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Abstract: To address the problems of strong coupling and large hysteresis in the temperature control
of a continuously stirred tank reactor (CSTR) process, an improved sparrow search algorithm (ISSA)
is proposed to optimize the PID parameters. The improvement aims to solve the problems of
population diversity reduction and easy-to-fall-into local optimal solutions when the traditional
sparrow algorithm is close to the global optimum. This differs from other improved algorithms by
adding a new Gauss Cauchy mutation strategy at the end of each iteration without increasing the
time complexity of the algorithm. By introducing tent mapping in the sparrow algorithm to initialize
the population, the population diversity and global search ability are improved; the golden partition
coefficient is introduced in the explorer position update process to expand the search space and
balance the relationship between search and exploitation; the Gauss Cauchy mutation strategy is used
to enhance the ability of local minimum value search and jumping out of local optimum. Compared
with the four existing classical algorithms, ISSA has improved the convergence speed, global search
ability and the ability to jump out of local optimum. The proposed algorithm is combined with PID
control to design an ISSA-PID temperature controller, which is simulated on a continuous reactor
temperature model identified by modeling. The results show that the proposed method improves the
transient and steady-state performance of the reactor temperature control with good control accuracy
and robustness. Finally, the proposed algorithm is applied to a semi-physical experimental platform
to verify its feasibility.

Keywords: CSTR; improved sparrow search algorithm (ISSA); temperature control; golden sine;
Gauss Cauchy mutation

1. Introduction

A continuously stirred tank reactor is a typical piece of equipment in the chemical
industry, particularly in chemical [1], petroleum [2], fuel [3] and polymer production [4].
Due to the strong coupling and large hysteresis of the reactor, the regulation of this system
is challenging.

Although with the development of technology and advanced control strategies various
optimization algorithms such as fuzzy control [5], sliding film control [6] and predictive
control [7] have emerged in the field of CSTR control, PID control still dominates in practical
applications, and the integration of intelligent algorithms to improve the PID controller
to improve the control effect of the CSTR system is the frontier direction in this field. In
the literature [8], a PID controller with adaptive fuzzy gain scheduling was designed,
which has better tracking performance than the conventional PID and can quickly track
the desired coolant jacket temperature. However, the difficulty of parameter tuning is
further amplified by the number of parameters that need to be tuned. The literature [9]
proposed a PID-based nonlinear autoregressive moving average (NARMA) controller,
which embodies better temperature control than the traditional PID controller and fuzzy
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PID controller, but the experiments stay in the simulation stage and the practical application
is not always ideal. In the literature [10], various intelligent algorithms were applied to
the parameter tuning of PID controller for CSTR concentration control, and the controller
tuned by the given method outperformed the traditional Zeigler Nichols (ZN) method in
various performance aspects. The literature [11] proposed to control the concentration and
temperature of CSTR by fractional order PID (FOPID), the two added parameters make the
parameter adjustment more flexible and improve the robustness and stability of the system,
but also greatly increase the difficulty of the controller design. A Dynamically Updated PID
(DUPID) controller is proposed in the literature [12], which introduces a quadratic error
model to optimize the PID structure, ensuring that the tracking parameters are tracked as
they drift and occasionally readjusting the PID parameters, but this controller requires high
model accuracy.

The sparrow algorithm (SSA) [13], as a new intelligent algorithm with few adjust-
ment parameters and strong optimization-seeking ability, can effectively solve the stability
problems arising from flash tank temperature control and has been applied in various
industries [14–16]; however, the sparrow algorithm still has problems such as relying on
the initial solution, easily falling into local optimum, and insufficient diversity in the late
iteration. Scholars have made corresponding improvements to address these deficiencies.
The literature [17] improved the population diversity by initializing the population through
tent chaotic mapping. The literature [18] improved the position-updating process of dis-
coverers in SSA through a sine and cosine search strategy, which effectively improved the
algorithm’s merit-seeking ability and convergence. The literature [19] added Gaussian vari-
ation to the iterative process of individual sparrows to improve the local search capability.
The above-mentioned literature improved the sparrow search algorithm from different
perspectives, and although the ability to jump out of the local space was improved, the
problems of unsatisfactory convergence and inconsistency between global search ability
and local exploitation ability still existed.

Considering the problems in the above literature, a reactor temperature control method
based on the improved sparrow search algorithm to optimize PID parameters is proposed
for the high requirements of control accuracy and stability of temperature control in
continuous reactor systems. This is different from other improved algorithms, not only
from the two perspectives of population initialization and the position update formula of
the algorithm to improve it to increase its search accuracy, convergence speed and stability,
but also to add the new Gauss Cauchy variation strategy to the end of each iteration, which
effectively overcomes the feature that SSA is easy to fall into local optimum, does not
increase the time complexity of the algorithm, and has a certain novelty. Finally, the method
is applied to MATLAB reactor temperature simulation experiments and a semi-physical
platform based on SIMATIC PSC 7 and SMPT-1000 to verify its effectiveness and feasibility.

2. Proposed Optimization
2.1. Traditional SSA

The SSA algorithm was proposed by Xue et al. [13] in 2020, analogizing the search
process to that of a sparrow searching for food, which has the advantages of strong search
ability and fast convergence. The algorithm divides sparrows into discoverers and follow-
ers by the level of fitness value: discoverers usually have high energy reserves and are
responsible for providing areas and directions for followers; followers can always forage
around discoverers that provide the best food or even directly take their place. Moreover, a
certain number of vigilantes are set to prevent the search from falling into a local optimum.
The explorer's location update formula is as follows:

Xt+1
i,j =

Xt
i,j · exp

(
−i

α· iter max

)
if R2 < ST

Xt
i,j + Q · L if R2 ≥ ST

(1)
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where Xij is the position of each individual sparrow, i is the number of current iterations,
and itermax is the total number of iterations; α is a random number within [0, 1]; R2
(R2 ∈ [0, 1]), ST (ST ∈ [0.5, 1]) are the warning and safety values, respectively; Q is a
random number obeying normal distribution; and L is a 1 × d matrix where each element
is 1.

When the safety value of an individual sparrow is less than the warning value, that
is, when R2 < ST, it means that it is in a safe position at this time and the discoverer can
maximize the global search. On the contrary, when R2 > ST, some of the sparrows have
found the danger and the followers have joined the action to monitor the discoverer, and
once the discoverer has obtained a better value, it will take its place. The formula for
updating the position of the followers is as follows:

Xt+1
i,j =


Q · exp

(
Xt

worst−Xt
i,j

i2

)
if i > n/2

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

P

∣∣∣ · A+ · L otherwise
(2)

where n is the population size, Xworst is the position corresponding to the sparrow with
the lowest global fitness, and Xp is the position corresponding to the discoverer with the
highest global fitness. A is a 1× d matrix with random values of 1 or −1 for each element,
where A+ is defined as A+ = AT(AAT)−1.

Since each location update is followed by a ranking based on the fitness values of
individual sparrows, i > n/2 means that some individuals with lower fitness are classified
as followers with poorer status, and they cannot grab food from the discoverers and have
to fly to other places to forage.

