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Abstract: A branch line coupler (BLC) with ultra-compact size and harmonic suppression ability
using an LCL filter and meandered stubs is proposed in this paper. There are some important factors
in microstrip coupler design, including size reduction, harmonic suppression, and low insertion loss.
Thus, improving each of these factors will contribute to a more efficient design. In the proposed
circuit, for the first time, LCL filters, including four T-shaped circuits and four meandered line
open-ended stubs, were used together to reduce the circuit size and suppress unwanted harmonics.
The proposed LCL filters, incorporated in the BLC branches, resulted in superior size reduction and
harmonic suppression for the presented BLC. The proposed BLC correctly worked at 900 MHz with
300 MHz operating bandwidth, which showed 33% fractional bandwidth (FBW). Additionally, a wide
suppression band from 1.4 GHz to 8.8 GHz, with more than 20 dB attenuation level was obtained,
which suppressed the second to ninth unwanted harmonics. The overall size of the proposed 900 MHz
coupler was only 11 mm × 10.4 mm (0.044 λ × 0.042 λ) while the size of the conventional 900 MHz
coupler was 61.5 mm × 62.5 mm (0.25 λ × 25 λ). The proposed BLC had a very small size and only
occupied 3% of the size of the conventional coupler, which corresponded to a 97% size reduction.
To the best of the authors’ knowledge, to date, the best size reduction has been obtained among
the published couplers. Furthermore, the experimental results verified the simulated and analyzed
results of the proposed technique and demonstrate its potential for improving the performance and
miniaturizing the size of other similar BLCs.

Keywords: microstrip coupler; harmonic suppression; lumped component; communication systems

1. Introduction

The microstrip branch line coupler (BLC) is a widely used microwave component
that can divide or combine the power of a signal with a phase difference of 90 degrees.
A BLC is a passive microwave device that splits or combines electromagnetic signals
in a balanced manner. The typical BLC includes four transmission lines arranged in a
rectangular configuration to achieve signal splitting or combining. The main purpose of a
BLC is to provide power division and isolation between its ports. In microwave applications,
BLCs are commonly used in communication systems, such as cellular networks and radar
systems. BLCs play a key role in communication devices and systems, especially in
LTE (long-term evolution) systems. LTE systems rely on efficient signal distribution and
management to provide high-speed data transfer and reliable communication. BLCs can
split the signal, allowing a single input signal to be divided into multiple output signals.
This capability is particularly useful in LTE base stations, where the signal can be efficiently
distributed to multiple antennas, thereby enhancing coverage and capacity. In addition,
BLCs enable signal combining, allowing multiple signals to be merged into a single output.
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This ability is valuable in scenarios such as combining signals from multiple small cells or
antennas to strengthen the overall transmission power. In addition, BLC devices facilitate
signal isolation, minimizing signal interference and maintaining the integrity of transmitted
data. Their isolation ability ensures that transmitted signals from one antenna will not
affect neighboring antennas, preventing signal degradation and enhancing overall network
performance. Therefore, the utilization of BLCs in communication systems, particularly in
LTE systems, plays a key role in improving system performance [1–3].

However, a drawback of conventional BLCs is that they pass unwanted harmonics
along with desired signals without any attenuation. Therefore, there has been increasing
interest in designing compact branch line couplers with harmonic suppression for various
applications, such as communication systems and radar. In addition, in conventional BLCs,
the length of the four lines is λ/4 at the center band, which makes the size inconvenient at
the design frequency.

In recent years, several studies have examined how to achieve compact BLCs with
harmonic suppression using different methods. One approach is to use different shape
resonators to achieve a BLC with high performance. For example, in [4], low pass resonators
and meandered lines were incorporated to design the BLC, which achieved a wide sup-
pression band. In [5], split ring resonators were used to design a BLC with wide operating
bands. Multi-stage resonators were used in [5] to obtain higher bandwidth. Moreover,
stepped impedance resonators have been used in several approaches, such as in [2,6,7], to
design couplers with high performance. Short-circuited stubs, open-circuited stubs, and
stepped-impedance resonators were used in [7] to propose a compact branch line coupler
with harmonic suppression and compact size.

