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Abstract: Multivariate analysis can be used to study industrial process data exhibiting collinearity
between variables. Such data can often be collected into conceptually meaningful groups or blocks.
While data blocks may appear intuitive (e.g., raw material properties vs. process parameters), such
blocking is sometimes much more subjective. The novelty of this work lies in the investigation of the
impact of data blocking on the subsequent analysis. To our knowledge, no such investigation can be
found in the literature. To fill this gap, we analyze the impact of grouping data from 10 Canadian
concrete plants in which multiple blocking alternatives are considered. The analysis is performed
via principal component analysis (PCA) to reduce the dimensionality of the matrix and also via
consensus principal component analysis (CPCA). The data grouping options are as follows: (1) all
data combined into a single block, (2) grouped according to the factory, (3) grouped according to
parameter type, and (4) grouped according to parameter type within each factory. The results show
that the grouping strategy alters the conclusion by emphasizing specific aspects of the data. While
some grouping options emphasized seasonal variations, others emphasized other characteristics in
the data, such as step changes in processing regimes or the significant impact of the raw materials’
moisture on the process. As such, it appears relevant to consider multiple blocking options when
analyzing complex datasets. Doing so will give the analyst a better understanding of overarching
trends and more subtle characteristics of the dataset.

Keywords: multivariate analysis; PCA; CPCA; data grouping; concrete plant

1. Introduction

The Fourth Industrial Revolution, more commonly known as Industry 4.0, brought on
the automation of production processes through the massive use of electronics, information,
and communication technologies [1]. This automation is achieved with computers, sensors,
actuators, and control processing units [1,2]. These devices are interconnected and can
communicate with one another [2,3]. However, one of the most important aspects of the
Fourth Industrial Revolution is certainly the rise of big data [2]. Big data can be defined as
a large volume of complex and growing datasets obtained from multiple sources [2,4]. One
of the ways to analyze such datasets is through latent variable multivariate analysis [5–8].

Multivariate analysis can be used to study a single dataset exhibiting collinearity or
correlation between variables [9]. Industrial process data typically contain significant levels
of correlation between variables, which explains why multivariate analysis is commonly
used to perform process monitoring [9]. Principal component analysis (PCA) is a stan-
dard latent variable method commonly used to reduce the dimensionality of multivariate
datasets and assist in visualization. It has become popular in industrial process monitoring
as a standard and basic method [9]. In the case of process data, PCA has many applications
including, for example, the detection of leaks from a boiler at Syncrude Canada’s utility
plant [10] and the study of various concrete mixes to determine the elements that can
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influence the concrete properties [11]. Among other things, PCA allows the monitoring of
the stability of an industrial process by comparing one or more process states with specified
lower and upper control limits [12].

Furthermore, multivariate analysis is widely used for classification purposes. Statisti-
cal classification consists of assigning a class or category to a data or a data group. During
data processing, methods such as PCA help render the relationships between variables
more intelligible [13]. Wang et al. have also used several multivariate methods, including
PCA, to categorize the chemical composition of five kinds of crop straw [13]. Zapata et al.
conducted a similar study, but rather than comparing the same product type, they focused
on studying different ones. Raman imaging and multivariate analysis have been used to
discriminate textile fibres and fabrics [14].

Rather than comparing process states within a single dataset, multivariate analysis
can also be used to compare diverse datasets. For example, Kruszewski and Obiedziński
proposed a study analyzing the composition of raw materials used in the chocolate manu-
facturing process from three different producers [15]. Although these three manufacturers
all produced chocolate, fundamental differences are raised at the manufacturing process
technology level and among the process parameters [15].

In terms of applications of multivariate analysis, there seem to be three distinct scales.
The first is to analyze a single process or dataset. The second aims to analyze multiple
similar datasets, such as parallel process lines. Finally, the third scale is to compare multiple
diverse datasets, such as differing processes, or multiple factories. However, producers
often present significant differences, making them difficult to compare.

To illustrate our general ideas on process monitoring, we have chosen to illustrate
them using datasets from concrete production. Compared to many industrial processes, the
industrial concrete process has significant potential for improvement. Specifically, many
efforts are devoted to concrete research, but most remain at the laboratory scale [16–18].
This is mainly attributable to the laws and standards that dictate concrete production [19].
Therefore, concrete production is homogeneous in the factory. Because of this relative
homogeneity between some producers, datasets from different concrete producers may be
compared to one another.