The sparrow algorithm defines 10–20% of individuals within the population as vigi-
lantes in order to avoid falling into local optima when searching, and their initial positions
are generated randomly with the position update formula shown below:

Xt+1
i,j =


Xt

best + β ·
∣∣∣Xt

i,j − Xt
best

∣∣∣ if fi > fg

Xt
i,j + K ·

( ∣∣∣Xt
i,j−Xt

worst

∣∣∣
( fi− fw)+ε

)
if fi = fg

(3)

where Xbest is the current global optimal position, β is the step control parameter, whose
value is a random number obeying a normal distribution with mean 0 and variance 1; K is
a random number within [−1, 1]; f is the fitness value, fg and fw are the current optimal
and worst fitness values, respectively; ε is a constant to avoid the denominator being zero.

When fi > fg, this sparrow is less updated than the optimal value and is at the edge
of the population and needs to move closer to the center of the population, while when
fi = fg, it means that the sparrow in the middle of the population is aware of the danger
and needs to find other sparrows to avoid being predated, that is, to fall into the local
optimum. Here, K is the same as β and is also a step control parameter, which also indicates
the direction of its movement. The steps of the traditional sparrow algorithm are as follows:

Step 1: Initialization: population number N, dimension D, discoverer proportion PD,
vigilant proportion SD, warning value ST, initial value upper bound ub, lower bound lb,
maximum number of iterations Tmax;

Step 2: Initialize the population;
Step 3: calculate the fitness values of sparrows and rand them;
Step 4: Update the discoverer position using Equation (1);
Step 5: Update the follower positions using Equation (2);
Step 6: Update the vigilantes’ positions using Equation (3);
Step 7: Calculate the fitness value and update the sparrow position;
Step 8: If the stop condition is satisfied, exit and output the result; otherwise, repeat

Step 4.
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The flow chart of traditional SSA is shown in Figure 1.
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Figure 1. Traditional SSA flow chart.

Traditional SSA also has some problems, such as random generation of initial indi-
viduals, which leads to insufficient population diversity; difficulty in balanced search and
exploitation in discoverer location update, insufficient global search and local exploitation
ability, and easy-to-fall-into local optimum. Therefore, some improvements are needed.

2.2. Improved SSA

To address the problems of traditional SSA mentioned above, the algorithm is im-
proved by introducing tent chaotic mapping to initialize the population to improve the
diversity of the population, improving the discoverer position update formula to balance
its search and exploitation ability with the help of golden partition, and finally, intro-
ducing Gauss–Cauchy variation strategy to help ISSA jump out of local optimum. The
improvement details are as follows.
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2.2.1. Tent Chaotic Mapping Initializes the Population

Based on the three main properties of chaotic variables, i.e., ergodicity, regularity and
randomness, the global search capability of the algorithm is enhanced by preventing the
algorithm from falling into a local optimum through its randomness while ensuring the
diversity of the population. The expression of the tent mapping is shown in Equation (4).

zi+1 =

{
2zi 0 ≤ z ≤ 1

2

2(1− zi)
1
2 < z ≤ 1

(4)

where z is a random point between [0, 1]. i is the number of current iterations. The
expression after Bernoulli transform is Equation (5).

zi+1 = (2zi)mod1 (5)

In order to avoid the existence of small cycles and unstable points in chaotic mapping
and to preserve the periodicity, ergodicity, and regularity of chaotic variables,
Wang et al. [20], based on the improved tent chaotic universal gravity search algorithm,
added a random variable to the original expression, and the improved formula is given in
Equation (6).

zi+1 =

{
2zi + rand(0, 1) · 1

NT
0 ≤ z ≤ 1

2

2(1− zi) + rand(0, 1) · 1
NT

1
2 < z ≤ 1

(6)

The expression after Bernoulli transform is given in Equation (7).

zi+1 = (2zi)mod1 + rand(0, 1) · 1
NT

(7)

where rand(0, 1) is a random number between [0, 1]. NT is the number of particles in the
chaotic sequence.

The distribution and histogram of 600 generations of improved tent chaos mapping
are generated on MATLAB as shown in Figure 2.
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Figure 2. Tent Chaos Sequence.

As can be seen from Figure 2 the improved tent chaotic sequence is uniformly dis-
tributed between [0 and 1] and has good ergodicity. Finally, the initialized Tent chaotic
population is obtained according to the upper and lower bounds of the given solution as
shown in Equation (8).

Xt+1
i,j = lb + (ub− lb)Zj (8)
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where lb is the lower bound of the solution space. ub is the upper bound of the solution
space. Zj is a j-dimensional sequence of tent chaos generated according to Equation (7).

2.2.2. Explorer Location Update Improvements

Golden-Sine is a new heuristic algorithm proposed by Tanyildizi et al. [21], which is
inspired by the sine function and based on the relationship between the sine function and
the unit circle. All values on the sine function can be traversed, i.e., all points on the unit
circle can be searched, in order to scan the region that may yield only good results, largely
improving the search speed and achieving a good balance between search and exploitation.

To address the problem that the discoverer position update process is difficult to
balance search and exploitation, the optimization of the discoverer position update formula
is considered. In the common discoverer position update formula, when the discoverer
warning value is less than the safety value, the golden sine is introduced to replace the
exponential random number, and the advantage of good traversal of the golden sine
is used to reduce the solution space, improve the search speed, and balance the search
and exploitation relationship between the two. The improved discoverer position update
formula is shown in Equation (9).

Xt+1
i,j =

{
Xt

i,j × |sin(R1)|+ R2 × sin(R1)×
∣∣∣x1 × Xt

best − x2 × Xt
i,j

∣∣∣ R2 < ST
Xt

i,j + Q · L R2 ≥ ST
(9)

where R1 is a random number that determines the distance an individual will move in the
next iteration, taking values between [0, 2π]. R2 determines the direction of the position
update for the ith individual of the next iteration, taking values between [0, π]. x1 and x2
are coefficients obtained by introducing the golden mean, these coefficients narrow the
search space, leading individuals to gradually converge to the optimal value, ensuring
the convergence of the algorithm, the golden mean is related to the definition shown in
Equation (10). 

x1 = aτ + b(1− τ)
x2 = a(1− τ) + bτ

τ =
√

5−1
2

(10)

where (a) the initial value is set to −π, and thereafter varies edge to edge as the target
value changes; (b) the initial value is set to π, and thereafter the side changes as the target
value changes.

2.2.3. Introduction of Gauss–Cauchy Mutation Strategy

The standard SSA algorithm late sparrow individuals assimilate rapidly, and there is a
problem of local optimum stagnation that, combined with the characteristics of the normal
distribution, can be seen. Gaussian mutation tends to focus on a local region of the original
individual attachment, its local search ability is strong and good at solving optimization
problems with a large number of local minimum values. The Gauss distribution function
at the origin of the peak is relatively small but the distribution at both ends is relatively
long, the use of its characteristics of the Cauchy mutation can generate larger perturbations
in the individual attachment, making its ability to jump out of the local optimum enhanced.
By introducing the Gaussian mutation operator and the Cauchy mutation operator [22],
the fitness value fi and the average fitness value f avg of each sparrow are recalculated after
one iteration of the sparrow algorithm is completed, i.e., the positions of the discoverers,
followers and watchmen have been updated, and the better position before and after
mutation is selected by the fitness selection mutation strategy and brought into the next
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iteration meritively without increasing the time complexity of the algorithm. The specific
position update formula is shown in (11).{

Xt+1
i,d = Xt

i,d(1 + λ1Gauss(0, 1)) fi < favg

Xt+1
i,d = Xt

i,d(1 + λ2cauchy(0, 1)) fi ≥ favg
(11)

where Gauss(0, 1) is a random variable satisfying the Gaussian distribution. Cauchy(0, 1)
is a random variable satisfying the Cauchy distribution. λ1 is a dynamic parameter that
adaptively adjusts with the number of iterations λ1 = 1− t2

T2
max

, λ2 is a dynamic parameter

that adaptively adjusts with the number of iterations λ2 = t2

T2
max

. t is the number of current
iterations. Tmax is the total number of iterations.