Coupled lines can also be used to suppress harmonics in BLCs [8–13]. For example,
in [8], a compact BLC with harmonic rejection using T-shaped coupled lines was presented.
This presented coupler reduced the overall size to about 55%, compared with the conven-
tional designs, and also provided good performance at operating frequencies with more
than 20 dB return loss. Coupled lines and meandered lines were incorporated in [9] to
obtain a compact BLC, which occupied 28% of the size of the conventional coupler. In
addition, meandered lines and discontinuous lines were used to design a BLC in [13] to
achieve a device of a reduced size. An overall 60% size reduction and high isolation were
achieved in [13] using this technique. In [14], a BLC with coupled lines and open-circuited
lines was designed, which achieved a 49% fractional bandwidth. The utilized coupled lines
provided a suppression band, which could suppress up to the second harmonic for this
device. Coupled lines were used in [15] to design a dual-band BLC with wideband opera-
tion. Furthermore, in this BLC, the coupled lines were used as impedance transformers
with dual-band operation.

In [16–19], the defected ground structure (DGS) technique was used to design compact
branch line couplers with harmonic suppression. In [16], rectangular-shaped DGSs were
incorporated to design a BLC that achieved more than 30 dB attenuation for third harmonic.
In addition, in [17], strip lines DGSs were used in the structure of the BLC, which archived a
33% size reduction compared with the typical coupler. Moreover, electromagnetic band-gap
(EBG) structures are cells that can block electromagnetic waves in certain frequency ranges.
They are commonly used in microwave couplers and power dividers to improve their
performance. In these devices [20–23], EBG cells are placed between the input and output
ports to suppress unwanted harmonics and improve isolation between the ports. The
advantages of using EBG structures in microwave couplers and power dividers include
performance improvement, bandwidth increment, and size reduction. EBG structures
can also be used for mutual coupling reduction in antenna applications [24,25]. However,
there are also some drawbacks to using EBG structures. The fabrication process for these
structures can be complex and expensive, which can increase the overall cost of the device.
Additionally, the performance of EBG structures can be affected by changes in temperature
and humidity. Several studies have investigated the use of EBG cells for harmonics sup-
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pression in microwave circuits, and have shown that this technique can be effective over a
wide frequency range. However, the complex fabrication process would be a drawback.

Open-ended and short-ended stubs are common techniques, which can be used for
providing suppression bands and can reduce the device size simultaneously [26–29]. In [26],
a compact BLC with harmonic suppression using open-ended stubs and hairpin-shaped
resonators is reported, which achieved about a 64% size reduction. T-shaped resonators
and open stubs were incorporated in [27] to design a BLC with more than 30 dB insertion
loss and high isolation. Crossed lines and open stubs were used in the structure of the BLC
in [28], which resulted in dual-band operation and different power split ratios.

Moreover, in the design of BLC and power splitter devices, photonic crystals [30–32] can
be applied for operations at higher frequencies, which can result in performance improve-
ment [33–36]. Recently, neural network and artificial intelligence techniques [37–40] have
been reported for the performance improvement of electronic circuits and devices [7,41,42],
which have also been incorporated into the designs of filters and couplers [7,43].

Non-uniform transmission lines are other structures that are used in microwave
couplers and power dividers to improve performance and suppress harmonics [44–47].
Non-uniform transmission lines have an irregular structure, where the width and spacing
of the conductors vary along the length of the line. This variation in the structure of the
line causes a change in the characteristic impedance, which results in the distribution of
microwave signals. One advantage of using non-uniform transmission lines in microwave
couplers and power dividers is that they can provide a wide range of coupling values
and reduce circuit size. Another advantage is that they can be designed to operate over
a wide frequency range, making them useful in a variety of applications. However, there
are also some drawbacks to using non-uniform transmission lines; one of the main draw-
backs is that they can be difficult to design and fabricate, particularly for high-frequency
applications. Additionally, the non-uniform structure of the line can cause signal distortion
and loss, which can limit their performance in certain applications. Several studies have
explored the use of non-uniform transmission lines for harmonics suppression and size
reduction [44–47]. In these works, applied non-uniform transmission lines have an irreg-
ular structure which makes analysis difficult, and also the insertion loss values are high,
which limits performance.

In all the mentioned literature, the explained works have partially succeeded to
improve the performance of the BLC device in terms of size reduction and harmonic
suppression, but no studies have achieved the perfect high improvement of both parameters.
In addition, the applied techniques used in research studies have some limitations and
disadvantages. For instance, using open stubs only can provide a single transmission
zero, and creating a wide stop band needs several open stubs. Meanwhile, providing
transmission zeros in desired frequency may be needed to create an over-length open
stub. Using DGS and EBG structures adds extra steps to the implementation process and
makes the design complicated for fabrication. Using coupled lines in the structure creates
a limitation in design because of small gaps and the sensitivity of the structure to these
gaps. However, in this paper, a new method is presented, which utilizes a capacitor and
two inductors in a T-shaped structure with two transmission lines to create composite
lines. These composite lines and four bended open-ended stubs were used together to
design the proposed branch line coupler, which resulted in the improvement of coupler
performance in terms of extreme miniaturization and harmonic suppression along with
the wide suppression band. Therefore, the designed compact branch line coupler with
the achieved wide suppression band resulted in overall linearity improvement of the
LTE systems.

