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Abstract: The yields of chemical reactions are highly dependent on the mixing pattern between
reactants. Herein, we report the modification of a meso-micromixing interaction reaction model which
is applied in batch reactors by leveraging the flow characteristics in the continuous reactors. Both
experimental and model-predicted yields were compared using the classical Villermaux–Dushman
method in a self-designed split and recombination reactor. This modified model significantly reduced
the error in predicted product yields from approximately 15% to within 3%, compared to a model
containing the micromixing term only. The effects of flow rates and reactor structure parameters on
mixing performance were analyzed. We found that increasing flow rates and the degree of twist in
the mixing element’s grooves, as well as decreasing the cross-sectional area of grooves, improved
mixing performance. The optimization of reactor flow rates and structural parameters was achieved
by combining Gaussian process regression and Bayesian optimization with the modified model. This
approach provided higher target product yields for consecutive reactions, while simultaneously
achieving a lower pressure drop in the reactor. Corresponding combinations of reactor parameters
were also identified during this process. Our modified model-based optimization methodology can
be applied to a diversity of reactors, serving as a reference for the selection of their structure and
operational parameters.

Keywords: mesomixing; micromixing; continuous reactors; optimization

1. Introduction

Consecutive reactions are extensively employed in the chemical process industry (CPI),
such as in the synthesis of pharmaceuticals and high-performance polymers [1–3]. Studying
consecutive reaction yields is crucial for assessing the reactions’ performance and designing
synthetic routes [4]. In cases where the reaction rate is less than or equal to the mixing
rate, mixing within the reactor governs the contact pattern of the various species involved,
thereby influencing their distributions. Consider the following consecutive reactions:

A + B
k1→ R

A + R
k2→ S

(1)

These reactions are second-order, where the yield of the desired product S is:

YS =
2cS
cA0

(2)

Proper control of mixing quality is essential to maximize the yield of the target product
S when k1 > k2, and has been extensively studied [5–10]. Christy et al. investigated the re-
action between 1,2 diphenyl ethane (B) and NO2BF4 (A) [8]. They found that the yield of the
polynitro product (S) decreased from 78% to 54% upon increasing the stirring intensity then
improving mixing uniformity. This decrease in yield can be attributed to different distribu-
tion states of the nitrifying agent (A) in the reactor [11]. Enhancing mixing homogeneity
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resulted in a uniform distribution of A and a rapid decrease in its local concentration within
the reactor after the formation of R. This can lead to the continuous accumulation of R, less
subsequent reactions taking place, and, finally, a decrease in YS. However, these studies
merely qualitatively evaluated the effect of mixing performance on consecutive reaction
yields without analyzing yields governed by mixing processes quantitatively.

The quantitative relationship between mixing and yields can be described using
a reaction model containing parameters characterizing mesomixing and micromixing.
Baldyga and Bourne proposed a model in terms of the influence of meso- and micromixing
on reactions and applied it to a semi-batch reactor with an extremely high flow ratio of
two mixing streams [12]. The simulation results had a good prediction accuracy with a
yield error of ±2% compared to experimentally measured yields. Samant et al. studied
consecutive reactions in a stirred batch reactor based on this model [13]. They found
that structural parameters, such as the stirring paddle shape and the number of feed
points, had significant effects on mixing rate-limited steps and reaction yields. Then they
provided empirical correlations of mixing characteristic times at each scale controlled by
these parameters to guide the reactor design.

Continuous reactors have many parameters that can significantly affect the inter-
nal fluid flow and mixing pattern, which, in turn, affect the yield of consecutive reac-
tions [14–18]. Baldyga and Bourne used the aforementioned model to forecast the yield in
a Kenics tubular reactor with a flow ratio of 3000:1 [12]. However, the yield was mainly
influenced by the mixing pattern of the stream with the extremely low flow rate, which
does not hold true for two streams with comparable flow rates in tubular reactors. Thus,
the model requires modification based on the flow and mixing characteristics in such cases.
Nevertheless, no model modification work has been conducted for meso-micromixing
interaction reaction models in tubular reactors, which could ascertain the ambient fluid
concentration of the reagents and the volume change of the fluid due to mixing.

The structural parameters of tubular reactors not only influence the mixing pattern
and target product yield of reactions but are also closely related to the pressure drop in
reactors. Maximizing the target product yield while keeping the pressure drop within
a reasonable range is a valuable pursuit of study [19]. However, optimizing numerous
parameters of reactors based on the reaction model can be computationally challenging [20].
Multidimensional regression and optimization required for this process are difficult to
carry out. Gaussian process regression combined with Bayesian optimization can provide a
general optimal solution for nonlinear optimization problems with fewer iterations and
higher calculation speed [21–23]. Zuhal et al. [24] and Seongeon Park [25] employed CFD
to conduct a series of Bayesian optimization designs to optimize the structure of the airfoil
and stirred batch reactor based on minimum pressure drop criteria. However, there are
currently no relevant studies on the structural design of continuous reactors that link
reaction models with optimization methods to evaluate the relationship between target
product yields and the pressure drop in reactors.