In the whole process of the optimization search: λ1 gradually decreases and λ2 grad-
ually increases, the Gaussian mutation dominates at the beginning of the iteration for
enhancing the local search ability, focusing on solving the optimization problem of local
minimum values and enhancing the robustness of the algorithm to a certain extent; the late
iteration mainly helps the individual to jump out of the local optimum through the Cauchy
variation so that it can better reach the global optimum.

2.2.4. ISSA Implementation Steps and Flow Chart

The ISSA algorithm introduces tent chaotic mapping to initialize the population, which
increases the diversity of the population, introduces golden sine to improve the discoverer
position update formula, which balances the search performance of the algorithm with the
pioneering performances, and introduces the Gauss–Cauchy variation strategy to help the
algorithm jump out of the local optimum. Its concrete implementation steps are as follows:

Step 1: Initialization: population number n, dimension D, discoverer proportion PD,
vigilant proportion SD, warning value ST, initial value upper bound ub, lower bound lb,
maximum number of iterations Tmax;

Step 2: Initialize the population by the Tent chaotic sequence in Equation (7), generate
N D-dimensional vectors Zi, and carrier its components into the range of values of the
original problems space variables by Equation (8);

Step 3: Calculate the fitness fi of each sparrow and select the current optimal fitness
value fg and its corresponding position xb;

Step 4: Select the top PNum sparrows with good adaptation as discoverers and the
rest as followers, update the discoverer positions according to the discoverer position
update Equation (9) after introducing the golden mean, and update the follower positions
according to Equation (2);

Step 5: Randomly select SNum sparrows from the sparrow population as vigilantes
and update their positions according to Equation (3);

Step 6: After one iteration, recalculate the fitness value fi for each sparrow and the
average fitness value favg for the sparrow population;

(1) When fi < favg indicates the phenomenon of “aggregation”, Gaussian variation is
performed according to Equation (11), and if the mutated individual is better, it replaces
the one before the mutation, otherwise it remains unchanged.

(2) When fi ≥ favg indicates a trend of “divergence”, we will carry out the Cauchy
variation according to Equation (11), and replace the individuals before the variation if they
are better after the variation, otherwise, they will remain unchanged.

Step 7: Based on the current state of the sparrow population, update the optimal
position xb experienced by the entire population and its fitness value fg;

Step 8: Determine whether the operation of the algorithm meets the stopping condition,
if it does, exit and output the result, otherwise, repeat to step 4.

The flow chart of ISSA is shown in Figure 3.
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3. Performance Analysis on Benchmark Functions
3.1. Selection of Test Functions

In order to verify the feasibility of the improved sparrow algorithm, 30 different types
of test functions [23] were selected for simulation experiments to examine the full range of
the improved sparrow algorithm’s optimization-seeking ability through different types of
functions. Among them, F1 to F7 are unimodal test functions; F8 to F13 are high-dimensional
multimodal test functions; F14 to F23 are fixed-dimensional multimodal test functions; and
F24 to F30 are complex test functions. As shown in Table 1.
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Table 1. Test function.

Type Function Name Dimensionality Search Space Optimum Value

High-dimensional
unimodal

Sphere(F1) 30 [−100, 100] 0
Schwefel 2.22(F2) 30 [−10, 10] 0
Schwefel 1.2(F3) 30 [−100, 100] 0
Schwefel 2.21(F4) 30 [−100, 100] 0

Generalized Rosenbrock(F5) 30 [−30, 30] 0
Step Function(F6) 30 [−100, 100] 0

Quartic(F7) 30 [−1.28, 1.28] 0

High-dimensional
multimodal

Schwefel2.26(F8) 30 [−500, 500] −12,569.5
Rastrigin(F9) 30 [−5.12, 5.12] 0
Ackley(F10) 30 [−32, 32] 0

Griewank(F11) 30 [−600, 600] 0
Generalized Penalized Function 1(F12) 30 [−50, 50] 0
Generalized Penalized Function 2(F13) 30 [−50, 50] 0

Fixed-dimension
multimodal

Shekel's Foxholes(F14) 2 [−65.53, 65.53] 1
Kowalik(F15) 4 [−5, 5] 0.0003075

Six-Hump Camel-Back(F16) 2 [−5, 5] −1.031628

Branin(F17) 2 lb = [−5, 0]
ub = [10, 15] 0.398

Goldstein-Price(F18) 2 [−2, 2] 3
Hartman's Family n = 3(F19) 3 [0, 1] −3.98
Hartman's Family n = 6(F20) 6 [0, 1] −3.32
Shekel's Family m = 5(F21) 4 [0, 10] −10.536
Shekel's Family m = 7(F22) 4 [0, 10] −10.536
Shekel's Family m = 10(F23) 4 [0, 10] −10.536

Complicated

Eggholder(F24) 2 [−512, 512] −959.6407
Holder Table(F25) 2 [−10, 10] −19.2085
Langermann(F26) 2 [0, 10] −4.1558

Levy N.13(F27) 2 [−10, 10] 0
Michalewicz(F28) 10 [0, π] −9.66015

Three-Hump Camel(F29) 2 [−5, 5] 0
Perm Function 0, d, β(F30) 10 [−10, 10] 0

3.2. Experimental Environment and Comparison Algorithm Selection

The experiments were conducted in AMD Ryzen 7 5800H CPU@3.19 GHz,
16.00 GB of memory, Windows 10 system and MATLAB R2020. The original Sparrow
Search Algorithm (SSA), Improved Sparrow Search Algorithm (ISSA), Grey Wolf Opti-
mization Algorithm [24] (GWO), particle swarm algorithm [25,26] (PSO) and Moth-Flame
Optimization Algorithm [27] (MFO) for the comparison test of the test functions.

Among them, the selection of each comparison algorithm is based on the following
bases: SSA is the original algorithm of ISSA; GWO has a strong search capability and it is
easy to find the optimal value of the test function, which is used to focus on comparing the
ability of ISSA to find the optimal solution; PSO has a simple structure and short running
time in the search process, which is used to focus on comparing the stability and real-time
performances of ISSA in the search process; MFO can widely explore the search space. It is
easier to find the global optimal solution, and it is used to focus on comparing the ability of
ISSA to jump out of the local optimum.

3.3. Comparative Analysis of Performance Indicators

In the experiment, the population size N = 30, the maximum number of iterations
itermax = 500, the dimensionality of the objective function D and the initial values of the
upper and lower bounds ub and lb are shown in Table 1, and the number of discoverers PD
and the number of watchmen SD are taken as 20% of the total population size. In order
to avoid the chance of the search results for the test functions, the experimental results of



Processes 2023, 11, 1302 10 of 27

30 independent runs of each benchmark test function were selected as the experimental
data. The mean, standard deviation, optimal value and the number of iterations of the
search results for the 30 test functions were used as the final performance evaluation
indexes, as shown in Tables 2–5, where the bolded items are the optimal indexes of the
same test function.