2. Design Process of the Proposed Branch Line Coupler

In this section, as the first step, the conventional BLC and its disadvantages are
explained. Then, the preliminary BLC is presented, which used the new proposed branches
to improve the conventional BLC functionality. As the next step, the proposed branch
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incorporated with the LCL filter was analyzed to calculate the dimensions of the proposed
structure. Finally, the meandered lines were added in the preliminary BLC to solve its
problems and form the proposed BLC.

2.1. Design Process of the Conventional 900 MHz Branch Line Coupler

The conventional 900 MHz branch line coupler includes four long λ/4 branches, cor-
responding to two 50 Ω vertical branches and two 35 Ω horizontal lines. With the applied
5880 RT-Duroid substrate, the typical BLC size is obtained and is equal to 61.5 mm × 62.5 mm.
This large size for the typical BLC is one of its drawbacks.

The S-parameters and structure of the conventional 900 MHz branch line coupler
are depicted in Figure 1. The amplitudes of S21 and S31 are −3.1 dB, indicating a 0.1 dB
insertion loss at the operating frequency. The amplitudes of S11 and S41 are less than −30 dB,
which demonstrates that the conventional coupler has good performance at the operating
frequency. However, it is important to note that while the conventional BLC performs well
at the operating frequency, it does not perform well at higher frequencies. This means that
unwanted signals can pass without any suppression at higher frequencies, which is another
drawback of this typical coupler.
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Figure 1. The S-parameters and structure of the conventional 900 MHz branch line coupler.

2.2. Design Process of the Preliminary 900 MHz Branch Line Coupler

As mentioned earlier, the conventional BLC is large in size and allows undesirable
signals to pass through at higher frequencies without any suppression. This is not desirable;
therefore, to overcome these disadvantages, a preliminary structure is proposed in Figure 2,
in which two lumped inductors and a capacitor are used instead of the long branch of the
typical BLC.

The preliminary 900 MHz branch line coupler used two types of composite lines that
contained lumped L and C components, rather than long conventional λ/4 branches. The
conventional horizontal branches consisted of two 90-degree length lines with 35.5 ohms
impedance (2.6 mm width). However, the preliminary coupler implemented a new hori-
zontal composite branch, as shown in Figure 2. The S-parameters of the typical horizontal
λ/4 line and the presented compact horizontal line are compared in Figure 3, revealing
that both lines exhibited the same insertion loss of 0.1 dB at the 900 MHz main frequency.
Moreover, the presented horizontal transmission line exhibited a wide suppression band
that began at 3.3 GHz, with a suppression level exceeding 20 dB, while the conventional
line cannot reject any harmonic. The analyses of the proposed compact horizontal and
vertical lines are explained in Section 2.3.
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Figure 3. The S-parameters of the typical 90-degree line and proposed horizontal 90-degree line with
LCL filter for the BLC.



Processes 2023, 11, 1582 6 of 15

2.3. Analyses of the Proposed LCL Filter Branch

To analyze the proposed LCL filter branch at the first step, the ABCD matrix of the
LCL branch should be extracted, which is defined in Equation (1):

ABCDLCL =

(
1 − C L w2 L w i − L w

(
C L w2 − 1

)
i

C w i 1 − C L w2

)
(1)

Furthermore, the ABCD matrix of the transmission line with impedance of Z1 and
electrical length of θ1 can be defined as written in Equation (2):

ABCDTL =

(
cos(θ1) Z1 sin(θ1) i
sin(θ1) i

Z1
cos(θ1)

)
(2)

Finally, by using Equation (3), the total ABCD matrix of the designed horizontal and
vertical branches, incorporated with the proposed LCL filter, can be extracted as written in
Equation (4), where the parameters are defined as in Equations (5)–(9). Equation (3) shows
that the total ABCD matrix of the designed branch, incorporated with the proposed LCL
filter (ABCDBR) can be obtained through the multiplication of the transmission line matrix
(ABCDTL) and the proposed LCL filter matrix (ABCDLCL), as shown in the equation.