In this paper, we propose to analyze the impact of data grouping on the conclusions
drawn from latent variable multivariate analysis. While data grouping may sometimes be
straightforward, this is not always the case, and subjective choices may impact conclusions.
The methods selected here are principal component analysis (PCA) and consensus princi-
pal component analysis (CPCA). While PCA considers relationships between individual
variables, CPCA also considers relations between groups, or blocks, of variables [20]. While
many methods could have been used in this work, PCA and CPCA were chosen in this
work because of their widespread use in the field of chemometrics. We use data from
multiple concrete producers to compare results and draw conclusions from each data
grouping.

This paper first introduces experimental methods and presents the data as well as the
manipulations and pre-processing carried out. A brief review of PCA and CPCA is then
presented followed by the results obtained with the different data grouping options.

2. Materials and Methods
2.1. Raw Data Matrix

Data from 10 Canadian concrete plants were provided by Marcotte Systems. For each
concrete plant, 11 variables were acquired. These data were found to pertain to three broad
categories. The first category is related to solid compounds, which include the weight
of cement (1), water (2), and admixtures (3) (i.e., admixtures are products added to the
concrete mix that cause changes in the properties of the mixture in the fresh or hardened
state [21]) and aggregates. Aggregates are subdivided into two types: fine (4) and coarse (5).
The second category is moisture, which includes the moisture of both types of aggregates:
fine (6) and coarse (7). The third category is the target recipe, which represents setpoints
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fixed by the concrete producer. This category includes the air content (8), the slump (9),
the mix strength (10), and the volume per batch (11). In total, the dataset contains the
11 variables distributed among the three categories over a four-year period (2015–2019).
This represents a data matrix for each of the 10 concrete plants of X (2711 × 11) containing
2711 time-points, representing a daily data acquisition rate. While the 10 plants are operated
and run by two companies, the data matrix of each plant is comparable and encompasses the
same 11 variables over the same time-period. As such, they all have the same dimensions
(2711 × 11). Recall that the data presented are time series.

2.2. Data Grouping

After obtaining the data, the analyst must decide how to organize the information. In
this work, we propose to investigate the impact of data blocking on PCA and CPCA. As
such, data grouping was required. There are many ways to group data, four of which were
selected in this work, as presented in Figure 1.
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grouping, and (D) splitting factories and parameters.

The first option shown in Figure 1A combines the ten matrices (2711 × 11), one
from each concrete plant, to obtain a single large matrix (2711 × 110). The second option
(Figure 1B) subdivides the data according to the ten concrete plants regardless of the data
type (10 blocks of 2711 × 11). The third data grouping option (Figure 1C) subdivides the
data according to the three types of data regardless to the concrete plant: weight, moisture,
and target (three blocks with sizes of 2711 × 50, 2711 × 20, and 2711 × 40). The final option
(Figure 1D) subdivides the data based on both concrete plant and data type. This option
results in 30 blocks, each with dimensions ranging between 2711 × 2 and 2711 × 5.

Following this subdivision of the data, the first option will be analyzed via principal
component analysis (PCA), whereas the three other options will be analyzed via consensus
principal component analysis (CPCA).

2.3. Data Pre-Treatment

All available data underwent pre-treatment before performing multivariate analyses.
First, the data were centred and scaled to obtain a mean of zero and a standard deviation of
one. The data must undergo such pre-treatment due to the different ranges of measurement



Processes 2023, 11, 1551 4 of 13

units and numerical values present in the data. This pre-treatment was performed on all the
columns of the matrix by subtracting the mean and dividing by the standard deviation [22]:

XCS =
x1 −

−
x1

std(x1)
, . . . ,

xk −
−
xk

std(xk)
(1)

where k represents each of the columns of the data matrix, while x represents all obser-
vations in each column. Subsequently, the respective weights of each of the blocks were
standardized (i.e., scaled). This reduction aims to balance the respective contribution of
each block, sometimes having different sizes [23].

Xi =
Xi√

ki
(2)

In the equation above, the index i represents each of the data blocks. Finally, the
treatment of outliers is required since their presence can bias the model. Outliers were
removed from the dataset with Hotelling T2 and Square Prediction Error (SPE) distance [24].
In particular, the joint use of Hotelling T2 and SPE in a graph made it possible to visualize
the location of the problematic points according to all the principal components. The
problematic points are those with a large error (high SPE) or those whose projection falls
far from the plane’s centre (high T2).

3. Overview of PCA and CPCA
3.1. Principal Component Analysis (PCA)

Principal component analysis corresponds to the basis of multivariate data analysis.
This method is often used to observe tendencies and variations in a dataset containing
correlated variables. This method decomposes a multidimensional dataset into a space
with fewer dimensions [25]. This decomposition is obtained by using linear combinations
of variables from the original data set to represent them as new variables [25,26]. In practice,
PCA represents the data matrix as a product of two matrices [25].