Table 2. Optimal value of test function search results.

Type Function GWO PSO MFO SSA ISSA

High-
dimensional

unimodal

F1 1.071 × 10−27 334.718 2.071 4.821 × 10−98 6.15 × 10−145

F2 1.054 × 10−18 15.051 30.111 1.232 × 10−42 1.633 × 10−43

F3 1.212 × 10−8 5.105 × 103 2.037 × 104 1.054 × 10−27 3.549 × 10−34

F4 4.282 × 10−7 6.821 70.487 5.355 × 10−29 1.091 × 10−50

F5 0.446 1.101 × 104 1.919 × 103 6.978 × 10−5 1.076 × 10−7

F6 0.504 355.921 990.794 3.324 × 10−6 1.339 × 10−12

F7 1.300 × 10−3 0.535 2.528 1.200 × 10−3 6.225 × 10−5

High-
dimensional
multimodal

F8 −9.70 × 103 −6.266 × 103 −4.05 × 103 −1.25 × 104 −1.25 × 104

F9 0 1.0267 × 102 1.550 × 102 0 0
F10 8.882 × 10−16 4.5047 5.393 8.882 × 10−16 8.882 × 10−16

F11 0.001 0 4.931 0 0
F12 0.033 5.647 32.821 1.050 × 10−7 2.233 × 10−13

F13 0.616 9.983 6.258 9.574 × 10−9 4.573 × 10−14

Fixed-
dimension

multimodal

F14 2.9821 1.003 0.998 2.982 0.998
F15 3.378 × 10−4 0.023 7.837 × 10−4 3.378 × 10−4 3.132 × 10−4

F16 −1.032 −1.032 −1.032 −1.032 −1.032
F17 0.398 0.398 0.398 0.398 0.398
F18 3.000 3.002 3.000 3.002 3.000
F19 −3.863 −3.863 −3.863 −3.863 −3.863
F20 −3.322 −3.326 −3.203 −3.231 3.322
F21 −9.392 −10.154 −10.055 −10.153 −10.536
F22 −10.403 −10.403 −10.403 −10.403 −10.403
F23 −10.535 −10.536 −10.536 −10.536 −10.536

Complicated

F24 −959.6407 −959.6407 −959.6407 −959.6407 −959.6407
F25 −19.2085 −19.2085 −19.2085 −19.2085 −19.2085
F26 −4.1558 −4.1558 −4.1558 −4.1558 −4.1558
F27 8.588 × 10−8 7.570 × 10−6 1.348 × 10−31 1.459 × 10−8 1.348 × 10−31

F28 −8.946 −6.874 −9.005 −8.454 −9.552
F29 1.48 × 10−199 1.248 × 10−5 6.92 × 10−110 3.275 × 10−64 1.94 × 10−179

F30 0.103 17.276 1.033 × 10−6 0.002 0.116

Table 3. Mean value of test function search results.

Type Function GWO PSO MFO SSA ISSA

High-
Dimensional

unimodal

F1 1.153 × 10−27 3.786 × 102 2.781 2.696 × 10−63 9.855 × 10−95

F2 8.864 × 10−17 18.415 38.778 7.844 × 10−32 1.690 × 10−46

F3 8.906 × 10−6 7.740 × 103 2.164 × 104 2.554 × 10−27 3.286 × 10−31

F4 6.657 × 10−7 9.728 68.5053 9.456 × 10−15 3.15 × 10−27

F5 0.7904 1.687 × 104 8.017 × 106 8.807 × 10−4 1.17 × 10−4

F6 0.6316 359.709 3.332 × 103 5.493 × 10−6 7.84 × 10−12

F7 1.900 × 10−3 0.987 2.730 1.700 × 10−3 5.774 × 10−4

High-
dimensional
multimodal

F8 −5.74 × 103 −7.376 × 103 −4.08 × 103 −8.48 × 103 −1.15 × 104

F9 2.838 1.943 × 102 1.578 × 102 0 0
F10 9.883 × 10−14 5.899 14.859 8.882 × 10−16 8.882 × 10−16

F11 0.002 3.834 30.969 0 0
F12 0.047 5.802 639.216 2.884 × 10−7 4.10 × 10−12

F13 0.706 22.964 39.506 8.27 × 10−6 4.40 × 10−12
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Table 3. Cont.

Type Function GWO PSO MFO SSA ISSA

Fixed-
dimension

multimodal

F14 3.515 1.040 1.757 5.349 1.004
F15 0.006 0.008 0.001 4.038 × 10−4 3.20 × 10−4

F16 −1.032 −1.032 −1.032 −1.032 −1.032
F17 0.398 0.398 0.398 0.398 0.398
F18 5.700 3.002 3.000 3.900 3.000
F19 −3.862 −3.860 −3.863 −3.863 −3.863
F20 −3.264 −3.091 −3.236 −3.251 −3.296
F21 −9.317 −9.802 −8.418 −8.914 −10.532
F22 −10.225 −9.706 −8.762 −9.163 −10.397
F23 −10.264 −10.264 −8.383 −8.914 −10.530

Complicated

F24 −868.854 −926.734 −931.834 −917.836 −959.488
F25 −19.2085 −18.504 −20.584 −19.0125 −19.2085
F26 −4.0326 −3.7992 −4.0148 −4.1288 −4.1342
F27 4.006 × 10−7 1.059 × 10−4 1.348 × 10−31 7.522 × 10−6 1.348 × 10−31

F28 −7.854 −5.729 −7.796 −7.981 −8.011
F29 6.9 × 10−189 3.365 × 10−6 1.30 × 10−103 2.637 × 10−35 3.9 × 10−169

F30 8.636 152.489 9.240 10.899 7.639

Table 4. Variance of test function search results.

Type Function GWO PSO MFO SSA ISSA

High-
dimensional

unimodal

F1 2.942 × 10−27 1.708 × 102 2.000 1.196 × 10−62 2.203 × 10−94

F2 5.698 × 10−17 12.794 20.239 3.778 × 10−31 3.778 × 10−46

F3 1.832 × 10−5 5.881 × 103 1.124 × 104 1.376 × 10−26 9.735 × 10−31

F4 5.501 × 10−7 2.718 7.814 5.180 × 10−14 1.67 × 10−26

F5 0.7904 1.392 × 104 3.218 × 107 0.001 3.82 × 10−4

F6 0.372 216.624 6.600 × 103 1.043 × 10−5 2.01 × 10−11

F7 9.494 × 10−4 2.723 6.149 1.400 × 10−3 2.239 × 10−4

High-
dimensional
multimodal

F8 1.036 × 103 1.069 × 103 8.103 × 102 5.312 × 103 1.644 × 103

F9 4.348 30.75 33.111 0 0
F10 1.552 × 10−14 0.883 6.985 0 0
F11 0.006 1.372 49.146 0 0
F12 0.024 3.171 3.438 × 103 5.684 × 10−7 1.53 × 10−11