[ABCDBR]2×2 = [ABCDTL]2×2 × [ABCDLCL]2×2 × [ABCDTL]2×2 (3)

(
− cos(θ1)σ4 +

sin(θ1)σ2i
Z1

cos(θ1)σ2 − Z1 sin(θ1)σ4i

− cos(θ1)σ3 − sin(θ1)σ1i
Z1

− cos(θ1)σ1 − Z1 sin(θ1)σ3i

)
(4)

σ1 = cos(θ1)σ5 −
sin(θ1)(Lwi − Lwσ5i)i

Z1
(5)

σ2 = cos(θ1)(Lwi − Lwσ5i)− Z1 sin(θ1)σ5i (6)

σ3 =
sin(θ1) σ5 i

Z1
− C w cos(θ1) i (7)

σ4 = cos(θ1)σ5 + CZ1w sin(θ1) (8)

σ5 = CLw2 − 1 (9)

By equating the total ABCD matrix of the designed branch with the ABCD matrix of
the typical λ/4 branch, the unknown parameters of the proposed branch can be obtained.
Some assumptions should be considered for solving the equations; for instance, considering
the desired values of Z1 and θ1 for the desired size reduction value. The values of applied
components in the proposed horizontal line are then calculated, which are listed as follows:
C1 = 4.7 pF, L1 = 4.7 nH, Z1 = 70 Ω (0.9 mm), θ1= 5.5◦ (3.8 mm).

Moreover, in the conventional BLC, two vertical 90-degree branches with 50 ohms
impedance (1.6 mm width) are used. In the preliminary coupler, the proposed vertical
composite branches were applied, as depicted in Figure 2.

Figure 4 illustrates a comparison of the S-parameters for the typical vertical λ/4 line
and the presented compact vertical line, revealing that both lines have an insertion loss of
0.1 dB at the main frequency of 900 MHz. However, the presented vertical transmission
line provides a broader suppression band that begins at 2.9 GHz and offers a suppression
level greater than 20 dB. In contrast, the typical line cannot provide any suppression
of harmonics.
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LCL filter for the BLC.

The value of applied components in the proposed vertical line can be calculated using
the extracted analysis, which is listed as follows: C2 = 3.3 pF, L2 = 6.8 nH, Z1 = 118 Ω
(0.3 mm), θ1 = 6◦ (4.1 mm).

The obtained values of the lumped components and two side transmission lines for
the proposed horizontal and vertical lines are listed in Table 1.

Table 1. The obtained values of the proposed horizontal and vertical branches.

L1 C1 Z1 θ1 L2 C2 Z2 θ2

4.7 nH 4.7 pF 70 Ω (0.9 mm) 5.5◦ (3.8 mm) 6.8 nH 3.3 pF 118 Ω (0.3 mm) 6◦ (4.1 mm)

The structure of the preliminary BLC, which provided an ultra-compact size, is depicted
in Figure 5. The overall final size of the preliminary coupler was only 11 mm × 10.4 mm,
which was equal to 0.044 λ × 0.042 λ and showed a 97% size reduction compared to the
conventional 900 MHz coupler.

The S-parameters of the preliminary 900 MHz branch line coupler with lumped
components are depicted in Figure 6. The operating bandwidth of the preliminary BLC was
200 MHz, which showed 22% FBW. The preliminary coupler had acceptable performance at
900 MHz, and provided a wide stop band from 3.2 GHz with more than a 20 dB attenuation
level, which suppressed unwanted harmonics of the third order and higher harmonics.
This structure had perfect performance in terms of size reduction, but regarding harmonics
suppression ability, the second harmonic was not rejected.
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2.4. Design Process of the Proposed 900 MHz Branch Line Coupler

As mentioned in the previous section, the preliminary 900 MHz branch line coupler
did not suppress the second harmonic. In order to suppress the second harmonic, four
open-ended stubs were used. Since the length of these open-ended stubs was too long,
they were bended. In the proposed meandered lines, there were no significant coupling
effects between transmission lines, because of its high impedance and rather large gap
between the lines. But meandering the lines affected the overall response, such that the
response of the meandered line was not equal to a straight line stub with the total length,
the effect of which was considered in the EM simulation. The structure of the proposed
900 MHz branch line coupler with lumped components and four bended stubs is depicted
in Figure 7. The overall occupied size of the proposed coupler, like the preliminary coupler,
was only 11 mm × 10.4 mm, which was equal to 0.044 λ × 0.042 λ and showed a 97% size
reduction compared to the conventional 900 MHz coupler.
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four bended stubs.

