEM, FTIR,
and DSC/TG characterizations were performed. According to the results of adsorption
studies, the maximum adsorption capacities were determined, as were the mechanisms
responsible for the binding of selected pollutants onto the modified oat straw surface.
Furthermore, comprehensive conclusions about interactions and differences between the
binding of cations and oxyanion at DES-modified biomass are drawn. A summarized
result from this work provides a reference for the preparation of a novel, efficient bio-based
adsorbent from waste lignocellulosic biomass.

2. Materials and Methods
2.1. Chemicals

All chemicals and reagents used in this study were of analytical grade. Primary stock
solutions (1000 mg/L) of Cu(II), Zn(II), and Se(IV) were prepared by dissolving appropriate
amounts of selected salts (Cu(NO3)2 × 3H2O, ZnSO4 × 7H2O, and Na2O3Se, respectively)
in ultra-distilled water. Desired concentrations of working solutions were obtained by
dilutions of the primary stock solutions. Additional chemicals supplied by Sigma-Aldrich
included absolute ethanol, choline chloride, and amino acid arginine, which were used for
DES preparation.

2.2. Biomass Preparation

The initial biomass exploited in this study was oat straw waste. The sample was
obtained from the local field in Banat (a region in Serbia) after harvesting in 2021. The
biomass was collected, washed in order to remove traces of soil and other impurities from
the surface, and air-dried at room temperature. Thereafter, the biomass was ground, sieved,
and oven-dried at 105 ◦C until it reached a constant weight. In all experiments, a sieved
fraction of 63–125 µm was used. The prepared biomass sample (OS) was placed in a sealed
container and used in further experiments.

2.3. Biomass Modification

In order to partially degrade lignocellulosic constituents, the OS was modified using
DES prepared by cholinium arginate ionic liquid (IL) and urea. The synthesis of selected
DES followed the combined procedures previously reported by Liu et al. (2012) and
Wang et al. [15,16]. Briefly, an ethanol mixture that contains potassium hydroxide and
choline chloride (1:1 molar ratio) was heated at 60 ◦C, agitated for 4 h, and vacuum filtrated.
Upon vacuum filtration, a selected amino acid (arginine) was added to a liquid phase
and stirred at room temperature. Thereafter, the thus prepared ionic liquid was combined
with urea (2:1 molar ratio), stirred at 60 ◦C for 2 h, and dried to produce DES. In order to
prepare the desired concentration of aqueous DES solution, the crude DES was dissolved
in a water/ethanol mixture.

During the next step, 1 g of the OS was modified using 10 mL of prepared DES solution.
The contact was achieved by stirring for 4 h at 40 ◦C. After the reaction period, the mixture
was filtered, and the produced modified biomass (IOS) was washed several times with a
mixture of water and ethanol, dried, and used in subsequent adsorption experiments.

2.4. Material Characterization

The point of zero charge (pHpzc) of materials before and after DES modification was
determined according to a method previously proposed by Milonjic et al. [17]. Based on
this method, pHpzc values of selected OS and IOS (0.01 g) were determined in 0.001 M
and 0.01 M KNO3 solutions at selected ranges (2.0 to 12.0 (pHi)). The pHi values were
adjusted using 0.01 M HNO3 and/or 0.01 M KOH solutions. After a reaction period of 24 h,
the final pH (pHf) was measured, and the diagram (pHf vs pHi) was created to determine
the pHpzc.
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In order to determine the structural differences caused by modification, detailed
characterizations of OS and IOS were performed. Surface characterization was performed
by FTIR analysis using the Thermo Scientific Nicolet iS50 FTIR spectrometer. Analyzed
samples were prepared by mixing 0.8 mg of the OS or IOS with 80 mg of KBr and recording
in the 4000 to 400 cm−1 spectral range.

Additionally, the morphological characteristics of the samples were examined by
scanning electron microscopy (SEM) using Jeol JSM-6610 LV at 20 keV. Prior to recording,
all samples were dried at 105 ◦C overnight, coated with gold, and placed on an adhesive
carbon disc.

The thermal stability of OS and IOS was predicted by differential scanning calorimetry
coupled with thermogravimetric analysis (DSC/TG) using a Netzsch STA 449 F5 Jupiter.
Approximately 5 mg of each tested sample was heated in alumina cups up to 900 ◦C at a
heating rate of 10 ◦C/min under an inert atmosphere.

2.5. Ultrasound and Water Stability Test of IOS

The stability of the IOS materials was determined by an ultrasonic bath at different time
periods. The influence of ultrasound was tested on the investigated adsorbent material to
investigate its stability under vibrations that can penetrate the deepest pores of the material
and cause partial or complete erosion [18]. The influence of ultrasound was tested using
Bandelin Sonorex (Bandelin, Typ: RK 102 H, Berlin, Germany). Briefly, 0.1 g of each sample
was displayed at a frequency of 35 kHz for 0.5 and 1 h. Besides, to reveal the water stability
of IOS, 0.1 g of material was dispersed in 100 mL of ultrapure water during 24, 48, 72, and
96 h of exposure [19]. The mass of dry samples before and after stability tests was measured
and compared.