F13 0.2384 14.699 77.229 1.423 × 10−5 7.12 × 10−12

Fixed-
dimension

multimodal

F14 3.801 0.1123 1.365 5.454 1.680 × 10−2

F15 0.009 0.009 0.001 2.935 × 10−4 2.874 × 10−4

F16 1.802 × 10−8 2.250 × 10−5 6.775 × 10−16 2.003 × 10−5 5.04 × 10−16

F17 7.534 × 10−5 9.261 × 10−6 0 3.325 × 10−5 0
F18 14.788 1.68 × 10−4 6.696 × 10−4 4.929 1.92 × 10−15

F19 0.002 0.004 0.001 6.872 × 10−4 2.30 × 10−15

F20 0.091 0.181 0.059 0.059 0.052
F21 2.210 2.139 3.575 2.521 5.700 × 10−3

F22 0.963 1.878 3.052 2.287 0.006
F23 1.481 1.250 3.386 2.520 0.013

Complicated

F24 90.299 33.497 44.750 45.879 0.835
F25 2.241 × 10−5 1.231 1.426 0.746 7.58 × 10−15

F26 0.204 0.665 0.183 0.005 0.012
F27 3.514 × 10−7 1.338 × 10−4 6.68 × 10−47 1.646 × 10−5 6.68 × 10−47

F28 1.129 0.838 0.909 0.809 0.781
F29 0 4.818 × 10−6 7.02 × 10−103 1.444 × 10−34 0
F30 11.406 120.335 9.075 11.134 8.950
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Table 5. Number of iterations to test the optimization results of the function.

Type Function GWO PSO MFO SSA ISSA

High-
dimensional

unimodal

F1 500 500 500 500 283
F2 500 500 500 500 408
F3 500 500 500 500 452
F4 500 500 500 430 287
F5 56 500 500 500 34
F6 500 500 500 500 500
F7 267 383 390 500 172

High-
dimensional
multimodal

F8 500 500 190 112 201
F9 500 500 500 72 18
F10 368 500 500 278 85
F11 180 189 500 64 27
F12 500 500 500 500 283
F13 500 500 500 500 500

Fixed-
dimension

multimodal

F14 83 59 29 77 6
F15 500 500 500 500 500
F16 4 1 1 2 1
F17 115 92 13 28 8
F18 36 73 38 8 6
F19 199 90 17 24 7
F20 196 500 500 17 8
F21 434 202 32 423 7
F22 298 500 46 448 10
F23 457 266 47 500 29

Complicated

F24 35 500 22 500 13
F25 24 8 32 3 1
F26 40 7 80 15 12
F27 500 500 172 116 500
F28 500 500 151 390 137
F29 500 500 500 500 500
F30 500 500 500 500 500

Analyzing Tables 2–5, we can see that based on the same constraints, for the functions
F1–F30, the mean and standard deviation of ISSA are significantly better than the other four
comparative optimization algorithms, and for different test functions, ISSA can find its
optimal value within 30 times and the number of its iterations to find the optimal value is
much lower than the other algorithms. Among them, for the high-dimensional single-peak
functions: for the functions F1–F7, the average value of ISSA is closer to the optimal value,
and the standard deviation is much lower than other algorithms, especially for the functions
F1–F4, the order of magnitude of the search results is improved by at least 19 orders of
magnitude compared with traditional SSA, which indicates that the accuracy and stability
of its search are greatly improved. For functions F5–F7, although the improvement of the
optimization results is not obvious, it is also significantly better than other comparative
algorithms. For high-dimensional multimodal, for the functions F8–F11, ISSA and SSA can
find the optimal solution compared with other algorithms, but the mean and variance of
ISSA are smaller, which indicates that the superiority of the improved algorithm itself is
not destroyed, and the stability is stronger. For functions F12 and F13, although the iteration
time is longer and the optimal solution of the test function is not found for 500 iterations,
the optimal value, mean and variance are better than the other compared algorithms. For
fixed-dimensional multi-peak functions, among the 10 test functions, the number of func-
tions for which ISSA, SSA, GWO, MFO and PSO can find the optimal solution among the
10 test functions are 9, 5, 5, 8 and 5, respectively, and the number of optimal values for
30 times are 5, 3, 2, 4 and 2, respectively, and the variance of ISSA is the smallest for all
30 times of finding the optimal value, and ISSA is much better than other algorithms in the
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performance of fixed-dimensional multi-peak test functions. For complex test functions,
for functions F26–F28, all five algorithms can find their optimal values, but the mean and
variance of ISSA are lower, except for F28, which has a higher number of iterations than
SSA, and all others are lower than the other algorithms. For function F29, the optimal value
and mean performance are not as good as GWO, the variance is the same, and the number
of iterations is the same. For function F30, except for the optimal value, which is not as good
as MFO, all other performance indicators are better than the other algorithms. In summary,
it can be seen that the ISSA algorithm outperforms all other algorithms in different types of
30 test functions, except for individual test functions that are inferior to individual algo-
rithms, proving the excellent performance of the improved sparrow search algorithm.

3.4. Running Time Comparison Analysis

Real-time performance is an important index to evaluate the superiority of the al-
gorithm, and the average running time of ISSA and SSA for 30 times of optimization of
different test functions is experimentally derived. The running time comparison results are
shown in Table 6.

Table 6. Comparison of the running time of test functions by the sparrow algorithm before and
after improvement.

Type Function
SSA ISSA

Mean Running Time/s

High-dimensional
unimodal

F1 0.2940 0.1937
F2 0.3895 0.3963
F3 0.5226 0.5129
F4 0.3578 0.3485
F5 0.3872 0.3439
F6 0.3287 0.3443
F7 0.4786 0.4425

High-
dimensional
multimodal

F8 0.4175 0.4132
F9 0.3989 0.3911
F10 0.3848 0.4037
F11 0.4194 0.4225
F12 0.3849 0.3389
F13 0.3525 0.3361

Fixed-dimension
multimodal

F14 0.7484 0.7105
F15 0.1920 0.1474
F16 0.1886 0.1810
F17 0.1816 0.1721
F18 0.1802 0.1699
F19 0.2076 0.2157
F20 0.2108 0.2434
F21 0.2526 0.2298
F22 0.2396 0.2694
F23 0.2562 0.2964

Complicated

F24 0.1832 0.1694
F25 0.1834 0.1681
F26 0.2570 0.2865
F27 0.1862 0.1754
F28 0.3598 0.3436
F29 0.1931 0.1886
F30 1.1782 1.2938

From Table 6, it can be seen that the mean running time of ISSA on 20 out of 30 test
functions is slightly better than that of the standard SSA, and the running time used on
the other 10 test functions is approximately the same, which verifies the consistency in
time complexity between the improved SSA and the standard SSA in this paper, and the
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improvement of the algorithm does not reduce the real-time performance while improving
the performance.