3. Results

The S-parameters of the proposed 900 MHz branch line coupler with lumped compo-
nents and four bended stubs are depicted in Figure 8. The proposed coupler has perfect
performance at 900 MHz and provided a wide stop band from 1.4 GHz to 8.8 GHz with
more than 20 dB attenuation level, which suppressed the second to ninth unwanted har-
monics. This structure had perfect performance in terms of size reduction and harmonics
suppression. The operating bandwidth of the proposed BLC was 300 MHz, which shows
33% FBW.
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Figure 8. The S-parameters of the proposed 900 MHz branch line coupler with lumped components
and bended stubs.

The sizes of the presented 900 MHz coupler and the conventional coupler are compared
in Figure 9. As the results show, the size of the designed coupler was 97% smaller, compared
with the conventional coupler. The overall size of the designed 900 MHz coupler was only
11 mm × 10.4 mm (0.044 λ × 0.042 λ) while the size of the conventional 900 MHz coupler
is 61.5 mm × 62.5 mm (0.25 λ × 25 λ).
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The fabricated prototype and test setup of the proposed 900 MHz BLC is depicted in
Figure 10. As seen in the figure, at the first step, only microstrip lines were fabricated on
the RT-Duroid 5880 substrate. With a 0.1 mm drill, four holes were then made to create
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four via holes in the board, which provided ground connections for the applied lumped
capacitors. The top and back views of the completed connectorized device with soldered
inductors and capacitors are also shown in Figure 10. Finally, the measured data were
extracted, which validated the EM-simulated data.
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lines on the RT-Duroid 5880 substrate, the processes of creating via holes with 0.1 mm drill, soldering
inductors and capacitors, and measuring the fabricated device.

The measured and simulated S-parameters of the designed 900 MHz branch line
coupler, are depicted in Figure 11. The proposed coupler had a perfect performance at
900 MHz and provided a wide stop band from 1.4 GHz to 8.8 GHz with a more than 20 dB
attenuation level, which suppressed the second to ninth unwanted harmonics. This struc-
ture has perfect performance in terms of size reduction and harmonics suppression. The
operating bandwidth of the proposed BLC was about 300 MHz, which showed 33% FBW.

The measured and simulated phase difference of the output ports for the proposed
900 MHz BLC is depicted in Figure 12. As can be seen, the output ports phase difference of
the designed coupler was equal to −270.8◦, at an operating frequency of 900 MHz, which
was extremely close to the ideal value.

The performance comparison between the proposed coupler and related works is listed
in Table 2. The proposed coupler had the best size reduction compared with other reported
works and provided a wide suppression band, which suppressed the second to ninth
unwanted harmonics. Furthermore, the comparison showed the superior performance of
the proposed BLC.
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Table 2. A performance comparison between the presented 900 MHz BLC and related approaches.

Ref Device Type Size Reduction Harmonic
Suppression Applied Technique

[48] RRC 74% 2nd–7th Open Stubs
[49] BLC 39% - PBG and DGS
[50] BLC 40% - interdigital
[51] BLC 46% - divided lines
[52] BLC - 2nd–4th Non-uniform lines
[53] BLC 63% 2nd, 3rd Open stubs
[54] BLC 64% 3rd, 5th Resonators

This Work BLC 97% 2nd–9th LCL filter and
meandered stubs
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4. Conclusions

In this paper, a compact BLC with harmonic suppression using lumped components
and meandered stubs is proposed. In the proposed design, four T-shaped LC circuits
and four transmission lines are used together, instead of the conventional branches. It
was proposed that two vertical and horizontal 90-degree lines with LCL filters should be
incorporated into the BLC structure. The proposed branches resulted in the performance
improvement of the proposed BLC in terms of reducing its size and suppressing unwanted
harmonics. The obtained harmonic suppression increased the overall efficiency of the
system in the LTE and communications system applications. Moreover, the proposed LCL
filter consists of capacitor and inductor lumped elements, and was designed to provide the
filtering response and reduce the length of the lines while improving its functionality. The
proposed BLC correctly worked at 900 MHz with 300 MHz bandwidth and showed 33%
FBW. The proposed BLC has an ultra-small size and is only 3% of the size of the conventional
coupler. The overall size of the proposed 900 MHz coupler is only 11 mm × 10.4 mm
(0.044 λ × 0.042 λ) and the size of the conventional 900 MHz coupler is 61.5 mm× 62.5 mm
(0.25 λ × 25 λ). In addition, the presented BLC provided a wide suppression band from
1.4 GHz to 8.8 GHz, which suppressed the second to ninth unwanted harmonics. The
proposed BLC was fabricated and the measured results verified the simulated results.
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