2.6. Adsorption Study

To gain insight into the influence of modification processes on adsorbent efficiency, a
preliminary adsorption test using OS and IOS was performed. For this purpose, a dose of
0.1 g/L of each sorbent was added to 1 mM solutions of Cu, Zn, and Se, respectively. The
contact was established for 24 h, and after the reaction period, the amounts of the remaining
metal ions and oxyanions in the filtrates were monitored. In order to further optimize
the adsorption conditions and examine the removal mechanism, various adsorption tests
were performed in anionic and cationic solutions using IOS. For this purpose, different
operational parameters, which include the pH value of the initial solution, contact time,
and initial pollutant concentration, were varied. During Cu(II) and Zn(II) adsorption tests,
an adsorbent dose of 1 g/L was used, while Se(IV) removal was tested with a sorbent dose
of 0.5 g/L. The influence of pH was measured at different pH values of initial pollutants
solutions (1 mM Cu(II), Zn(II), and Se(IV) solutions were used), which ranged from 2 to
6 for Cu(II) and Zn(II), and from 2 to 9 for Se(IV), for 24 h. In addition, for batch kinetic
experiments, a selected dose of adsorbent was stirred with a 1 mM pollutant solution at pH
5 for Cu(II) and Se(IV) and pH 4 for Zn(II) at various time intervals (from 15 to 1440 min),
while the concentration ranges of 0.2 to 2 mM (Cu(II), Zn(II), and Se(IV)) at pH 4 (Zn(II))
and pH 5(Cu(II) and Se(IV)) were used to explore the influence of initial concentrations.
Batch adsorption experiments were performed in 100 mL Erlenmeyer flasks placed on top
of a Heidolph Unimak1010 orbital shaker and agitated (220 rpm) at room temperature. At
the end of the experiments, the metal concentration in the filtered aliquots was measured
by AAS (Perkin Elmer 900T, Waltham, MA, USA). Besides, all adsorption tests were carried
out in triplicate, and the average values of the obtained results are shown.

The amounts of adsorbed contaminants were estimated using the following equation:

qe = (Ci − Ce) × V/m (1)

where qe represents the amount of adsorbed metal on the IOS (mg/g), Ci and Ce are initial
and equilibrium metal concentrations (mg/L), respectively, V is the volume of the metal
solution (L), and m is the mass of the IOS (g).
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The desorption performance of the IOS was revealed through cyclic adsorption exper-
iments. Briefly, 0.1 M HNO3 and 0.1 M EDTA solutions were used as desorption agents.
After the adsorption cycle, 0.05 g of IOS was stirred for 180 min with 50 mL of each des-
orption solution, filtered, rinsed with ultrapure water, dried, and applied in the following
sorption/desorption cycle [4,6]. All testes desorption agents were performed during three
cycles. The qeq values were monitored after each cycle.

To investigate adsorption kinetics and isotherm models, linear and non-linear fitting
methods were employed using Origin 9.0 software.

To examine the possible ion-exchange mechanism during the adsorption of Cu(II),
Zn(II), and Se(IV) ions, filtrates upon adsorption are subjected to determination of the
released cations (Ca2+, Mg2+, K+, Na+, and H+). The influence of van der Waals forces
was eliminated by using a control sample (filtrate) obtained by mixing IOS in ultrapure
water at pH 5.0. The materials were shaken for 24 h at 220 rpm at room temperature. The
content of Ca2+, Mg2+, K+, and Na+ in the resulting filtrates was monitored using an atomic
absorption spectrophotometer (AAS) (Analytic Jena Spekol 900T, Jena, Germany), while the
content of H+ ions was determined from the difference in pH values between the control
and filtrate after adsorption.

A real-sample analysis was conducted on industrial process water rich in copper.
During the adsorption test, 20 mL of the real sample and 0.02 g of IOS were stirred for 24 h
at 220 rpm at room temperature. The pH value of the real sample was not adjusted; it was
just monitored.

3. Results
3.1. Material Characterization

Scanning electron microscopy analysis was utilized to examine the morphology of
the tested OS and IOS. The results displayed in Figure 1 reveal that the pristine OS had a
continuous and flat structure with notable channels and cracks through the whole surface,
characteristic of lignocellulosic biomass [1]. On the other hand, Figure 1b implies that
increased surface area was achieved upon DES modification treatment. As is already
known, the DES treatment leads to the degradation of the structural constituents of lig-
nocellulosic biomass, and thus new materials with improved adsorption performances
are obtained [20]. Accordingly, the relatively smooth surface of the OS becomes signifi-
cantly disorganized after modification. Numerous channels and irregularities, as well as
a much rougher heterogeneous structure compared to the native material, are noticeable
(Figure 1b). The formation of porous structures after the modification of hazel with an
ionic liquid was observed by Gollakota et al. [3]. In addition, the appearance of new cracks
ensures a better diffusion of ions during the contact of metal solutions with the material
surface. The obtained results are in accordance with previous studies, which confirmed
that biomass modification caused similar surface disarrangement and improved adsorption
performances for metal ion removal [1,20].