In this study, we analyze the flow characteristics and mixing pattern in continuous
reactors and modify the meso-micromixing interaction reaction model which had been
used in batch conditions in previous work. We use the Villermaux–Dushman method
in a self-fabricated split and recombination reactor to verify the model’s accuracy by
comparing the results obtained by experiments with the model. We analyze the changes in
mixing performance due to parameter variations from a flow field perspective. We use this
modified model combined with Gaussian process regression and Bayesian optimization to
obtain higher yields of target products in consecutive reactions while maintaining a lower
pressure drop in the reactor. Such a design method can be applied to the optimization of
various types of reactors.
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2. Modified Meso-Micromixing Interaction Reaction Model
2.1. Initial Mixing-Related Reaction Model

According to Baldyga and Bourne’s theory [12], a meso- and micromixing interaction
reaction model can be characterized by the following equation:

dci
dt

= E
(

1− XB
Xu

)
(ci − ci) + ri (3)

The symbols in this equation are defined as follows: The rate of engulfment, E,
describes the micromixing of fluid elements, which will be explained in detail in Section 3.4.
Xu represents a fraction of the fluid volume. This part of the fluid contains partially
segregated fluid as islands embedded in a sea, where the reagents are coarsely mixed and
concentration fluctuations still exist. Xu can be derived by statistical method:

The variance of composition of the

Xu =
X0

X0 + (1− X0)exp
(
− t

td

) (4)

The initial volume fraction in the reactor where the reagents are present is X0. For
tubular reactors, X0 can be considered as the ratio of the initial flow rates. As Xu tends to 1,
it signifies that the reagents spread everywhere from the mesomixing perspective, although
without being completely micromixed.

XB refers to the volume of micromixed fluid relative to the whole fluid. According to
the engulfment model, the rate of engulfment from E model is:

dXB
dt

= EXB

(
1− XB

Xu

)
(5)

This equation describes the micromixing pattern when mesomixing is incomplete.
Initially the islands, whose initial volume fraction is X0, only consist of pure B-rich feed, so
that the initial value of XB is also X0. As the flow enters the reactor, eddy breakup increases
Xu, which initiates micromixing.

2.2. Comparison of Batch and Continuous Conditions

In batch reactors, the limited reagents are added dropwise. The chemical reaction
occurs only in the droplets. The ambient fluid concentration 〈ci〉 outside the micromixing
region can be assumed to be a constant concentration of excess fluid in the reactor. Addi-
tionally, when the flow rate in one of these streams is extremely low, the volume of fluid
that has been fully micromixed will be present only in the other excessive stream.

In the case of two comparable flow rates in the continuous reactors, chemical reactions
can occur in both streams after achieving micromixing. This implies that each stream
contains a significant concentration of reagents and products, as was shown in Figure 1. As
a result, the ambient fluid concentration 〈ci〉 is no longer a changeless concentration, which
is the case in batch reactors. Furthermore, when the flow rates are comparable, both flows
experience reciprocal engulfment effects and micromixing. Consequently, the volume of
fluid that is completely micromixed in both streams changes (in Figure 1, the total volume
of each stream is VA + ∆VA or VB + ∆VB), which ultimately impacts the concentration of
species in each stream.
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Figure 1. Diagram of mixing between two streams with comparable flow rates under continuous
conditions. Each stream serves as the reciprocal environmental fluid and their volume flow rates
change a lot. (The amount of ∆VA and ∆VB cannot be ignored).

2.3. Model Modification

We have modified the model after accounting for the differences between the above
two conditions.

Firstly, since both streams, 1 and 2, exhibit self-engulfment behavior and undergo
chemical reactions, we considered the ambient species’ concentration outside the micromix-
ing region of stream 1 as that of the corresponding species in stream 2, and vice versa.
In other words, these two streams are treated as reciprocal environmental fluids, as was
shown in Figure 1.

Secondly, since the change in fluid volume resulting from the mesomixing and mi-
cromixing in these two streams is not negligible, we took stream 1 as the reference and
switched from the concentration change due to the volume change of stream 2 to the
volume-based concentration of stream 1. To describe this behavior, we introduced a fluid
volume change rate ϕB, which essentially represents the fluid volume change induced by
mixing at the mesoscopic and microscopic scales. This rate can be calculated using the
following integrated equation:

ϕB = et +

(
1− 1

e−Qt

)
Q (6)

Here, Q is the ratio of the micromixing characterized time and the mesomixing charac-
terized time.

Based on these, the model can be modified as (taking concentrated reagent A in stream
1 for instance):

dcA1

dt
= E

(
1− XB1

XuA

)
(cA2 − cA1) + rA (7)

dcA2

dt
=

[
E
(

1− XB2

XuA

)
(cA1 − cA2) + rA

] VtotalVA
(VA+VB)

ϕB(
Vtotal − VtotalVA

(VA+VB)
ϕB

) (8)

where VtotalVA
(VA+VB)

is the inlet flow rate of stream 1.
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By analogy, each species is governed by two ordinary differential equations that
control its concentration in each of these two fluid environments (stream 1 and stream 2).
In Equation (7), the subscript 1 represents the fluid that has undergone micromixing, while
the subscript 2 represents the ambient fluid surrounding stream 1. For Equation (8), the
opposite is true of what was explained above.

