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Abstract: Diethyldithiocarbamate (DDTC) is employed in the sulfide ore flotation process due to
its excellent collection performance. Herein, we investigated the interfacial adsorption behavior
of DDTC on the four main mineral phases of high-sulfur residue: sulfur, pyrite, sphalerite, and
lead sulfate. The adsorption behavior of DDTC and H2O, namely, the adsorption structure and the
energy and electron localization function cross section, were explored using density function theory
calculation. The results were helpful in constructing a coadsorption model of DDTC and H2O, which
was validated by pure mineral flotation and characterization of Fourier transform infrared spectra.
The coadsorption model indicated that the adsorption of DDTC on sulfur, sphalerite, and lead sulfate
was weak with physical bonding, while its adsorption on pyrite was strong with chemical bonding.
Practical bench-scale high-sulfur residue flotation was performed, and the result was different from
that obtained from pure mineral flotation. Our developed model predictions and mineral fugacity
pattern analysis were synergistically used to explain this difference. Overall, this work proposes
for the first time a coadsorption model of DDTC and H2O and provides important insights into
interfacial adsorption in high-sulfur residue flotation.

Keywords: flotation; high-sulfur residue; diethyldithiocarbamate; DFT; coadsorption model

1. Introduction

Zinc hydrometallurgy is the main pathway for extracting zinc metal from zinc sulfide
concentrate. It is divided into conventional and direct routes. The direct route includes
the steps of oxygen pressure/atmospheric pressure leaching, purification, and electro-
deposition, which adopts whole-wet technology and avoids the high-temperature process
of oxidizing roasting. In the leaching process, the solid sulfur enters the residue phase,
thus avoiding emission of polluted SO2 gas. However, the sulfur content in the leaching
residue [1] is generally as high as 40–60%. This has attracted extensive studies aimed at
recycling it.

The flotation–hot filtration method [2,3] is predominantly used for recycling sulfur
in the high-sulfur residue due to its simple process, low-cost production, and feasible
scale-up. Therefore, it has been widely used in the oxygen pressure leaching of zinc
refineries [4–7]. However, this approach causes low sulfur grade in the concentrate. For
instance, Liu et al. [1] explored the trapping ability of xanthate, dithiophosphate, and
isopropyl ethyl thiocarbamate on sulfur in the high-sulfur residue. The sulfur recovery
rates by xanthate, dithiophosphate, and isopropyl ethyl thiocarbamate were as high as
93.67, 97.83, and 99.87%, respectively, while the resultant sulfur grades in the concentrate
were as low as 81.53, 82.25, and 84.47%, respectively. An effective approach to address
this challenge is to introduce suitable flotation agents [8,9] into the targeted solution. As a
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flotation agent, the collector serves to improve collection efficiency of the target mineral
phases and promote their separation. Generally, the collector is composed of mineral-
friendly and hydrophobic groups, with the former supporting its adsorption on the mineral
phase, thereby changing the hydrophilicity and floatability.

Diethyldithiocarbamate (DDTC) [10] is a robust collector used in sulfide ore flotation
that has a strong collection ability [11]. Niu et al. [12] found that DDTC could significantly
improve the separation efficiency of pyrite and galena in a high-alkaline lime system.
Zhang et al. [13] found that adding DDTC caused desirable flotation performance in
jamesonite despite the wide range of pH of 2–13. Fourier transform infrared spectra (FT-IR)
characterization showed that DDTC adsorbed on the surface of jamesonite in the form of
lead diethyldithiocarbamate. Cui et al. [14] used a mixed collector containing diisobutyl
dithiophosphate and DDTC to improve the flotation performance of jamesonite, which
resulted in an improved recovery of 98.85% of jamesonite. Another interesting finding was
that the combination of DDTC and butyl xanthate significantly improved the stability of
foam during the flotation process, which increased the volume of maximum foam layer
by 102% and prolonged the half-life of the foam by 129% [15]. However, despite extensive
studies on the technical feasibility and improvement of the flotation process with DDTC,
there is a knowledge gap on its mechanism. The capture mechanism of DDTC on the
targeted mineral is closely associated with its adsorption mechanism, which influences its
trapping performance. Greater understanding of this process would help further improve
the flotation process.