3.5. Comparison of Convergence Curves of Fitness Values

In order to reflect the dynamic convergence characteristics of ISSA and further visu-
alize and compare the convergence of each algorithm and the ability to jump out of the
local optimum, the convergence curves of four test functions of each type are given for
a total of sixteen test functions under five optimization algorithms, where the horizontal
coordinates are the number of iterations and the vertical coordinates are the values of the
fitness functions. As shown in Figures 4–7.
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The analysis of Figures 4–7 shows that for the functions F1, F2, F3, F4, F8, F24 and
F25, ISSA is far better than the other comparison algorithms in both convergence speed
and search accuracy, an indication that the strategy of initializing the population by tent
mapping effectively improves the diversity and pioneering of the population, and the
golden sine strategy improves the discoverer search method to improve the global search
ability of the algorithm. For the functions F9, F10, F11, F15, F16, F17, F18 and F26, although
ISSA and other compared algorithms eventually converge to the optimal value, ISSA has
fewer iterations and higher efficiency of the search. Although there is a tendency to fall
into the local optimum in the late stage of the search, the Gauss–Cauchy variation strategy
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introduced by the algorithm effectively jumps out of the local optimum and converges to
the global optimum. For function F28, only ISSA and MFO eventually converge, but the
number of ISSA iterations is slightly higher than that of MFO.

In summary, it can be seen that ISSA has significantly improved the search ability
for different types of benchmark functions, whether it is a high-dimensional single-peak
function, high-dimensional multi-peak function, fixed-dimensional multi-peak function
or a more complex function than other comparison algorithms. At the same time, its fast
convergence speed and short operation time can meet the demand for real-time algorithms
and effectively avoid falling into local optimum while ensuring the search speed, thus
proving the feasibility and superiority of ISSA.

4. Performance Analysis of Reactor Model for Temperature Control
4.1. Reactor Temperature Control System Model
4.1.1. Heat Exchanger Description

In the chemical production process, to obtain a high reaction rate, the reactor needs
to be controlled near the optimal temperature, so for the exothermic reaction, generated
heat energy needs to be offset, and the heat-absorbing reaction needs to be provided with
sufficient heat energy, which uses a heat exchanger in order to maximize the contact area of
heat transfer. The practical application of the general use of tubular heat exchangers, such
as Figure 8, shows the structure of a heat exchanger, the heat exchanger through different
temperatures of fluid through the shell process and the fluid in the tube process to complete
the heat transfer.
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Figure 8. Schematic diagram of heat exchanger structure.

The exit temperature of the heat exchanger is generally simplified to a second-order
with a time lag model, which affects the exit temperature of the tube process by controlling
the flow rate of the fluid in the shell process, while the control of the flow rate is con-
trolled by the opening of the flow control valve of the inlet line of the circulating cooling
water. Therefore, by controlling the regulating valve opening, the heat exchanger outlet
temperature can be controlled.

4.1.2. Heat Exchanger Model Identification

Let the heat exchanger input be T11F1 and T21F2, and the output be T22 and T12,
where the controlled variable is the heat exchanger output temperature T12, and the control
variable is the circulating cooling water flow rate F2. It is assumed that there is no heat loss
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in the heat exchanger, the same heat transfer coefficient is K12 and the fluid flow in the tube
can always be controlled. The total set parameter model is used for mechanism modeling,
and the heat exchanger outlet temperature T12 is selected as the total set parameter and the
fluid flow delay is considered for system modeling.

According to the energy dynamic balance, Equation (12) can be obtained:

M1C1
dT12

dt = F1C1(T11 − T12) + K12 A(T22 − T12)

M2C2
dT22

dt = F2C2(T21 − T22)− K12 A(T22 − T12)
(12)

where Mi is the corresponding fluid mass in the tube. Ci is the specific heat capacity of the
corresponding fluid. A is the average thermal conductivity area. Ti is the corresponding
temperature. Simplifying and linearizing Equation (12), the state space model can be
obtained as shown in Equation (13).

.
X =

[
a1 a2
b1 b2

]
X +

[
a3 0 a4 0
0 b3 0 b4

]
U (13)

where U =
[
T11 T21 F1 F2

]T. X =
[
T12 T22

]T. a1 = −
(

F1
M1

+ K12 A
C1 M1

)
. a2 = K12 A

C1 M1
.

a3 = F1
M1

. a4 = 1
M1

(
T11 − T12

)
. b1 = K12 A

C2 M2
. b2 = −

(
F2
M2

+ K12 A
C2 M2

)
. b3 = F2

M2
.

b4 = 1
M2

(
T21 − T22

)
. In the Equation, the one with the “—” symbol indicates the steady-

state value.
Transform Equation (13) into a transfer function as shown in Equation (14).

[
T12
T22

]
=

1
(s− a1)(s− a2)− a2b1

×


(s− b2)a3 b1a3

a2b3 (s− a2)b3
(s− b2)a4 b1a4

a2b4 (s− a2)b4


T

T11
T21
F1
F2

 (14)

The control system transfer function is shown in Equation (15).

G(s) =
T12(s)
F2(s)

=
a2b4

(s− a1)(s− a2)− a2b1
(15)

Considering the heat transfer delay, the heat exchanger is in the second-order with
delay form as shown in Equation (16).

G(s) =
K

(T1s + 1)(T2s + 1)
e−τs (16)

where K is system gain. T is the time constant. τ is the delay time.
The heat exchange process is shown in Figure 9, FV1103 is the material inlet valve, its

corresponding flow rate is FI1102, the temperature is TI1103, FV1105 is the utility water
outlet valve, its corresponding flow rate is FI1105 and the corresponding temperature
is TI1104.

The FV1105 is manually given an opening of 35%, and since the temperature is a self-
balancing system, it makes the TI1104 from the initial temperature reduced to a constant
temperature, and an open-loop step curve of the heat exchanger outlet temperature is
obtained, as shown in Figure 10.

With the open-loop response curve, the process transfer function can be obtained as in
Equation (17).

G(s) =
0.0274

38731.2s2 + 398.36s + 1
e−30s (17)
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Figure 10. Heat exchanger outlet temperature open loop step curve.

4.2. Controller Design

The quality of the parameters in the PID controller will greatly affect the quality of
the controller. The purpose of this paper for the design of an optimized PID controller
based on the improved sparrow search algorithm is to find an optimal set of parameters
in the solution space

{
Kp, KI, KD

}
, so that the system meets the control requirements and

performs well.
In the design of the improved sparrow search algorithm PID controller, the objective

function setting should be in accordance with the control system performance index,
and satisfactory dynamic characteristics of the iterative process can be obtained, and the
evaluation function Q is set as shown in Equation (18).

Q =
∫ ∞

0

(
w1

∣∣∣e(t)∣∣∣+w2u2(t)
)

dt (18)
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where e(t) is the error of the output value with respect to the input value. u(t) is a control
value to avoid excessive control margins. w1 is a weight value, taking the value [0, 1], in
general w1 = 0.999. w2 is a weight value, taking the value [0, 1], in general w2 = 0.001.
Moreover, to prevent overshoot, a restriction is taken to prevent overshoot, i.e., when
overshoot occurs, an overshoot term w3|e(t)| is introduced in the objective function Q as
shown in Equation (19).

Q =
∫ ∞

0

(
w1

∣∣∣e(t)∣∣∣+w2u2(t) + w3

∣∣∣e(t)∣∣∣)dt (19)

where w3 is a Weights, set at w3= 100.
The improved sparrow search optimization algorithm is used to design the PID

controller, setting the parameter range Kp, KI, KD ∈ [0, 100000], and using Equation (19) as
the fitness function, the objective of the optimization search is to find a set of PID values
that minimize the error of Q by rectifying the three parameters by ISSA.