In order to examine the changes in the chemical structure of native OS caused by DES
modification, FTIR analysis was performed. The FTIR spectra before and after modification
are presented in Figure 2a. As can be seen, the spectrum of OS contains peaks character-
istic of lignocellulosic biomass. The wide peak at 3355 cm−1 originated from stretching
and flexural vibrations of hydrogen bonds from the O–H group, while the peak that ap-
pears at 2918 cm−1 can be ascribed to symmetric C–H valence vibrations from cellulose,
hemicellulose, and lignin [21,22]. Furthermore, the peaks at 1600, 1258, 1162, 1110, 1054,
and 1035 cm−1 indicate the presence of hydrogen-containing functional groups, such as
COO-, C–O, and/or C–O–C, while the peaks at 1458 and 1375 cm−1 implied the presence
of C–H bends from lignin, cellulose, and hemicellulose [21,23–25]. The FTIR spectra of
the OS also exhibit peaks at 1647 and 1507 cm−1, which originated from aromatic rings
and the C=C bonds. Moreover, the C–H deformation from aromatic skeletal vibrations
from lignocellulosic structures was confirmed by bands that appear at 1425, 1321, and
898 cm−1 [21,23–25].
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Figure 2. FTIR spectra of (a) OS and IOS and (b) IOS after adsorption.

Due to its remarkable performances, DES was able to significantly change the structure
of lignocellulosic biomass through the degradation of structural constituents of biomass [8,9].
These allegations were confirmed in this study. As can be seen from Figure 2a, notable
changes in the FTIR spectrum have been observed after DES modification. Decreased peak
intensity or complete disappearance indicates degradation or removal of lignocellulose
structures from the OS sample [22]. Similar findings were reported previously during the
treatment of peanut shell and miscanthus, respectively, with ionic liquids [21,22]. Besides
the important peaks that confirm the successful incorporation of DES onto the IOS surface,
they are noticed at around 1600 cm−1 (skeletal stretching vibrations of C=N bonds) [26].

Differences caused by metal binding on the IOS surface are presented in Figure 2b.
The changes in certain peaks in FTIR spectra involved in pollutant bindings were displayed.
It was observed that the wide peak from the O–H, visible at 3355 cm−1 was reduced. This
reduction is most pronounced after the sorption of Se(IV) ions. Peaks at 1400–1000 cm−1, at-
tributed to COO-, C–O, C–O–C, aliphatic and aromatic C-H bonds, as well as N-containing
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functional groups (1600 cm−1), also exhibited reduced intensity. Their reduction and shift
towards lower wavenumbers indicate the involvement of oxygen, nitrogen, and aromatic
functional groups in chemical interactions with tested pollutants [1,24]. This observation is
particularly noticeable during Se(IV) removal. This is a sign of one of the proposed binding
mechanisms: complexation with oxygen and nitrogen functional groups followed by H+

release. According to these observations, a proposed mechanism may include the π–π in-
teraction between aromatic groups of IOS (C=C and –CH) and ions, electrostatic interaction
between surface functional groups of IOS, and surface complexation between oxygen and
nitrogen-containing functional groups on the IOS surface and selected pollutants.

Additionally, the OS and IOS samples were analyzed by DSC/TG. Based on the results
presented in the diagrams (Figure 3), it is possible to compare and draw conclusions about
the difference in mass change in TG and thermal change in DSC analysis for OS and IOS.
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The DSC/TG diagrams implied that the OS and IOS have three distinct reaction zones.
The first zone on the TG diagram originated from the weight losses (6.70 and 6.83% for OS
and IOS, respectively) caused by water evaporation [12,27]. The second weight loss that
starts at 200 ◦C indicates that degradation of the biomass structural constituents (lignin,
cellulose, and hemicellulose) has begun [27,28]. Firstly, the decomposition of OS and IOS
starts slowly, while intensive mass losses caused by volatilization of structural components
become more pronounced at 260 ◦C (55.43 and 57.53%, for OS and IOS, respectively). The
third phase covers the range from 360 to 530 ◦C for the OS sample. In the case of the IOS
sample, this phase ends before 530 ◦C, which indicates a lower lignin content compared
to the OS sample [28]. In addition, the weight loss of both samples reaches more than
90% at 600 ◦C, and this is in agreement with previous literature data [29]. The residual
weight loss for the OS and IOS samples was 5.79% and 1.02%, respectively. According to
the obtained results, it can be concluded that partial lignin degradation has occurred as a
result of DES modification.