In recent times, density function theory (DFT) calculation has become an important
method to study adsorption performance on the mineral phase at a molecular level. For
instance, Liu et al. [1] studied the adsorption properties of xanthate, dithiophosphate, and
isopropyl ethyl thiocarbamate on the mineral phase of high-sulfur residue. Zhang et al. [16]
studied the flotation separation performance of dithiophosphate galena and sphalerite
using DFT calculations. Chen et al. [17] investigated the thermodynamics of xanthate,
dithiophosphate, and dithiocarbamate adsorption on galena and pyrite surfaces using the
DFT method. Dai et al. [18] studied the adsorption of butyl xanthate on arsenopyrite (001)
and Cu2+-activated arsenopyrite (001) surfaces using the DFT method. Huang et al. [19]
used theoretical chemical knowledge to modify xanthate collectors and used DFT cal-
culations to predict the performance of modified xanthate collectors. Therefore, DFT
calculations have become an important method to study the adsorption of collectors on
mineral surfaces.

In this work, we investigated the interfacial adsorption of DDTC on the four main
mineral phases present in high-sulfur residue: sulfur, pyrite, sphalerite, and lead sulfate.
Firstly, the adsorption behavior of DDTC and H2O, namely, the adsorption structure and
energy and electron localization function (ELF) cross section, on the four minerals phases
were explored using DFT calculation. Then, a coadsorption model of DDTC and H2O was
constructed using DFT calculation, which was validated by pure mineral flotation and FT-IR
results. Finally, practical bench-scale high-sulfur residue flotation was performed, the result
of which was elucidated synergistically using our developed model and mineral fugacity
pattern analysis. Overall, this study proposes for the first time a validated coadsorption
model of DDTC and H2O and provides insights into the interfacial adsorption mechanism
in high-sulfur residue flotation. More importantly, this work provides important reference
on the recovery of targeted minerals in unconventional sulfide flotation processes.

2. Methods
2.1. DFT Calculation

A structure search on the DDTC molecule was performed in the open-source Xtb
software developed by the Grimme group [20,21]. Then, its structure was further optimized
in the Gaussian package. Specifically, the DDTC molecule was optimized in the base group
of m062x/6-311++g(2d, p), where the number of functions with certain properties used
to describe the wave function of the system reflected the accuracy of the calculation. It
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was then subjected to frequency calculations to determine its structure plausibility. The
surface electrostatic potentials of DDTC were calculated in Multiwfn software [22] (details
in Supplemental Material S1).

The high-sulfur residue contained four main mineral phases: sulfur, sphalerite, pyrite,
and lead sulfate. The most stable surface of sulfur S(110), sphalerite ZnS(110), pyrite FeS2(100),
and lead sulfate PbSO4(001) were intercepted [1,23,24]. The surface was optimized in a
restricted way, relaxing one surface and three layers of atoms in each mineral phase. The
thickness of the vacuum layer during the relaxation process was 20 Å. The optimized
structure is shown in Figure 1.
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Figure 1. Optimized surface structure of the four mineral phases. (a) S(110); (b) ZnS(110); (c) FeS2(100);
(d) PbSO4(001).

The adsorption process on the mineral phase surface was simulated and calculated
in the DFT software VASP (Figure 2). Generalized gradient approximation, where the
approximate method of exchanging correlation functions reflected the accuracy of the
calculation, was used for the exchange correlation generalization. The pseudopotential was
Perdew–Burke–Ernzerh (PBE), a virtual potential introduced in the numerical calculation
of the energy band structure. The surface was optimized by the conjugate gradient method
with a plane wave truncation energy of 400 eV. The Monkhorst–Pack method was used to
generate a 3 × 3 × 1 K-point grid. The energy convergence threshold for the self-consistent
field iteration of the surface optimization was 10−5 eV. The geometry optimization criterion
was less than 0.05 eV/Å per atom around the force (details in Table S1).