3. Methods and Materials
3.1. 3D-Printed Split-and-Recombine Millimeter-Scale Reactor

The equipment for studying the modified model is a tubular split and recombination
reactor, whose physical model is illustrated in Figure 2a,b. A central annular tube with an
outer diameter of 6 mm (RO) and an inner diameter of 3 mm (RI) comprises the reactor.
It has a series of split and recombination mixing elements with a diameter of 6 mm and a
length of 10 mm (LM), distributed uniformly at intervals of 10 mm (LG) along the circular
tube. The structure has four twisted grooves uniformly rotating along the circumference
for fluid passage. Two adjacent twisted grooves are separated at 90 degrees on the cross-
section of the tube. The physical structure of the reactor can be obtained using 3D printing
technology, with a processing accuracy less than 0.05 mm.
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Figure 2. Physical model of SAR reactors: (a) Front view of SAR reactor; (b) Schematic diagram of
the annular structure; (c) Geometrical parameters of mixing elements.

The tubular reactor consists of three sections: inlet, test, and outlet. The inlet section,
20 mm long, is designed to ensure the complete development of the fluid. These two mixing
streams are introduced at equal velocity there, with one entering the reactor through a
3 mm central tube, and the other entering through the remaining annular tube. Thus,
the initial flow ratio of these two streams will be 1:3. The test section is 110 mm long, an
adequate length to achieve various mixing patterns. The outlet section is 40 mm long,
sufficient to stabilize the outlet flow.

Based on the results obtained from the pre-experiments, the angle (α), groove depth
(d), turn (T), and flow rate (F) of the reactor significantly affect the flow field and mixing
performance in the reactor. These parameters are shown in Figure 2c. Angle denotes the
rotation angle of the groove in the mixing element; groove depth represents the depth of
the groove; turn refers to the degree of one groove twist. If T = 1, the groove rotates 360◦

in a single mixing element. We selected these parameters for numerical simulation and
experimental study and set several discrete points for each parameter, which are listed in
Table 1.
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Table 1. Geometrical parameters and flow rate of the tube and inserts.

α, ◦ d, mm T F, mL/min

15, 30, 45, 60, 75 0.5, 1, 1.5, 2, 2.5 0.2, 0.4, 0.6, 0.8, 1 100, 150, 200, 250, 300, 350, 400

3.2. Numerical Simulation

To investigate the influence of different structural parameters and inlet flow rates
on pressure drop and the energy dissipation rate in the reactor, we conducted 3D steady-
state numerical simulations. Water was chosen as the working medium and modeled as
a Newtonian, incompressible fluid. The simulations were performed at 20 ◦C and it is
assumed that physical properties, such as viscosity, remain constant. Since the mixing
element is placed horizontally in a tube with an inner diameter of 6 mm, we assume that the
effect of gravity is negligible. With these assumptions, the momentum governing equations
of the fluid are as follows.

∂ui
∂xi

= 0 (9)

ρ
∂ui
∂xi

+ ρ
∂uiuj

∂xj
= − ∂p

∂xi
+

∂

∂xj

(
µ

∂ui
∂xi

+ pτji

)
( i = 1 ∼ 3) (10)

where ρ is the density of mixture fluid; u is the internal velocity field; p is the local pressure
field; µ is the viscosity of the mixture fluid; and τji is the Reynold stress tensor. Here, the
SST k-ω model was applied. The range of the Reynold number in this study was from
658 to 5821. The SST k-ωmodel can be applied to the cases with relatively lower Reynold
numbers, which can reproduce the transition from laminar to turbulent flow regimes.
Furthermore, for the flow ejected from the curved grooves of the mixing elements, where
the fluid has a high-velocity gradient within the boundary layer, the SST k-ωmodel will be
more applicable.

In this study, ANSYS fluent 2020R1, a commercial software based on the finite volume
method, was used for the numerical simulations and CFD-Post for post-processing. The
SIMPLE algorithm was applied for pressure–velocity coupled solution calculations while
the PRESTO! method was used to perform gradient and pressure discretization. The
second-order upwind algorithm spatially discretized the momentum, turbulent kinetic
energy, and turbulent dissipation rate. The convergence criteria are less than 10−6 for the
continuity and momentum equations.

In the simulations, there is difficulty calculating the turbulent kinetic energy, energy
dissipation rate, etc., accurately, so, obtaining these results requires higher quality discrete
meshes. Therefore, the grid independence test and algorithm reliable verification are
necessary to be carried out, which are shown in the Supplementary Materials.