In addition, the first stage in the DSC diagrams (up to 150 ◦C) represents water
evaporation and small organic molecules volatilization [12,27]. The peaks at the diagram
interval from 300 to 550 ◦C originated from the degradation of lignocellulosic constituents of
biomass [28,30]. It is known that thermal treatment causes degradation of the lignocellulosic
materials, firstly volatilized hemicellulose, followed by cellulose, while lignin is the most
thermally stable [31]. Thus, for the OS sample, the exothermic peak with a maximum
peak at 323 ◦C may be attributed to the degradation of hemicellulose, while the broad,
overlapped peak at 454 ◦C indicates oxidation of cellulose and lignin [28]. A final sharp peak
observed at 608 ◦C originated from inorganics incorporated in the biomass structure [32].

As a result of the modification process, a clear peak separation on the IOS DSC diagram
is observed. In addition, the maximum of the first peak is shifted from 329 ◦C towards
353 ◦C, suggesting the degradation of hemicellulose. Besides, the second broad peak
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became sharper and exhibited reduced intensity. These phenomena indicate that during
the modification, partial degradation of lignin occurred. The absence of a small, sharp peak
at 608 ◦C in the IOS sample might be associated with the leaching of inorganic components
due to DES treatment. Biomass dissolution, i.e., activation, during ionic liquid treatment
was also confirmed by Labbé et al. [30].

3.2. Ultrasound and Water Stability of IOS

The influence of water exposure time on the stability of IOS materials is shown through
the percentage of mass loss. The obtained results showed that there was no significant
weight loss of the IOS sample and that after 96 h of exposure to water, a weight reduction
of only 1.07% was observed. In addition, ultrasonic stability showed similar results. After
0.5 h of exposure of IOS material to a frequency of 35 kHz, there was a negligible loss of
mass (0.20%), and after 1 h, the mass loss was 0.96%. Based on the obtained results, we
can conclude that there is no significant material degradation, and therefore IOS exhibits
stability in water and during exposure to ultrasonic waves.

3.3. Batch Adsorption Tests
3.3.1. Preliminary Adsorption Test

The preliminary adsorption test (Figure 4) revealed a significant improvement in the
adsorption capacity after modification, so further adsorption tests considered the ability of
the material as an adsorbent for selected metals and metalloids (Cu(II), Zn(II), and Se(IV))
were performed only using IOS.
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3.3.2. The Effect of Initial pH

The initial pH value of the solution governs the adsorbent surface charge as well as
the ionization degree of the tested pollutant, so it represents one of the important factors
that influence adsorption efficiency. Thus, the effect of the solution pH value during the
removal of Cu(II) and Zn(II) using IOS was tested in a range of 2 to 6, while a pH range
of 2 to 9 was adopted for Se(IV) removal (Figure 5). The obtained results show that the
increase in pH value led to a consequent increase in adsorption capacity. The reason for the
hindered removal at lower pH is competition between H+ ions and metal ions for active
sites on the surface of the IOS. However, an increase in pH led to the reduction of H+ ions
in the solution, while the functional groups on the IOS surface became deprotonated and
accessible for the binding of positively charged ions. Accordingly, the maximum adsorption
capacities (40.5 mg/g for Cu(II) and 47.5 mg/g for Zn(II)) were achieved between pH 4
and 5 for divalent metal ions (Figure 5). The observed adsorption trend is consistent
with previous studies that examined the removal of heavy metals from aqueous solutions
using modified biomass [1]. On the other hand, the removal of Se(IV) as an oxyanion
shows a slightly different trend. As Figure 5 reveals, better removal is achieved at lower
pH values, while the highest adsorption capacity is achieved at pH 5. A further pH value
increase causes a rapid decrease in capacity, probably due to a competition of OH- ions with
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Se(IV) oxyanions for the available binding sites on the IOS surface. Similar observations
were previously reported by Jevtić et al. during the removal of Se(IV) using Fe-modified
zeolites [33]. Subsequent adsorption experiments were performed at pH values at which
the maximum capacities for the tested ions were obtained.
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C0 = 1 mM, t = 1440 min, adsorbent dosage = 1 g/L for Cu(II), Zn(II), and 0.5 g/L for Se(IV)).

The neutral value of the surface charge is determined by the point of zero charge
(pHpzc). According to pHpzc, the adsorbent surface charge is positive and could interact
with negatively charged ions at a pH lower than pHpzc; on the contrary, a negative surface
charge is achieved at a pH higher than pHpzc. The knowledge gained from the pHpzc
may indicate the involvement of possible electrostatic interactions between the adsorbent
surface and ions in solution [1,26].

The OS and IOS values of pHpzc were found to be 7.0 and 9.48, respectively. Besides,
the value of pHpzc is almost the same for both tested KNO3 concentrations, indicating the
independence of pHpzc in relation to the ionic strength of the background electrolyte. A
higher value of pHpzc suggests a more alkaline surface of IOS upon DES treatment.