After optimization of the H2O and DDTC adsorption models, self-consistent calcu-
lations were performed to obtain accurate electronic structure information. The electron
localization function (ELF) [16,25] was subsequently obtained in VESTA software [26]. ELF
is a common method to characterize bonds formed between atoms. The molecular orbitals
generated by DFT calculation were denoted as canonical molecular orbitals (canonical MO).
The MOs tended to be nonlocalized and therefore did not correspond to chemical bonds.
To directly link the orbitals to the chemical bonds, we transformed MO into localized
molecular orbital (localized MO (LMO)). ELF is a common method to localize orbitals.
When the value of ELF is close to 1 between two atoms, this implies that there are localized
electrons and thus a chemical bond between them.
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Figure 2. Adsorption calculation of DDTC/H2O.

2.2. Material and Reagents
2.2.1. High-Sulfur Residue

The composition of the high-sulfur residue was analyzed by inductively coupled
plasma emission spectrometer (ICP), and the results are recorded in Table 1. The phase of
the high-sulfur residue was analyzed by X-ray diffraction (XRD), and the results are shown
in Figure 3. The results indicated that the high-sulfur residue contained mainly contained S,
Fe, Zn, Pb, Ca, and other elements. The main phases in the high-sulfur residue were sulfur
(almost 32.98%), sphalerite, and pyrite.

Table 1. Elemental composition of the high-sulfur residue measured by ICP (wt.%).

Element S * Fe Zn Mg Mn Pb Al Ca S #

Content 38.20 16.90 4.72 0.68 0.35 2.65 0.32 1.37 32.98

* Infrared carbon sulfur meter test results; # detection results of carbon tetrachloride ultrasound extraction.
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Figure 3. XRD of high-sulfur residue.

2.2.2. Pyrite

The composition of the pyrite sample was analyzed by ICP, and the results are recorded
in Table 2. The phase of the pyrite was analyzed by XRD, and the results are shown in
Figure 4. The ICP results indicated that the pyrite samples used in the experiment contained
Fe and S. The sum of the two elements amounted to 98.72%. The XRD results indicated the
pyrite samples to be pure.
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Table 2. Elemental composition of the pyrite sample measured by ICP (wt.%).

Element Fe S * Others

Content 46.23 52.49 1.28
* Barium sulfate gravimetric method test results.
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2.2.3. Reagents

Details of other reagents are shown in Table 3.

Table 3. Main reagent information.

Reagents Molecular Formula Standard Manufacturer

DDTC C4H12NCSSNa AR Tianjin Kemiou Chemical
Reagent Co., Ltd., Tianjin, China

Sulfur S AR Tianjin Kemiou Chemical
Reagent Co., Ltd., Tianjin, China

Lead sulfate PbSO4 AR Tianjin Kemiou Chemical
Reagent Co., Ltd., Tianjin, China

Sphalerite ZnS AR Tianjin Kemiou Chemical
Reagent Co., Ltd., Tianjin, China

Terpineol C10H11OH Industrial Tianjin Kemiou Chemical
Reagent Co., Ltd., Tianjin, China

2.3. Mineral Flotation Evaluation
2.3.1. Pure Mineral Flotation

The flotation tests were carried out in a 1.5L XFD pure-cell flotation machine, and 150 g
of raw materials were weighed each time to prepare a 10% solid–liquid suspension. The
DDTC concentrations were 0, 100, 200, 300, 400, and 500 g/t. The flotation temperature was
25 ◦C, the air volume flow rate was 300 L/h, the slurry pH was 8, and the flotation time was
10 min. The corresponding flotation agents were added to the flotation machine according
to the experimental requirements. For the pure mineral tests, the weighing method was
used to calculate the flotation recovery rate.

2.3.2. Adsorption Behavior of DDTC on Pure Minerals

First, 10 g of minerals was taken in a beaker, and the pulp concentration was then
adjusted to be 10% material liquid. DDTC was added in a beaker, with the concentration of
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DDTC being 300 g/t and pH = 8. The slurry was stirred at 25 ◦C for 30 min and filtered. The
filtered residue was washed three times and dried for subsequent characterization. Nicolet
6700 Fourier transform infrared spectroscopy (FT-IR, Thermo Fisher Scientific, Waltham,
MA, USA) was used to analyze the surface structure before and after the interaction of
DDTC with pure minerals.

2.3.3. High-Sulfur Residue Flotation

The test conditions were 15% solid–liquid suspension, flotation time 15 min, pulp
temperature 25 ◦C, air volume flow rate 300 L/h, pH = 8, and DDTC concentrations 100,
200, 300, 400, or 500 g/t. After the flotation process, the sample was filtered. The residue
was washed and dried for characterization.