X = T× PT + E (3)

The data matrix X (M × K) containing M observations and K variables is decomposed
into a loadings matrix P (K × A) and a scores matrix T (M × A), where A is the number
of principal components. The rows of the loadings matrix represent linear combinations
of the variables of the X matrix and express the relationships between the variables [26].
The columns of the scores matrix represent the observations based on the new system of
variables induced by the loadings [26]. Finally, the matrix E (M × K) is the error matrix
representing the prediction error with respect to X [26]. Note that this matrix has the same
dimensions as the initial matrix X. Normally, the analysis is carried out with data from the
X matrix previously centred and scaled. A simplified diagram of the decomposition within
the PCA method is represented in Figure 2 [20].

PCA can also be used to identify outliers within a dataset [27]. To do so, the distance
of each observation from the centre of the dataset can be computed as a weighted Euclidean
distance according to the variance of each principal component (Hotelling T2) [27–30]:

T2 = diag
(

Tinv(S)TT
)

(4)

S =
TTT
N

(5)
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where A corresponds to the number of principal components, N to the number of observa-
tions and S is associated with the variance. Then, the orthogonal projection distance based
on an error point of the PCA model is calculated as follows [24]:

SPE = ∑ E2 (6)
Processes 2023, 11, x FOR PEER REVIEW 5 of 13 
 

 

 

Figure 2. Decomposition of the matrix X into a product of the scores (T) and the transpose of the 

loadings (PT) with the PCA method. 

PCA can also be used to identify outliers within a dataset [27]. To do so, the distance 

of each observation from the centre of the dataset can be computed as a weighted Euclid-

ean distance according to the variance of each principal component (Hotelling T2) [27–30]: 

T2 = diag(Tinv(S)TT) (4) 

S =  
TTT

N
 (5) 

where A corresponds to the number of principal components, N to the number of obser-

vations and S is associated with the variance. Then, the orthogonal projection distance 

based on an error point of the PCA model is calculated as follows [24]: 

SPE =  ∑ E2 (6) 

3.2. Consensus Principal Component Analysis (CPCA) 

CPCA is an extension of PCA used to compare several blocks of variables measured 

on similar objects, improving the interpretation of multivariate models. These blocks are 

created by the user based on the availability of additional information, allowing the vari-

ables to be grouped into conceptually significant groups [20].  

The data are first divided into B blocks (X1… XB). Then, the data must undergo pre-

processing, including centring and scaling them, as presented in Equation (1). Block scal-

ing is also required to balance their respective contribution to the model since the blocks 

can be of different sizes, as presented in Equation (2). The matrix is then represented as 

scores and loadings, like in PCA. However, in CPCA, there are two levels of scores: scores 

and super-scores. Scores represent relationships between observations based on the vari-

ables within each block, whereas super-scores provide an overall representation of the 

observations using the full dataset (Figure 3). Each block contains loadings (P) as in PCA. 

The relative importance of each block in the projection of the super-scores is represented 

by the block weights (W) [20]. 

 

Figure 3. Matrix decomposition illustrated for two blocks with CPCA method. 

Figure 2. Decomposition of the matrix X into a product of the scores (T) and the transpose of the
loadings (PT) with the PCA method.

3.2. Consensus Principal Component Analysis (CPCA)

CPCA is an extension of PCA used to compare several blocks of variables measured
on similar objects, improving the interpretation of multivariate models. These blocks
are created by the user based on the availability of additional information, allowing the
variables to be grouped into conceptually significant groups [20].

The data are first divided into B blocks (X1 . . . XB). Then, the data must undergo
pre-processing, including centring and scaling them, as presented in Equation (1). Block
scaling is also required to balance their respective contribution to the model since the
blocks can be of different sizes, as presented in Equation (2). The matrix is then represented
as scores and loadings, like in PCA. However, in CPCA, there are two levels of scores:
scores and super-scores. Scores represent relationships between observations based on the
variables within each block, whereas super-scores provide an overall representation of the
observations using the full dataset (Figure 3). Each block contains loadings (P) as in PCA.
The relative importance of each block in the projection of the super-scores is represented by
the block weights (W) [20].
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In the figure, A corresponds to the number of principal components, B to the number
of blocks, M to the number of observations in each block, and N and K to the number of
variables in each block, respectively.
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4. Results and Discussion
4.1. Data Grouping Option 1—Combined Factories

Principal component analysis is often used to observe trends or variations within
a dataset. This method was therefore applied to the first data grouping option, which
combines data from all the factories into a single large matrix (Section 2.2). The figure
below presents the results of the PCA scores.