The block diagram of the PID controller design based on the ISSA algorithm is shown
in Figure 11, where Gp(s) is a controlled system.
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4.3. System Simulation and Results Analysis
4.3.1. Build Simulation Platform and Preliminary Performances Comparison

In the Simulink module of MATLAB, the traditional PID controller, fuzzy PID con-
troller, PSO-PID controller, GWO-PID controller, MFO-PID controller, SSA-controller and
ISSA-PID controller are built to compare the control effect on the unit step, the transfer
function is Equation (17), the PID control block diagram is shown in Figure 12, the fuzzy
PID control block diagram is shown in Figure 13, and the PID parameters of the seven
controllers are shown in Table 7. The control effect comparison graph is shown is Figure 14.
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Figure 13. Fuzzy PID control block diagram.

Table 7. PID parameters.

Algorithm
Parameters

KP KI KD

PID 6268.17706 0.02636 17,635.79
Fuzzy-PID 4224.04676 0.00533 31,417.79
ISSA-PID 6376.42771 0.00236 95,854.56
PSO-PID 2191.85053 0.00643 20,052.97

GWO-PID 1349.69954 0.00666 20,589.11
SSA-PID 3573.95374 0.00578 58,089.41
MFO-PID 2362.61431 0.00637 21,615.32

Analyzing the data in Figure 14, the performance metrics of the various algorithm
curves were obtained as shown in Table 8.

Setting the error band within 5%, as shown in Figure 14, ISSA-PID reduces overshoot
by 9.5%, 21.4%, 17.8%, 7.2%, 4.1% and 17.9% compared to PID, Fuzzy-PID, PSO-PID,
GWO-PID, SSA-PID and MFO-PID, respectively. The rise time is reduced by 2.5 s, 5.2 s,
18.2 s, 20.1 s, 21.2 s and 14.6 s; steady-state values are reduced by 197.77 s, 116.26 s, 136.16 s,
192.08 s, 25 s, 126.4 s. Steady-state values are all stable around 1.0, and ISSA-PID is 99.4,
which is the lowest error compared to other controllers. Therefore, ISSA is optimal in all
aspects of performance indexes.

In practical application environments, different perturbations are often encountered,
and the cause of the perturbations may be caused by human control requirements or may
be uncertain. Therefore, the algorithm is tested separately for the lift-load and perturbation
tests as a way to verify the robustness of the algorithm.
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Table 8. Performance index.

Algorithm
Performance Index

Maximum Overshoot (%) Peak Time (s) Stable Time (s) Steady-State Error (%)

PID 58.2 17.1 290.57 98.9
Fuzzy-PID 40.1 19.8 209.16 99.1
ISSA-PID 18.7 14.6 92.8 99.4
PSO-PID 36.5 32.8 228.96 98.2

GWO-PID 25.9 34.7 284.88 97.3
SSA-PID 22.8 35.8 117.80 98.9
MFO-PID 36.6 29.2 219.20 98.3

4.3.2. Liter Load Test

After the response curve is stabilized, the set value of the step response is increased
from 1 to 1.4 at 600 s. The response curve of the control system is shown in Figure 15.
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Reducing the error bar from 5% to 2% after ramping up the load, the performance
indexes were obtained from the analysis of Figure 15 as shown in Table 9.

Table 9. Performance index.

Algorithm
Performance Index

Maximum Overshoot (%) Peak Time (s) Stable Time (s) Steady-State Error (%)

PID 15.7 18.2 285.4 99.2
Fuzzy-PID 10.8 18.2 137.4 99.2
ISSA-PID 4.8 17.5 57.7 99.4
PSO-PID 9.2 30.6 362.9 98.5

GWO-PID 5.5 43.9 - 97.3
SSA-PID 5.9 21.3 144.5 98.9
MFO-PID 9.4 29.9 340 98.7

As shown in Figure 15, the steady-state value of ISSA-PID is improved by 0.2%,
0.2%, 0.9%, 2.1%, 0.5% and 0.7% compared with PID, Fuzzy-PID, PSO-PID, GWO-PID,
SSA-PID and MFO-PID after increasing the load for 600 s, except for GWO-PID, which
is finally stabilized within 2% error bars, In terms of transient performance, ISSA-PID
overshoot improved by 10.9%, 6.0%, 4.4%, 0.7%, 1.1% and 4.6% compared with PID, Fuzzy-
PID, PSO-PID, GWO-PID, SSA-PID, and MFO-PID, and the rise time decreased by 0.7 s,
0.7 s, 13.1 s and 26.6% compared with PID, Fuzzy-PID, PSO-PID, GWO-PID, SSA-PID,
and MFO-PID s, 13.1 s, 26.4 s, 3.8 s and 12.4 s, and the adjustment time was reduced by
227.7 s, 79.7 s, 305.2 s, 86.8 s and 282.3 s compared to PID, Fuzzy-PID, PSO-PID, SSA-PID
and MFO-PID, and the transient response speed was better than other algorithms. This
shows the superiority of ISSA-PID in terms of control accuracy and response speed in the
lift-load test.

4.3.3. Perturbation Test

Again, a perturbation is applied to the system at 600 s to test the immunity of the
algorithm to interference. The response curves are shown in Figure 16.
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Analyzing Figure 16, compare the time for various controllers to recover to within 2%
error bars after being disturbed by a 0.1 step signal at 600 s, as shown in Table 10.

Table 10. Recovery time.

Algorithm Recovery Time (s)

PID 210.9
Fuzzy-PID 223.1
ISSA-PID 114.2
PSO-PID 295.2

GWO-PID -
SSA-PID 125.0
MFO-PID 284.2

The GWO-PID amplitude at 1000 s is still outside the 2% error bar, and the shortest
time used by ISSA-PID is 114.2 s, which is 96.7 s faster than PID, 108.9 s faster than Fuzzy-
PID, 181.0 s faster than PSO-PID, 170 s faster than MFO-PID, and the difference of recovery
time is smaller compared with SSA-PID, but also faster 10.8 s, verifying that the ISSA-PID
controller is more resistant to interference than other controllers.

5. Performance Analysis on Semi-Physical Platform Validation

In order to test the actual control effect of the ISSA-PID controller, establish the
experimental platform of continuously stirred tank reactor temperature control, through
the upper computer SIMATIC PCS7 [28] software to write improved sparrow optimized
PID controller algorithm, build OS (Operators Station) and AS (Automation Station) in the
upper computer, regulate SMPT-1000 semi-physical platform through Profibus-DP bus for
the experiment, the connect MATLAB and PCS7 communication through OPC (OLE for
Process Control) technology. The final date curve is displayed on the IPC monitor. The test
platform device is shown in Figure 17.
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Figure 17. Experimental equipment and devices: 1. SIMATIC S7-400 PLC; 2. ET200M; 3. SMPT-1000
experiment platform; 4. Industrial control machine monitor; 5. Upper computer.

The temperature expectation was set at 121 ◦C, and the reactor temperature was
controlled by controlling the opening of the upper water valve of the circulating cooling
water through various optimization techniques, respectively, and the reactor temperature
curve was obtained as shown in Figure 18.
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Figure 18. Reactor temperature curve.

Analyzing Figure 18, the performance indexes of various optimization techniques were
obtained as shown in Table 11. Since it is most important to keep the temperature stable
near the working point among the working requirements of the reactor, the comparison
of the steady-state error was focused on. The steady-state error of the curve with equal
amplitude oscillation was taken as the middle value.