3.3. Mixing Performance Experiments

To quantitatively evaluate mixing performance, classical Villermaux–Dushman experi-
ments [26–28] were conducted. We considered the approximate micromixing time range in
this case and used the concentration groups of substances provided by J.M. Commenge’s
study [29–31]. The concentrations of each reagent are presented in Table 2.

Table 2. Concentration recipe of reagents for Villermaux–Dushman method.

Materials Concentration [mol/L]

H2BO3 0.09
NaOH 0.09
KIO3 0.006

KI 0.032
H2SO4 0.0026
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The experimental setup diagram is depicted in Figure 3. Iodide-iodate-borate buffer
solution and sulfuric acid solution were supplied to the reactor through two HPLC pumps
from the outer and central tubes, respectively. The outer and central tubes were connected
by commercial T-connectors. To minimize error, three independent samples were taken in
each experiment and analyzed by UV-VIS. Finally, the concentration of each species was
obtained by subsequent data processing, then XS (segregation index) was calculated. For
further details on the Villermaux–Dushman method [32–34], please refer to the Supplemen-
tary Materials.
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Figure 3. Schematic overview of the experimental setup: (1) Sulfuric acid solution container;
(2) Buffered solution container; (3a) HPLC pump for sulfuric acid solution; (3b) HPLC pump for
buffered solution; (4) Commercial T-joint; (5) SAR reactor; (6) Outflow container; (7) UV−VIS spec-
trometer. The blue solution represents sulfuric acid solution, the red buffered solution, and the purple
the solution after the reaction.

3.4. Data Reduction

Based on the set of ordinary differential equations given in Section 2, the independent
variables that need to be imported to the reaction model include the inlet flow rate, reaction
kinetics, flow time, micromixing characteristic time and mesomixing characteristic time.
Apart from the inlet flow rate and reaction kinetics, the calculation of the remaining three
variables is given below.

The flow time can be calculated by dividing the reactor length by the average flow
velocity in the reactor as follows:

t =
L

um
(11)

In such SAR reactors, additional attention needs to be taken with respect to D, be-
cause the shape of the flow channels in the circular cross section is not regular and the
reactor characteristic sizes cannot be determined by conventional methods. Therefore, the
hydrodynamic diameter calculation method was used [35]:

D =
4V
S

(12)

where V is the fluid domain volume in the reactor and S is the area which contacts with
the fluid in the reactor.

The Reynolds number represents the relative relationship between the inertial and
viscous forces in the fluid and is expressed as follows:

Re =
ρumD

µ
(13)

where um is the average velocity along the flow direction.
Baldyga and Bourne [36–39] proposed an engulfment model to describe micromixing

behavior, which is based on the premise that the engulfment of small-scale eddies generates
interlaced laminar structures between the micromixing fluid and the environment. These
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structures promote the deformation of fluid layers that accelerates the aggregate size
reduction up to the diffusion scale then intensifies the molecular diffusion between the
fluid layers. Based on this theory, the micromixing characteristic time can be determined
from numerical simulation using the following equation [40]:

tm = E−1 = 17.3(v/ε)0.5 (14)

Here, the engulfment rate, E, is the inverse of tm, which is related to the energy
dissipation rate ε and the dynamic viscosity ν. It is important to note that this empiri-
cal formula (Equation (11)) for calculating the micromixing characteristic time requires
more validation through comparison with experimental results, which are detailed in the
Supplementary Materials.

Additionally, the energy dissipation rate is directly related to the evaluation index
of mesomixing [11,41]. According to the theory of inertial-convective disintegration of
large-scale eddies, the fluid element’s intermediate scale shrinks from the initial Λc to
the Kolmogorov scale through turbulence dispersion. The whole process constitutes
mesomixing [38,41–43]. Based on this theory, the mesomixing characteristic time can be
estimated using statistical method [12]:

td = 2

(
Λ2

C
ε

) 1
3

(15)

The initial scale of mesoscopic mixing, Λc, for two streams with the same inlet flow
velocity can be calculated by the following equation [11]:

Λc =

(
VB
πu

)0.5
(16)

where VB is the volume flow rate of the stream that has a relatively lower flow rate.
The energy dissipation rate refers to energy loss in the fluid due to its essential viscosity

and the turbulence induced. The turbulent energy dissipation rate can be related to the
velocity strain rate tensor by:

ε =
1
2

v

(
∂ui
∂xj

+
∂uj

∂xi

)2

(17)

This tensor can be obtained directly from CFD simulations.

3.5. Optimization Procedure

The optimization method for reactors using GPR, BO, and the modified model is
presented in the flowchart shown in Figure 4. In this study, 100 initial design points about
the reactor were obtained using the Latin hypercube sampling method. CFD simulations
were carried out to determine parameters such as the energy dissipation rate. The reaction
kinetics and modified models were then incorporated into a self-programmed 4th-order
Runge–Kutta MATLAB program for calculations, acquiring 100 sets of yield and pressure
drop data for fitting. These yield and pressure drop data, as performance functions,
were mapped to performance metrics by a specific design. This design was defined by
a set of structural and operating parameters and subjected to regression validation and
optimization in the next step.