The adsorption of Cu(II), Zn(II), and Se(IV) on the IOS reaches its maximum at
pH < pHpzc (Figure S1). At this pH value, the surface of the modified material is posi-
tively charged, indicating that during the removal of positively charged cations (Cu(II)
and Zn(II)), electrostatic forces do not play a significant role, but they are involved in the
interaction of the IOS surface with negatively charged oxyanions (Se(IV)) [1,26]. This could
be an additional explanation for why the adsorption capacity for Se(IV) removal is higher
in comparison to Cu(II) and Zn(II).

3.3.3. Effect of Contact Time and Kinetics Studies

The effect of contact time was examined in order to define the equilibrium time of
metal ion sorption at the IOS surface. The reduced concentration trends of the investigated
ions were monitored during a period of time from 15 to 1440 min. The results are shown
in Figure 5. During the initial time interval, fast sorption was observed for all tested ions;
thus, almost 50% of Cu(II), Zn(II), and Se(IV) ions were removed in the first 15 min. This
occurrence is most likely the result of the interface of ions with the available active sites
on the adsorbent surface [34]. After this period, adsorption capacity gently grows until
the equilibrium of the system is reached. The equilibrium capacities of Cu(II), Zn(II), and
Se(IV) ions were 42.16, 34.5, and 81 mg/g, respectively. Their equilibriums were reached
for 360 min (Figure 6).
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Zn(II), and 0.5 g/L for Se(IV)).

Adsorption kinetic studies provide further information about metal ion binding mech-
anisms, sorption rates, and potential rate-limiting steps. For that purpose, kinetic models
that include the pseudo-first-order [35], pseudo-second-order [36], and Weber–Morris intra-
particle diffusion [37] models were applied to the obtained experimental data. The linear
model equations are listed below:

The pseudo-first-order rate equation:

1
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qeq

)(
1
t

)
+

(
1

qeq

)
(2)

The pseudo-second-order rate equation:
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k2q2
eq

)
+

(
1

qeq

)
t (3)

The intra-particle diffusion model equation:

qt = Kidt0.5 + C (4)

where qeq and qt are the amount of pollutant adsorbed at equilibrium and time t us-
ing IOS (mg/g) at equilibrium and time t. The k1 (1/min), k2 (g/mg min−1), and Kid
(mg/g min−1/2) represent the pseudo-first-order, pseudo-second-order, and intra-particle
diffusion rate constants, respectively, while C is the intercept.

The adsorption plots of pseudo-second-order and intra-particle diffusion kinetic mod-
els are shown in Figure 7, while calculated parameters are summarized and displayed in
Table 1. According to the results shown in Table 1, it can be concluded that the values of
the correlation coefficient (R2) for Cu(II), Zn(II), and Se(IV) ions were higher and closer to
1 for the pseudo-second-order kinetic model. These observations indicate that the removal
kinetics of all selected pollutants onto the IOS surface follow the proposed model. This
conclusion is supported by the fact that the calculated equilibrium adsorption capacities
obtained from the pseudo-second model were in agreement with experimentally achieved
values (qeq,exp) (Table 1). The pseudo-second-order model implies that chemical interac-
tions between pollutant ions and the IOS surface are crucial for metal ion binding. These
conclusions are in accordance with the results obtained by FTIR analysis in this study. Simi-
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larly, Zhang et al. [2] also concluded that chemisorption is the rate-controlling step during
the adsorption of Cu(II) and Pb(II) ions using ionic liquid@porous organic frameworks.
Besides, Jevtić et al. and Marjanović et al. have shown that the removal of Se(IV) ions from
aqueous solutions also follows a pseudo-second-order kinetic model [33,38].
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Table 1. Kinetic parameters for Cu(II), Zn(II), and Se(IV) removal on IOS.

Adsorbent IOS Cu Zn Se

qeq, exp [mg/g] 42.16 ± 0.51 34.5 ± 1.25 79.90 ± 2.10
Pseudo-First-Order Model

qeq [mg/g] 41.49 ± 0.84 40.13 ± 0.99 86.73 ± 1.85
k1 [1/min] 8.95 ± 0.25 23.20 ± 0.36 50.35 ± 0.69

R2 0.8757 ± 0.08 0.8073 ± 0.05 0.9974 ± 0.008
Pseudo-Second-Order Model

qeq [mg/g] 44.52 ± 0.52 47.07 ± 1.02 83.47 ± 0.99
k2 [g/mg min−1] 0.0545 ± 0.004 0.0251 ± 0.001 0.0254 ± 0.0015

R2 0.9998 ± 0.0001 0.9978 ± 0.002 0.9988 ± 0.0001
Weber–Morris diffusion Model

Kid1 [mg/g min−1/2] 1.0662 ± 0.032 1.8833 ± 0.22 4.5293 ± 0.85
C1 [mg/g] 24.3892 ± 0.014 8.9812 ± 0.84 6.7541 ± 1.23