2.3.4. Analysis and Characterization

The sulfur was extracted using the carbon tetrachloride method. First, 0.100–0.150 g of
dry material was added to carbon tetrachloride for 20 min of sonication. Then, the filtered
residue sample was put into a platinum tray and steam-dried for weight quantification.
The sulfur content in the high-sulfur residue was determined using the carbon tetrachloride
microwave method. To ensure test accuracy, a mean value obtained from three tests was
collected as the final result.

The composition of the high-sulfur residue and pyrite was analyzed by inductively
coupled plasma emission spectrometer (PerkinElmer Optima 8300, Waltham, MA, USA).
X-ray fluorescence spectroscopy (PANalytical Axios, Almelo, The Netherlands) was used
to perform semiquantitative analysis of various element distributions in the concentrate
and tailings.

SEM–EDS (MIRA4 LMH from TESCAN, Brno, Czech Republic) was used to character-
ize the morphology in the concentrate and tailings after high-sulfur residue flotation.

3. Results and Discussion
3.1. Coadsorption Model of DDTC and H2O
3.1.1. Adsorption Behavior of DDTC

First, we explored the adsorption structure and energy and ELF cross section of DDTC
on the main minerals in the high-sulfur residue (Figure 5). When adsorption of DDTC
appeared on sulfur, the distance between their respective inner sulfur atoms was between
3.47 and 4.75 Å with adsorption energy of −6.65 kJ/mol (Figure 5a). This meant a physical
adsorption with a weak bond of DDTC onto the sulfur surface [27].

For DDTC adsorption on pyrite, the sulfur atoms S1 and S2 in the polar group of DDTC
prompted a shift of the iron atoms Fe1 and Fe2 on pyrite from an original coordination
unsaturated structure to a saturated six-coordination structure (Figure 5b). This decreased
the surface energy on pyrite. The adsorption energy of DDTC on pyrite was calculated as
−195.64 kJ/mol, which meant a strong adsorption on pyrite. As shown in Figure 5e, the
ELF value between the sulfur atom and the iron atom was close to 1. This indicated the
existence of localization electrons between them, which formed a chemisorption.

DDTC adsorption on sphalerite was similar to that on pyrite (Figure 5c). The adsorp-
tion energy of DDTC on sphalerite was calculated as −42.57 kJ/mol. Figure 5f also shows
chemisorption characteristics of DDTC on sphalerite.

For DDTC adsorption on lead sulfate, S1 and S2 on DDTC were adsorbed on lead
atoms with an adsorption energy of −81.05 kJ/mol (Figure 5d). This indicated a strong
adsorption of DDTC on lead sulfate. Meanwhile, as shown in Figure 5g, DDTC was
chemisorbed on the surface of lead sulfate.
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3.1.2. Adsorption Behavior of H2O

Next, we investigated the adsorption structure and energy and ELF cross section of
H2O on the main mineral phase of the high-sulfur residue (Figure 6). For adsorption of
H2O on sulfur, the distances of the oxygen atom O and hydrogen atoms H1 and H2 with
the sulfur atom S were relatively far (Figure 6a). This caused a physical adsorption with a
low adsorption energy of −8.49 kJ/mol.

For H2O adsorption on sphalerite, oxygen atoms adsorbed on zinc atoms, while hy-
drogen atoms adsorbed on sulfur atoms (Figure 6b). The adsorption energy was calculated
as −65.05 kJ/mol, which was close to the −65.5 kJ/mol calculated by Sit et al. [28] using
Quantum-ESPRESSO under PBE pseudopotential. As shown in Figure 6e, there was a high
ELF value between oxygen atoms and zinc atoms, indicating chemisorption of H2O on
sphalerite. On the other hand, the ELF value between the hydrogen atoms and the sulfur
atoms was nearly 0, which indicated electrostatic interaction.