In each iteration, a surrogate model was calculated using the known correspondence
between the four reactor parameters and the three dependent variables (two product yields
plus pressure drop). The next set of parameters, whose mapping value will get closer to
the maximum yield and the lowest pressure drop, was chosen by the acquisition function.
This parameter set was further used for numerical simulation to obtain the new pressure
drop and yields. The cycle of updating the model was repeated. An evaluation index K
was defined to determine the final multi-objective optimization results.
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K =

YB−YA
YA

∆PB−∆PA
∆PA

(18)

Specifically, K is calculated as the ratio of the percentage yield improvement to the
percentage pressure drop improvement between two adjacent iteration points, A and B.
This metric indicates the amount by which the yield improves when the unit pressure drop
increases. If K is less than 5%, we select the current design point as the final multi-objective
optimization result based on the optimization principle of GPR-BO.

4. Results and Discussion
4.1. Validation of Modified Model Accuracy

The present study acquired experimental and simulated yields using parallel com-
peting reactions in the classical Villermaux–Dushman method. The yields obtained from
both the modified meso-micromixing interaction reaction model and the reaction model
containing only the micromixing time term were compared with the experimental results.
The results are presented in Figure 5.
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Figure 5. (a) Comparison of the yields obtained by the Villermaux–Dushman method with those
obtained by the meso-micromixing interaction reaction model and the model which only consists of
micromixing time. (The green dashed line represents the ratio of micromixing time to mesomixing
time, Q, as a function of the inlet flow rate); (b) Error lines of yields obtained by experiments and
meso-micromixing model; (c) Error lines of yields obtained by experiments and the model only with
micromixing term.
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The figure shows that the yields obtained from the modified meso-micromixing in-
teraction reaction model are in good agreement with the experimental results, with a
maximum relative error of only 3% (Figure 5b). This indicates the accuracy of this modi-
fied model for yield prediction. However, the reaction model with the micromixing time
term only has a much larger error in the experimental results, particularly at high flow
rates, where the relative error can reach up to 14.7% (Figure 5c). This can be attributed
to mesomixing becoming the rate-limited step gradually, which is evident from Figure 5,
showing that the ratio of micromixing time to mesomixing time, Q, decreases with in-
creasing flow rates. Growing flow rates increase the overall energy dissipation. However,
the rate of mesomixing triggered by turbulent dispersion cannot catch up with that of
micromixing, and, thus, becomes the rate-limited step [44]. In conclusion, this modified
meso-micromixing interaction reaction model is an accurate approach for obtaining yields
and can subsequently be used for the optimization in Section 4.3.

4.2. Effect of Parameters on Mixing
4.2.1. Effect of Turn

In Figure 6, the reactor’s full domain energy dissipation rate and segregation index
were evaluated at various turns for a fixed groove depth of 1.5 mm and angle of 45◦, while
the inlet flow rates were also varied. The results indicated a decreasing trend in energy
dissipation rate and segregation index with an increase in T, which was found to be more
pronounced at lower flow rates. At a flow rate of 150 mL/min, XS for a T of 0.4 was 0.03911,
which was 40.4% lower than that for a T of 0.4 with an XS value of 0.06564. However, XS
variation at higher T did not become that significant, especially when T = 0.4 and 0.6, as
there was almost no difference, with a maximum difference of less than 5%.

Processes 2023, 11, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 6. (a) Variation in segregated index (XS, a series of solid lines) and volume-average energy 

dissipation rate in the reactor (ε, a series of dashed lines) under different flow rates and skewness 

at d = 1.5 mm and α = 45°; (b) Streamline in a mixing unit set; (c) Velocity contours of cross-sections 

at z = 42 mm in the twisted grooves; (d) EDR contours of cross-sections at z = 42 mm. Here, (1) 

represents the cases with S = 0.2, while (2) with S = 0.8.  

The helical motion of the fluid caused by the increased radial velocity component 

and extended flow path, both in the empty annular space between the two mixing ele-

ments and the twisted grooves in the mixing elements, was responsible for this trend (Fig-

ure 6b2). At the same time, the strong rotational effect increased the contact area between 

relatively high and low flow velocity zones in the twisted grooves (Figure 6c2). However, 

although further increase in 𝑇 indeed lengthened the flow path, excellent mixing could be 

achieved right in the middle of the path due to more frequent contact with the fluid. There-

fore, extending the flow path or increasing the radial velocity more significantly had a 

limited effect on improving mixing performance [44]. Overall, these findings highlight the 

importance of selecting the appropriate turn for optimal reactor performance. 

4.2.2. Effect of Inlet Flow Rates 

Figure 5 illustrates the decreasing trend of XS with increasing inlet flow rates, from a 

maximum of 0.05331 to 0.01911. For 𝑇 >  0.4 and at lower flow rates (𝐹 <  200 mL/min), 

XS decreased significantly with increasing flow rate, from 0.06464 to 0.02352, representing 

a change of 63.6%. However, at higher flow rates, the change in XS leveled off until it con-

centrated around 0.0123 at a flow rate equal to 400 mL/min. 