R2 0.9255 ± 0.022 0.9830 ± 0.023 0.9669 ± 0.036
Kid2 [mg/g min−1/2] 0.0658 ± 0.001 0.0355 ± 0.001 0.0253 ± 0.008

C2 [mg/g] 41.5664 ± 1.25 44.1516 ± 0.98 80.1554 ± 0.97
R2 0.9619 ± 0.015 0.9995 ± 0.00 0.8798 ± 0.053

In addition, the Weber–Morris intra-particle diffusion model was included to examine
the impact of intra-particle diffusion on removal processes (Figure 7b). Figure 7b reveals
that split linear zones are attended to for all ion removal processes. According to these
findings, it can be concluded that intra-particle diffusion is not the only rate-determining
step, but several mechanisms interfere with the adsorption of the tested ions. Similar
perceptions were previously described by Simić et al. [1] and Zhang et al. [2].

3.3.4. Isotherm Study

In order to define the equilibrium of Cu(II), Zn(II), and Se(IV) adsorption on IOS,
the obtained experimental data were fitted by Langmuir, Freundlich, Sips, and Redlich–
Peterson isotherm models. Generally, isotherms can provide insight into the nature of
interaction between the pollutant and adsorbent materials surfaces, and thus allow the
assumption of a possible binding mechanism [26].
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The Langmuir model explains monolayer adsorption at a fixed number of active sites
and follows Equation (5) [39]:

qe = qmaxKLCe/(1 + KLCe) (5)

where qmax is the maximal amount of pollutant adsorbed using IOS (mg/g), and KL is the
Langmuir constant (L/mg).

The feasibility and favorability of pollutant adsorption can be described by the dimen-
sionless constant (RL) [40]:

RL = 1/(1 + KLC0) (6)

where RL is the separation factor. The biosorption process on the IOS is: unfavorable if the
RL > 1; linear if the RL = 1; favorable if the 0 < RL < 1; or irreversible if the RL = 0 [41].

The Freundlich isotherm explains multilayer adsorption at the heterogeneous surface.
The following equation expresses this model [42]:

Qe = KFCe 1/n (7)

where KF (mg/g (mg/L)−1/n) and 1/n are the Freundlich constants. If the nF value is
between 1 and 10, it can be concluded that the adsorption of Cu(II), Zn(II), and Se(IV) on
IOS is favorable.

The Sips isotherm model predicts the Freundlich isotherm at low pollutant concentra-
tions, while at high pollutant concentrations, it predicts the Langmuir isotherm model. It
can be expressed by Equation (8) [43]:

qe = qmax(KSCe)1/ns/(1 + (KSCe)1/nS) (8)

where KS (mg/L)−1/n) and 1/nS are the Sips constants. A higher value of the nS parameter
predicts adsorption onto a more heterogeneous system.

The Redlich–Peterson isotherm model implies homogeneous monolayer adsorption
with constant enthalpies and adsorption energies [26]. The Redlich–Peterson isotherm
model is usually expressed by the following equation [44]:

qe = KRPCe/(1 + aRPCg
e) (9)

where KRD and aRP represent Redlich–Peterson constants (L/g) and ((mg/L)−g), respec-
tively, and g is an empirical Redlich–Peterson parameter (g ≤ 1).

Equilibrium data were fitted to the abovementioned isotherm models, and the co-
efficient of determination (R2) values were the criteria used for model selection. The
fitted isotherm models of Cu(II), Zn(II), and Se(IV) adsorption on the IOS are presented in
Figure 8, while Table 2 contains the calculated parameters.
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Figure 8. Non-linear fits of different isotherm models to the Cu(II), Zn(II), and Se(IV) adsorption by
IOS (pH 5 for Cu(II) and Se(IV), pH 4 for Zn(II), T = 25 ◦C, t = 1440 min, adsorbent dosage = 1 g/L for
Cu(II), Zn(II), and 0.5 g/L for Se(IV)).
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Table 2. Parameters and determination coefficients of the isotherm models.

Models Parameters Cu Zn Se

Langmuir qm (mg/g) 41.41 ± 2.15 99.12 ± 5.28 85.89 ± 1.98
KL (L/mg) 0.70 ± 0.02 0.01 ± 0.001 0.09 ± 0.01

R2 0.9347 ± 0.0021 0.8890 ± 0.0013 0.9813 ± 0.0028
RL 0.010 ± 0.001 0.42 ± 0.02 0.066 ± 0.001
χ2 8.27 ± 0.08 4.79 ± 0.04 8.13 ± 0.02