For H2O adsorption on pyrite, the oxygen atoms adsorbed on the iron atoms, while
the hydrogen atoms adsorbed on the sulfur atoms (Figure 6c). The adsorption energy
was calculated as −62.71 kJ/mol, which was close to the adsorption energy on sphalerite.
This indicated a close adsorption ability of H2O on sphalerite and pyrite. This adsorption
energy was also close to the −62 kJ/mol obtained by Pollet et al. [29] using ab initio
molecular dynamics simulations. There was a high ELF value between oxygen atoms and



Processes 2023, 11, 1568 8 of 13

iron atoms (Figure 6f), indicating that the adsorption of H2O on the surface of pyrite was
chemisorption. At the same time, the hydrogen atoms in H2O and the sulfur atoms on
pyrite had mutual electrostatic interaction.
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For H2O adsorption on lead sulfate, oxygen atoms adsorbed on lead atoms, while
hydrogen atoms adsorbed on oxygen atoms (Figure 6d). The adsorption energy was as
high as −112.12 kJ/mol, which suggested a strong adsorption. This was confirmed by the
result showing H2O was chemisorbed on the lead sulfate (Figure 6g).

3.1.3. Coadsorption Model of DDTC and H2O

After understanding the adsorption behavior of DDTC and H2O on sulfur, pyrite,
sphalerite, and lead sulfate, we further constructed their coadsorption model to gain more
insight into the interfacial adsorption mechanism. On sulfur, both H2O and DDTC had
weak adsorption ability, indicating that the sulfur was hydrophobic and could not be well
trapped by DDTC. On sphalerite and lead sulfate surfaces, H2O preferentially adsorbed on
metal atoms than DDTC. However, on pyrite, DDTC preferentially adsorbed on metal ions
than H2O. Overall, the coadsorption models of DDTC and H2O on sulfur, sphalerite, pyrite,
and lead sulfate were established, which depended on their mutual adsorption ability gap.

H2O had different degrees of influence on the adsorption of DDTC on different
carriers (Figure 7). For instance, on sulfur, H2O had little influence on the adsorption
structure and energy of DDTC (decreasing from −6.65 to −6.13 kJ/mol). On sphalerite, the
adsorption energy of DDTC was significantly weakened from −42.57 to −8.08 kJ/mol, and
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its adsorption mode transformed from chemisorption to physical adsorption (Figure 7b).
This was due to the adsorption of H2O around the zinc atoms of sphalerite. On pyrite,
the adsorption energy of DDTC changed slightly from −195.64 to −191.46 kJ/mol with
consistent chemisorption (Figure 7c). This indicated the little impact of H2O. On the
surface of lead sulfate, H2O was preferentially adsorbed. DDTC was adsorbed on the
surface of lead sulfate by electrostatic interaction with H2O, which is a kind of indirect
adsorption (Figure 7d). The adsorption energy of DDTC significantly weakened from
−81.05 to −18.53 kJ/mol.
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Based on the above, the DDTC adsorption on sulfur, sphalerite, and lead sulfate was
weak with physical bonding, while its adsorption on pyrite was strong with chemical bonding.

3.2. Model Validation

Pure mineral flotation was performed to validate the coadsorption model (Figure 8).
In the absence of DDTC, sulfur had almost 100% recovery, indicating excellent flotation
performance, while sphalerite, pyrite, and lead sulfate had low recoveries, indicating that
these minerals had good hydrophilic properties. With increasing DDTC concentration from
0 to 500 g/t, the recovery of sulfur, sphalerite, and lead sulfate saw little change, while
the recovery of pyrite increased significantly. After the addition of DDTC, the recovery
of pyrite increased by nearly 60% compared to that without DDTC. This indicated that
DDTC had weak ability to trap sulfur, sphalerite, and lead sulfate but had the desired
ability to trap pyrite. This result was consistent with the result of the coadsorption model:
the interaction of DDTC on sulfur, sphalerite, and lead sulfate was weak adsorption, while
the interaction of DDTC on pyrite was strong adsorption.