This trend was mainly attributed to the increasing energy dissipation rate in the an-

nular space between the two mixing elements as the flow rates increased. As shown in 

Figure 7a1,a2, the flow pattern remained largely unchanged with increasing flow rates, 

but the overall velocity was significantly affected. This increased velocity leads to a higher 

degree of turbulence and contact frequency with the fluid, thereby substantially increas-

ing the energy dissipation rate in the annular space (Figure 7b1,b2). However, the effect 

of higher flow rates on the energy dissipation rate in the annular space is minimal, result-

ing in a slow improvement in mixing performance. Overall, high flow rates are beneficial 

for enhancing mixing performance in the reactor. 

Figure 6. (a) Variation in segregated index (XS, a series of solid lines) and volume-average energy
dissipation rate in the reactor (ε, a series of dashed lines) under different flow rates and skewness at
d = 1.5 mm and α = 45◦; (b) Streamline in a mixing unit set; (c) Velocity contours of cross-sections at
z = 42 mm in the twisted grooves. Here, (1) represents the cases with S = 0.2, while (2) with S = 0.8.

The helical motion of the fluid caused by the increased radial velocity component and
extended flow path, both in the empty annular space between the two mixing elements and
the twisted grooves in the mixing elements, was responsible for this trend (Figure 6b2). At
the same time, the strong rotational effect increased the contact area between relatively high
and low flow velocity zones in the twisted grooves (Figure 6c2). However, although further
increase in T indeed lengthened the flow path, excellent mixing could be achieved right in
the middle of the path due to more frequent contact with the fluid. Therefore, extending
the flow path or increasing the radial velocity more significantly had a limited effect on
improving mixing performance [45]. Overall, these findings highlight the importance of
selecting the appropriate turn for optimal reactor performance.
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4.2.2. Effect of Inlet Flow Rates

Figure 5 illustrates the decreasing trend of XS with increasing inlet flow rates, from a
maximum of 0.05331 to 0.01911. For T > 0.4 and at lower flow rates (F < 200 mL/min),
XS decreased significantly with increasing flow rate, from 0.06464 to 0.02352, representing
a change of 63.6%. However, at higher flow rates, the change in XS leveled off until it
concentrated around 0.0123 at a flow rate equal to 400 mL/min.

This trend was mainly attributed to the increasing energy dissipation rate in the
annular space between the two mixing elements as the flow rates increased. As shown
in Figure 7a1,a2, the flow pattern remained largely unchanged with increasing flow rates,
but the overall velocity was significantly affected. This increased velocity leads to a higher
degree of turbulence and contact frequency with the fluid, thereby substantially increasing
the energy dissipation rate in the annular space (Figure 7b1,b2). However, the effect of
higher flow rates on the energy dissipation rate in the annular space is minimal, resulting
in a slow improvement in mixing performance. Overall, high flow rates are beneficial for
enhancing mixing performance in the reactor.
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F = 150 mL/min, while (2) with F = 350 mL/min.

4.2.3. Effect of Cross-Sectional Area of the Grooves

Angle and groove depth are important factors that determine both the width and
depth of grooves in the mixing element, respectively. These two factors together determine
the cross-sectional area of grooves, which affects the flow pattern and mixing performance
in the annular space and twisted grooves.

Given T = 0.4, F = 300 mL/min, the reactor’s energy dissipation rate and segregation
index varied with groove depth and angle, as presented in Figure 8. Decreasing the cross-
sectional area of the groove led to a significant reduction in XS. The maximum XS of 0.0258
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was obtained at α = 75◦ and D = 2.5 mm, while a minimum XS of 0.00426 was observed at
α = 30◦ and D = 1 mm, overall resulting in an 83.5% decrease in XS.
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Figure 8. (a) Variation in segregated index (XS, a series of solid lines) and volume-average energy
dissipation rate in the reactor (ε, a series of dashed lines) under different D and α at F = 300 mL/min
and S = 0.4; (b1,b2) Streamline in a mixing unit set; Here, (1) represents the cases with α = 75◦ and
D = 2.0 mm, while (2) with α = 30◦ and D = 1.0 mm.

Reducing the cross-sectional area of the groove leads to a jet with higher velocity,
which spreads out into the annular space to form a rotating plume flow. As this plume
moves away from its source, its edges entrain the surrounding fluid, causing the plume to
expand further then promoting mixing (Figure 8b2). The energy dissipation rate increased
significantly when the cross-section area of the groove became small, from 1.46 m2/s3

at α = 45◦ and D = 1.5 mm to 8.39 m2/s3 at α = 30◦ and D = 1 mm. This can be
explained by the fact that the flow area is reduced by a factor of 2.25 and the velocity of the
ejected plume increases exponentially, leading to an accelerated improvement in mixing
performance. In conclusion, reducing the cross-sectional area of the groove improves the
mixing performance of the reactor.