Freundlich KF (mg/g)(L/mg)1/n 20.21 ± 1.18 3.68 ± 0.45 23.33 ± 1.26
1/n 5.83 ± 1.02 1.74 ± 0.15 3.71 ± 0.78
R2 0.8959 ± 0.0127 0.8203 ± 0.0098 0.9281 ± 0.0104
χ2 18.48 ± 1.89 7.77 ± 0.98 31.33 ± 2.45

Sips qm (mg/g) 48.21 ± 1.98 55.06 ± 2.18 87.85 ± 4.24
KS (L/mg) 0.58 ± 0.09 0.00003 ± 0.00001 0.12 ± 0.01

ns 0.58 ± 0.08 0.98 ± 0.11 0.86 ± 0.09
R2 0.9818 ± 0.14 0.9931 ± 0.11 0.9838 ± 0.12
χ2 1.20 ± 0.23 3.73 ± 0.89 8.81 ± 1.12

Redlich–Peterson KRP (L/g) 49.67 ± 1.78 0.83 ± 0.05 9.30 ± 0.78
aRP (L/mg) 1.68 ± 0.21 0.0005 ± 0.00001 0.12 ± 0.01

β 0.91 ± 0.11 0.51 ± 0.08 0.96 ± 0.15
R2 0.9771 ± 0.0213 0.9471 ± 0.0199 0.9821 ± 0.0214
χ2 5.82 ± 0.45 28.60 ± 1.15 9.70 ± 0.98

According to the data from Table 2, it can be concluded that the Langmuir equa-
tion provides a practical description of the experimental data and suggests monolayer
adsorption onto the IOS. In addition, values of RL and 1/n are between 0–1 and 0–10,
respectively, indicating favorable adsorption of Cu(II), Zn(II), and Se(IV) removal utilizing
the IOS. Moreover, the favorability of the adsorption of Cu(II), Zn(II), and Se(IV) onto the
investigated IOS is also confirmed by other calculated parameters summarized in Table 2
that imply this statement: the KL < 1, KF > 1, β < 1, and ns values are in the range from
0 to 1 [1,26].

Moreover, from the values of the R2 and nonlinear chi-square (χ2) values obtained
from the isothermal study, it can be suggested that the Sips isotherm model best describes
the adsorption of selected pollutants on the IOS surface. This isotherm model proposes
that the maximum adsorption capacities achieved for Cu(II), Zn(II), and Se(IV) removal
using IOS are 48.21, 55.06, and 87.85 mg/g, respectively. In addition, the removal efficiency
achieved in this study for IOS was better than or comparable with other materials pre-
viously investigated for Cu(II), Zn(II), and/or Se(IV) adsorption (Table 3). Besides, the
heterogeneity of the IOS surfaces is confirmed by the value of the 1/nS parameter that is
bigger than 1. As can be seen, the best adsorption capacity was achieved during Se(IV)
removal. During the DES modification, the amino groups were attached to the OS surface
(FTIR analysis confirms this assumption), and their presence can be a reason for the highest
Se(IV) adsorption in comparison to Cu(II) and Zn(II). Moreover, the efficiency of the IOS
as a bio-based adsorbent towards Se(IV) ions tested in this study was better than that of
Fe-modified zeolites (21.6 mg/g) [33].

Table 3. Adsorption capacity of different sorbents towards Cu(II), Zn(II), and/or Se(IV) ions.

Adsorbent qm (mg/g) Reference

Cu(II) Zn(II) Se(IV)

Plant-crofton weed 33.87 [4]
Eggshell 34.48 35.71 [45]

Sugarcane bagasse 3.65 40.00 [45]
Corn silk (Zea mays L.) 15.35 13.98 [46]

Coffee pulp 13.53 [5]
NaOH modified Agave bagasse 20.24 [47]
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Table 3. Cont.

Adsorbent qm (mg/g) Reference

Cu(II) Zn(II) Se(IV)

S. cerevisiae biomass 39.00 [48]
Green algae 74.90 [49]

Iron(III)-modified zeolitic Fe-CLI 21.60 [33]
Modified lignin microspheres 69.90 [38]

IOS 48.21 55.06 87.85 This study
OS 13.76 16.85 14.25 This study

3.3.5. Desorption Study

The adsorption/desorption ability was tested and calculated for each of the three cycles
and displayed in Figure 9. As Figure 9 shows, tested desorption agents maintain high ion
removal efficiency. The adsorption capacity for Cu(II), Zn(II), and Se(IV) slightly decreases
with cycles, but capacity did not drop more than 10%. Besides, HNO3 proved to be a
slightly better desorption agent than the EDTA solution. Since desorption efficiency after
tree cycles was more than 90%, it can be concluded that IOS can be effectively regenerated.
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3.3.6. Ion-Exchange Mechanism