Table 11. Performance index.

Algorithm
Performance Index

Maximum
Overshoot (%) Peak Time (s) Stable Time (s) Steady-State

Error (◦C)

Z-N 0.24 24.1 165.1 0.4356
Fuzzy-PID 0.21 24.8 189.9 0.7678
ISSA-PID 0.10 21.0 68.2 0.1987
PSO-PID 0.14 20.0 172.3 0.3149

GWO-PID 0.31 21.6 160.1 0.7621
SSA-PID 0.12 21.0 70.2 −0.2587
MFO-PID 0.10 22.5 77.3 0.8362

It can be seen from Figure 18 that the reactor changed the controller from manual to
automatic at 1900 s, and various controllers started to control the opening size of valve
FV1201 to regulate the circulating cooling water flow to control the temperature, and the
seven algorithms could be stabilized around the set value after casting automatic, but only
ISSA-PID and MFO-PID did not have equal amplitude oscillation, and the overshoot of both
was 0.10%, which is 0.14%, 0.11%, 0.04%, 0.21% and 0.02% higher than Z-N, Fuzzy-PID,
PSO-PID, GWO-PID and SSA-PID. In terms of rise time, PSO-PID has the best performance,
only 20.0 s, which is actually 21.0 s of ISSA-PID and SSA-PID. ISSA-PID is slightly worse
than PSO-PID; in terms of steady-state time, ISSA-PID is the best, shorter than Z-N, Fuzzy-
PID, PSO-PID, GWO-PID, SSA-PID and MFO-PID by 96.9 s, 121.7 s, 104.1 s, 91.9 s, 2 s and
9.1 s. Finally, the most important steady-state error indicator, which is related to the quality
of the final product of the reactor, because the closer the steady-state value is to the working
point, the higher the conversion of the reaction product is. ISSA-PID is 0.1987, which is
0.2369 ◦C, 0.5691◦C, 0.1162 ◦C, 0.5634 ◦C, 0.060 ◦C and 0.6375 ◦C lower than Z-N, Fuzzy-



Processes 2023, 11, 1302 25 of 27

PID, PSO-PID, GWO-PID, SSA-PID and MFO-PID, respectively, the ISSA-PID controller
has the best performance and meets the control requirements of reactor temperature.

In practical application environments, different perturbations are often encountered,
and the cause of the perturbations may be caused by human control requirements or may
be uncertain. Therefore, a perturbation test is performed on the algorithm as a way to
verify whether the robustness of the algorithm meets the requirements. The perturbation
test plots for all algorithms are given, as shown in Figure 19.

Processes 2023, 11, x FOR PEER REVIEW 28 of 30 
 

 

 

Figure 19. Perturbation test curve graph. 

Analyzing Figure 19, the valve openings controlled by both controllers were given a 

2% perturbation at 2390 s to disturb the regulation of the reactor temperature, comparing 

the time required for both to return to the steady-state value and the final steady-state 

error, as shown in Table 12. 

Table 12. Performance index. 

Algorithm Recovery Time (s) Steady-State Error (°C) 

Z-N 392.9 2.128 

Fuzzy-PID 397.0 1.360 

ISSA-PID 250.3 0.952 

PSO-PID 423.0 1.032 

GWO-PID 411.2 1.385 

SSA-PID 427.6 0.803 

MFO-PID 381.7 1.923 

Through the disturbance test, the ISSA-PID controller recovered the steady-state after 

250.3 s, which is 142.6 s, 146.7 s, 172.7 s, 160.9 s, 177.3 s, 131.4 s less than Z-N, Fuzzy-PID, 

PSO-PID, GWO-PID, SSA-PID and MFO-PID, respectively, which greatly reduces the re-

covery time. The steady-state value of the ISSA-PID controller is 120.048 °C and the error 

between the set value and 121 °C is only 0.952 °C, which is 1.176 °C, 0.408 °C, 0.08 °C, 0.433 

°C and 0.971 °C smaller than the steady-state errors of Z-N, Fuzzy-PID, PSO-PID, GWO-

PID and MFO-PID, respectively. Therefore, the ISSA-PID controller has excellent perfor-

mance in terms of speed and accuracy in the face of disturbances and can meet the re-

quirements of continuous reactor temperature control with certain robustness. 

  

Figure 19. Perturbation test curve graph.

Analyzing Figure 19, the valve openings controlled by both controllers were given a
2% perturbation at 2390 s to disturb the regulation of the reactor temperature, comparing
the time required for both to return to the steady-state value and the final steady-state error,
as shown in Table 12.

Table 12. Performance index.

Algorithm Recovery Time (s) Steady-State Error (◦C)

Z-N 392.9 2.128
Fuzzy-PID 397.0 1.360
ISSA-PID 250.3 0.952
PSO-PID 423.0 1.032

GWO-PID 411.2 1.385
SSA-PID 427.6 0.803
MFO-PID 381.7 1.923

Through the disturbance test, the ISSA-PID controller recovered the steady-state after
250.3 s, which is 142.6 s, 146.7 s, 172.7 s, 160.9 s, 177.3 s, 131.4 s less than Z-N, Fuzzy-
PID, PSO-PID, GWO-PID, SSA-PID and MFO-PID, respectively, which greatly reduces the
recovery time. The steady-state value of the ISSA-PID controller is 120.048 ◦C and the error
between the set value and 121 ◦C is only 0.952 ◦C, which is 1.176 ◦C, 0.408 ◦C, 0.08 ◦C,
0.433 ◦C and 0.971 ◦C smaller than the steady-state errors of Z-N, Fuzzy-PID, PSO-PID,
GWO-PID and MFO-PID, respectively. Therefore, the ISSA-PID controller has excellent
performance in terms of speed and accuracy in the face of disturbances and can meet the
requirements of continuous reactor temperature control with certain robustness.
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6. Conclusions and Future Perceptive

In this work, a reactor temperature control method based on an improved sparrow al-
gorithm to optimize PID parameters is proposed. Firstly, the traditional sparrow algorithm
is improved by introducing tent chaos mapping in the initialization process of algorithm
iteration to improve the initial solution quality. Meanwhile, the golden sine is introduced
to improve the discoverer position update formula, which reduces the solution space and
further improves the optimal search effect of ISSA, and the Gauss–Cauchy mutation strat-
egy iteration is introduced to improve the local optimization capability. By comparing with
four existing classical algorithms, namely GWO, PSO, MFO and SSA, the results show that
ISSA has a stronger and more robust search capability, and the convergence speed meets
real-time requirements.

After establishing the heat exchanger model and identifying its parameters, the ISSA-
PID controller is designed, and the control curves of the ISSA-PID controller are com-
pared with those of classical PID control and fuzzy PID control under different control
requirements through experimental simulation, and the conclusion that the overall control
performance of ISSA-PID controller is better is drawn.

Finally, by establishing a semi-physical experimental platform based on PCS7 and
SMPT-1000, it is verified that the ISSA-PID controller designed in this paper meets the
system response requirements, has superior performance in terms of adjustment time and
steady-state error and has certain robustness.

The subsequent research extends the application area of the algorithm in this paper to
apply the ISSA-PID controller to more complex systems, such as the internal circulation
reactor used for integrated CO2 capture and power generation.
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