4.3. Optimization Calculations
4.3.1. Optimization Objectives

The objective of this work is to maximize the target product yield and minimize
pressure drop by optimizing the reactor parameters. The information about the relevant
consecutive reaction is presented in Table 3. The reactor is fed with two streams, A
and B, which enter from a 3 mm diameter center tube and annular space with a 6 mm
outer diameter and 3 mm inner diameter, respectively. To satisfy the demand for different
products in the consecutive reaction, the yields Y1 and Y2 of product C and product E, as well
as the pressure drop, were chosen as the optimization objectives, while the angle, groove
depth, turn and flow rate were selected as the corresponding optimization parameters.

Table 3. Kinetic and operational information about the competitive consecutive reaction.

Information about the Reactions

A + B→ C r1 = k1cAcB
C + B→ D r2 = k2cCcB
D + B→ E r3 = k3cDcB

k1 = 50 m3/(mol·s) k1 = 20 m3/(mol·s) k1 = 100 m3/(mol·s)
VA : VB = 1 : 3 VMA = VMB = 5 mol/m3
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BO is applied to obtain the local minimum value [46]. Therefore, the yields of both
products in the consecutive reaction were multiplied by (−1) to transform the optimization
problem into a maximization problem, as shown in the following expression:

Objectives : f1(α, d, T, F) = {∆PSAR,−Y1} and f2(α, d, T, F) = {∆PSAR,−Y2}

Subjected to : α ∈ [15, 75]; d ∈ [0.5, 2]; S ∈ [0, 1]; F ∈ [100, 400]

4.3.2. Results of Gaussian Process Regression

Two commonly used metrics to evaluate a data regression are the mean square error
(MSE for short) and the coefficient of determination (R2 for short), which are defined as:

MSE =
1
N ∑N

i=1(Yi, GPR −Yi)
2 (19)

R2 = 1− ∑N
i=1(Yi, GPR −Yi)

2

∑N
i=1
(
Yi −Yi

)2 (20)

A GPR that has a smaller MSE and a larger R2 is considered more reliable and
accurate. Three separate GPRs were utilized to fit the data of ∆PSAR, Y1, and Y2. To assess
the effectiveness of GPR for the regression, an additional analysis was conducted using
an artificial neural network (ANN) with multilayer perception (MLP). The tanh function
was employed as the activation function in the ANN, which has been widely used in this
context [19,47–49]. The final trained ANN had a configuration of 5:14:12:2 after double
hidden layers were used. Both the regression results of ANN and GPR were compared
with results obtained by the reaction model (short for RM), whose normalized values are
presented in Figure 9 and Table 4.
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Table 4. MSE and R2 of three optimization objectives for GPR and ANN.

GPR ANN

MSE R2 MSE R2

∆PSAR 1.40880 × 10−4 0.94593 8.51216 × 10−5 0.99670
Y1 3.38565 × 10−3 0.78948 2.87026 × 10−4 0.97674
Y2 3.85881 × 10−3 0.96288 1.45477 × 10−4 0.99972

In Figure 9, the deviations of three dependent variables for RM, ANN, and GPR are
presented. The maximum relative errors for Y1 and Y2 were 3.52% and 5.75%, respectively,
when using GPR. On the other hand, while ANNs generally meet accuracy requirements,
there were several outliers that deviated significantly from the CFD calculations, resulting
in maximum errors of 29.62% and 36.86% for Y1 and Y2, respectively.

Table 4 shows that both the MSE and R2 values in GPRs were significantly better than
those in ANNs, indicating that GPR can provide more accurate data and is, therefore, more
suitable for fitting in this case. This is because GPR can quantitatively predict uncertainty
in a more principled way than ANN, which is particularly relevant for conditions with
excessive degrees of freedom. Moreover, by selecting a specific kernel function, GPR can be
considered equivalent to an ANN with an infinite number of hidden nodes [50]. However,
high accuracy requires more computational resources, although, for just 100 design points,
the computational time remains relatively short.

4.3.3. Results of Bayesian Optimization

After obtaining regression results for GPRs, Bayesian optimization was subsequently
performed to optimize the reactor parameters.

The optimization process is determined as a multi-objective optimization when the
target product is the intermediate product C. To improve the yield of C, the mixing per-
formance needs to be enhanced to disperse the reagent B in the reactor quickly, which
reduces its local concentration and slows down the second and third reactions, thereby
accumulating product C and reducing the formation of subsequent products, D and E.
However, improving the mixing performance requires a higher energy dissipation rate
of the fluid, resulting in a higher pressure drop in the reactor. Therefore, a compromise
solution between higher intermediate product yields and a relatively lower reactor pressure
drop needs to be achieved.

Using Bayesian optimization, a series of Pareto front points were obtained, as shown
in Figure 10. These optimization points were evaluated using the metric K presented
in Section 3.5. The desired points with K = 2.92% were identified with a red circle in
Figure 10. Therefore, for the intermediate product C, the maximum yield was 92.5% with a
pressure drop in the reactor of 510.50 Pa, where α = 32.8◦, d = 2.36 mm, T = 0.215, and
F = 145.7 mL/min.