The FT-IR results of DDTC adsorbed on the main minerals further validated the
coadsorption model (Figure 9). The peaks around 3000 cm−1 in DDTC were C–H vibrational
peaks, and the peaks at 1262.0, 1414.6, and 1476.4 cm−1 were associated with C–N vibrations.
The FT-IR spectra of DDTC were nearly unchanged before and after its adsorption on sulfur.
This indicated almost no occurrence of DDTC adsorption on sulfur. The weak peaks in the
FT-IR spectra of sphalerite and lead sulfate after DDTC treatment indicated that DDTC
was physically adsorbed on them. The FT-IR spectra of pyrite showed absorption peaks of
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C–N vibrations and a new peak at 1490.2 cm−1 after DDTC treatment, which indicated its
chemisorption on pyrite. Overall, the FT-IR result agreed well with the coadsorption model.
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3.3. Practical Bench-Scale Operation of High-Sulfur Residue Flotation

The flotation on high-sulfur residue was explored using different concentrations of
DDTC to examine its practical operation. The distribution of sulfur, iron, zinc, and lead in
the concentrate and tailings after flotation is shown in Figure 10. The element sulfur was
mainly distributed in the concentrate, while iron, zinc, and lead were mainly distributed
in the tailings (Figure 10a). With increasing DDTC concentration from 100 to 500 g/t, the
contents of sulfur, iron, and zinc in the concentrate increased slightly, but lead content
almost remained unchanged. This result was different from that obtained from pure
mineral flotation. To explain the difference, the mineral fugacity pattern in the high-sulfur
residue flotation was further analyzed. Figure 10b shows the mineral fugacity pattern in
the flotation concentrate, which indicated that the concentrate was mainly composed of
sulfur and sulfide. Sulfur, sphalerite, and pyrite were embedded with each other and were
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difficult to separate. Figure 10c shows the mineral fugacity pattern in the flotation tailings.
The tailings were composed of silica, silicate, oxide, and some sulfide. Some iron oxides
were closely embedded with quartz. The elemental assignment results could be explained
based on the results of the coadsorption model and SEM images of the concentrate and
tailing phase. Adsorption of DDTC increased the hydrophobicity of pyrite and facilitated
its floatation. Part of the sulfur and sphalerite, which embedded and wrapped the pyrite,
were also floated together. This increased the contents of sulfur and zinc in the concentrate.
Overall, our model predictions and practical mineral phase analysis synergistically revealed
the element assignment and the flotation performance.
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4. Conclusions

This work successfully revealed the interfacial adsorption mechanism of DDTC on
the four mineral phases in high-sulfur residue flotation using DFT calculation, interfacial
characterization, and on-line test. The adsorption behavior results of DDTC and H2O
obtained by DFT calculation helped us construct the coadsorption model of H2O and
DDTC on sulfur, pyrite, sphalerite, and lead sulfate. On sulfur, both H2O and DDTC had
weak adsorption ability, indicating that sulfur was hydrophobic and could not be well
trapped by DDTC. On sphalerite and lead sulfate surfaces, H2O preferentially adsorbed on
metal atoms than DDTC. However, on pyrite, DDTC preferentially adsorbed on metal ions
than H2O.

The pure mineral flotation operation and FT-IR results validated the coadsorption
model. The pure mineral flotation result indicated the order of DDTC collection ability as
follows: pyrite > lead sulfate > sphalerite > sulfur. After the addition of DDTC, the recovery
of pyrite increased significantly, while the recovery of sulfur, sphalerite, and lead sulfate saw
little change. The FT-IR results demonstrated that DDTC was chemisorbed on pyrite and
physically adsorbed on sulfur, lead sulfate, and sphalerite. Practical bench-scale operation
results indicated that the contents of pyrite, sulfur, and sphalerite in the concentrate
synergistically increased with increasing DDTC concentration. This was different from
the results obtained from the pure mineral flotation. This difference could be explained
based on the results of the coadsorption model and SEM images of the concentrate and
tailing phase. The addition of DDTC increased the hydrophobicity and floatability of
pyrite. Parts of the sulfur and sphalerite, which embedded and wrapped the pyrite,
were also floated together. Our model predictions and practical mineral phase analysis
synergistically revealed the element assignment and flotation performance in the practical
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operation. To the authors’ knowledge, this is the first time such a coadsorption model has
been established, which can provide theoretical foundation for the practical operation of
high-sulfur residue flotation.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pr11051568/s1, Figure S1: Electrostatic potential distribution of DDTC;
Figure S2: (a) HOMO orbitals of DDTC; (b) LOMO orbitals of DDTC. Table S1: INCAR file for VASP
optimization process.
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