The ion exchange mechanism represents the exchange of ions between the solid mate-
rial surfaces and ions from the liquid phase. It is one of the main mechanisms responsible
for the adsorption of metal ions from solution [1,26]. In this research, the mechanism of
ion exchange on the adsorption of Cu(II), Zn(II), and Se(IV) ions was examined according
to the ratio of adsorbed metal ions and the released cations from the tested adsorbent
surface [26,46]. The amounts of adsorbed pollutants and released Ca(II), Mg(II), Na(I), K(I),
and H(I) at different solution concentrations are given in Figure 10. From the obtained re-
sults, it can be seen that the amount of bonded Cu(II), Zn(II) and Se(IV) ions increases with
increasing concentration of the solution up to 1 mM, after which there are no significant
changes. The release of Ca(II), Mg(II), Na(I), and K(I) ions indicates the formation of an
ionic bond, while the exchange of H(I) ions favors covalent bonding. During the removal
of Cu(II) and Zn(II) ions, Ca(II), and K(I) ions were the most significantly involved in ion
exchange, followed by Mg(II), while the involvement of Na(I) and H(I) ions was negligible.
Besides, the amount of cations released from the IOS adsorbent is less than the amount of
adsorbed ions, which indicates that other mechanisms besides ion exchange are involved
in the removal of selected metals. The summarized findings from this paper confirm this
allegation. This is especially noticeable during the Se(IV) ion removal because it binds in
the form of an oxyanion and creates complexes. The most exchangeable ion during Se(IV)
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removal is Na(I), while the participation of other ions is much smaller. The obtained results
revealed that the ion-exchange mechanism is definitely involved in the binding of selected
cations and oxyanion to the IOS surface.
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3.3.7. Real Effluent Analysis

The application of the IOS sample as an adsorbent for the removal of Cu(II), Zn(II),
and/or Se(IV) metals from industrial wastewater was tested. For the purpose of printing,
tap water was taken from the pre-processing metal industry in Serbia. Metal concentrations
in wastewater before (IWW) and after adsorption (IWW-IOS) were measured using an
AAS method. The obtained experimental results are shown in Table 4. There were no
Se(IV) ions in the tested wastewater. The pH value of industrial wastewater was 3. The IOS
adsorbent reduces the concentration of Cu(II) and Zn(II) ions as well as other present ions
in the solution. The lower adsorption of ions compared to the data obtained from single
metal experiments is probably due to the competition of ions in a solution with a low pH.
This is in agreement with our previously obtained results from testing the influence of the
solution’s pH value on the sorption capacity. In this multimetallic solution, the highest
removal was achieved for Zn(II) ions. Based on the obtained data, we can conclude that
IOS can be used as a potential adsorbent for the removal of Cu(II) and Zn(II) ions from
industrial wastewater.

Table 4. Real effluent before and after removal of metals by IOS.

Cu(mg/L) Zn(mg/L) Pb(mg/L) Cd(mg/L) Ni(mg/L) Fe(mg/L)

IWW 6.62 6.05 4.7 0.16 0.4 0.94
IWW-IOS 3.54 2.12 3.3 0.06 0.1 0.45

4. Conclusions

In this study, OS modified with DES was utilized for potential Cu(II), Zn(II), and Se(IV)
remediation. Results of structural characteristics (SEM, FTIR, and DSC/TG) reveal that
selected biomass treatments caused partial degradation of lignocellulosic constituents and
incorporated novel functional groups onto the OS surface. FTIR analysis confirmed the
involvement of oxygen and nitrogen functional groups, as well as aromatic C=C, in the
binding of selected pollutants. Besides, pHpzc indicates the involvement of electrostatic
interactions in the case of Se(IV) removal. The modification process increases adsorption
capacities by more than four times. Adsorption of Cu(II), Zn(II), and Se(IV) using IOS was
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achieved through two simultaneous stages, while chemisorption was the rate-controlling
step. The isotherm study reveals that favorable adsorption originated on the monolayer
heterogeneous surface of the IOS. The maximum adsorption capacities from the Sips
isotherm model were 48.21, 55.06, and 87.85 mg/g for Cu(II), Zn(II), and Se(IV), respectively.
Moreover, the adsorption mechanism reveals that π–π interaction, electrostatic interaction,
ion exchange, and surface complexation are involved in the binding of selected pollutants
during their contact with the IOS surface.

In general, this study reinforces that the investigated synthesized materials could be
used as promising adsorbents for heavy metals and oxyanions in wastewater treatment.
Moreover, utilization of the DES modification process provides facile, green, and economical
methods for improving agro-waste into high-value bio-based adsorbents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr11051308/s1, Figure S1: pHpzc for OS and IOS.
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grape pomace as a perspective adsorbent of Pb2+ from aqueous solution. J. Environ. Manag. 2016, 182, 292–300. [CrossRef]

35. Lagergren, S. Zur theorie der sogenannten adsorption gelöster stoffe. K. Sven. Vetenskapsakad. Handl. 1898, 24, 1–39. [CrossRef]
36. Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process. Biochem. 1999, 34, 451–465. [CrossRef]
37. Weber, W.; Morris, J. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 89, 31–60. [CrossRef]
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