When the target product is the product in the last reaction, E, the process becomes a
single-objective optimization. To increase the yield of E, the mixing performance needs to be
worsened, resulting in the intermediate product C being diffused to the enriched B region,
further reacting with it. This is particularly significant when the residence time of the
species becomes longer, as it leads to a higher selectivity of E. A lower energy dissipation
rate results in poorer mixing, but also keeps the pressure drop low. Therefore, there is no
trade-off or coordination required between the product yield in the last reaction and the
pressure drop in the reactor. Optimization is straightforward in that the solution containing
both the lowest pressure drop and the highest yield is desired.

A series of optimal points were obtained by Bayesian optimization, as shown in
Figure 11. The three leftmost points in the figure are indeed close in value, with a relative
difference of less than 0.2%, indicating that the single-objective optimization has reached
the limit of iterations. The point identified with the red circle is the desired point, where
we acquired the lowest pressure drop and the highest yield. Thus, for the product in the
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last reaction, the highest yield was 94.3%, with a pressure drop in the reactor of 253.81 Pa,
where α = 48.3◦, d = 2.04 mm, T = 0.344, and F = 120.37 mL/min.
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We have developed an active reactor design method based on CFD-GPR-BO that is
applicable to the analysis of different types of reactions, accounting for a meso-micromixing
interaction reaction model. In practice, it may be acceptable for a reactor to have a higher
pressure drop to achieve the most desired yields as long as the pressure drop is within a
reasonable and allowable range. Nevertheless, this method still provides valuable guidance
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for practical applications, including reactor development for different types of reactions,
significantly reducing the reactor design time.

5. Conclusions

In summary, the present study has led to the following conclusions:

1. A modified meso-micromixing interaction reaction model was developed based on the
flow characteristics in continuous reactors. The model was validated by comparing
experimentally obtained yields with those predicted by this model. The modified
model significantly reduced error in predicted product yields from approximately
15% to within 3%, compared to the model containing the micromixing term only.

2. Mixing performance in the reactor was improved by characterizing the decreasing XS
with increasing flow rate, the degree of twist in the mixing element’s grooves, and
the decreasing cross-sectional area of grooves. A high flow rate intensifies the energy
dissipation of the fluid in the annular space between two mixing elements; high turn
extends the flow path and increases the contact area between the areas with high
and low flow velocities in the twisted grooves. When the cross-sectional area in the
grooves becomes small, a significant plume flow can be formed in the annular space,
improving mixing performance.

3. The optimization, in which the yields of target products and pressured drop in the
reactors were chosen as the optimization objectives, was based on the modified model
and performed by BO along with GPR. We obtained the highest product yield while
keeping the pressure drop low. For the intermediate product, the yield was 92.5%,
while the pressure drop in the reactor was 510.50 Pa. For the product in the last
reaction, the yield was 94.3%, while the pressure drop in the reactor was 253.81 Pa.
The corresponding combinations of reactor parameters were obtained. This kind of
optimization method can be applied to the design of various reactors, providing a
reference for structural selection and operational parameter determination.
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Nomenclature

ANN Artificial neural network, for short
BO Bayesian optimization, for short
ci The mole concentration of component i, mol/m3

d Groove depth, mm
D The hydrodynamic diameter of the reactor cross-section, m
E The engulfment rate in terms of micromixing, s−1

EDR Energy dissipation rate, for short
F Flow rate, mL/min

https://www.mdpi.com/article/10.3390/pr11051576/s1
https://www.mdpi.com/article/10.3390/pr11051576/s1
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GPR Gaussian process regression, for short
K Criteria for multi-objective optimization
LG Distance between two mixing elements, mm
LM Length of a mixing element, mm
MSE Mean square error, for short
P Local pressure field, Pa
∆PSAR Pressure drop in the full domain of reactors
ri Intrinsic reaction rate of component i, mol/(m3·s)
RI Outer radius of tube-in-tube reactors, mm
RO Inner radius of tube-in-tube reactors, mm
R2 Coefficient of determination
Re Reynold number
S Skewness of curved grooves
SAR Split-and-recombine reactor, for short
td Mesomixing characteristic time, s
tm Micromixing characteristic time, s
u Local velocity field, m/s
um Average velocity along the flow direction, m/s
V Volume of the reactor fluid domain
X0 Ratio of initial flow rates in a tubular reactor
XB Volume of micromixed fluid relative to the whole fluid

Xu
Volume fraction which contains the partially segregated fluid as
islands, embedded in a sea

Y1 Intermediate product yield
Y2 Final product yield
z Axial position of the reactors, m
Greek symbols
α Circulation angle, ◦

ε Energy dissipation rate, m2/s3

Λc
Average from the integral scale of concentration fluctuations
to Kolmogorov scale

µ Dynamic viscosity of the fluid, Pa·s
ν Kinematic viscosity of the fluid, Pa·s
ρ Density of the fluid, kg/m3

ϕB Ratio of fluid volume change after micromixing
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