Only the two first PCA principal components (t1 (4.1%) and t2 (3.4%)) are presented
in Figure 4, as they present the greatest sources of variance. These low values are caused
by the great complexity of the dataset and the fact that it comes from 10 independent
manufacturing sites. While all sites are independent, we have chosen to combine them
as they share similar realities (e.g., all require similar raw materials, are subject to similar
market pressures, and face similar seasonal variations). Recall that scores represent ob-
servations within the dataset. By plotting t1 vs. t2 (Figure 4A), it is possible to visualize
possible relationships between observations. An observation located near the centre (0.0)
corresponds to a typical observation, while one located far from the centre represents an
atypical observation. Furthermore, observations located in the same region of the score
plot show similarities, whereas observations located in opposite regions of the score plot
show differences. Figure 4A illustrates a large clump of data clustered around the centre in
which it is relatively difficult to identify trends and draw conclusions.
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Figure 4. Scores plots shown in the representations of the two first principal component (A) and the
two first principal component in function of time (B).

For this reason, the scores are also presented as a function of time in Figure 4B. Note
that data presented in this figure are smoothed using the Savitzky–Golay algorithm to
improve legibility. The first two principal components show notable temporal variations
that are consistent with seasonal changes. Such seasonality is not surprising, as temper-
ature is known to directly influence the concrete batching process (e.g., the humidity of
aggregates, the adjustment of water, etc.). As mentioned, all plants are located in Canada
and are expected to experience similar temperature fluctuations.

The loadings plot makes it possible to visualize relationships between variables. On
the one hand, a variable located near the centre is of limited use for the model as it lacks
the ability to discriminate between observations within the dataset. On the other hand, a
variable located far from the centre is very useful since it has great discriminating power.
Furthermore, variables located near one another are positively correlated and are likely to
have similar effects on the observations, while variables located in opposite regions of the
plot are negatively correlated and have opposite effects.

Figure 5 presents the combined loadings (p1 (4.1%) and p2 (3.4%)) of all variables
in all concrete plants. As mentioned, all the plants have the same variables: the weight
of cement, the weight of water, the weight of admixtures (Admix), the weight of fine
(Sand) and coarse aggregates (Agg), the moisture of fine (Moisture-S) and coarse aggregates
(Moisture-Ag), the air content, the slump, the mix strength (MS), and, finally, the volume
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per batch (Vol). Figure 5 can be used to determine if any concrete plant or any variable
may explain trends in the data. However, the number of variables present in this graph
complicates the interpretation of general trends. For example, one can clearly see that the
weight of sand in factory B4 (variable Sand_B4, located at p1 = −0.27) stands out, but it is
much less obvious to determine if the weight of sand in general (for all 10 factories) or if
the factory B4 (as a whole) stands out. Therefore, the Hotelling T2 metric presented Table 1
is used for a better visualisation of the information.
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Table 1. Hotelling T2 metric for each concrete plant and each variable.

A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 Sum for Each
Variable

Admixture (Admix) 0.23 0.32 1.60 2.54 1.56 0.03 0.92 2.29 0.35 0.31 10.14
Cement 1.55 2.09 9.11 0.82 0.49 0.46 0.51 0.68 0.13 0.53 16.36
Water 0.76 0.70 0.18 0.73 0.33 1.60 3.50 2.45 1.48 0.17 11.89
Sand 0.35 1.28 12.22 0.69 1.96 0.31 0.76 0.40 0.02 7.19 25.20

Sand moisture
(Moisture-S) 0.70 5.29 12.53 3.28 3.47 3.86 9.49 3.33 4.06 5.86 51.86

Aggregate (Agg) 2.08 0.06 5.44 0.54 1.39 0.50 0.74 0.001 0.73 6.49 17.98
Aggregate moisture

(Moisture-Ag) 2.61 2.60 3.05 4.25 0.51 1.92 8.67 7.94 6.68 1.41 39.64

Volume (Vol) 0.27 0.77 2.70 0.53 0.53 1.24 1.17 0.43 0.78 2.12 10.53
Air 0.19 2.19 4.33 0.38 0.23 0.34 0.79 1.17 0.61 0.34 10.57

Slump 0.14 6.65 0.20 0.10 0.13 4.27 0.10 0.12 0.08 0.001 11.79
Mix strength (MS) 1.31 1.10 8.66 0.94 0.29 0.09 0.30 0.52 0.17 0.65 14.03

Sum for each plant 10.16 23.06 60.03 14.80 10.88 14.62 26.97 19.33 15.09 25.07 Total

Hotelling T2 is used to quantify the distance from the centre and can be used to
distinguish which variables stand out. These values were summed by variable and by
concrete plant to produce an overall value. The idea is that the higher the sum per variable
or per concrete plant, the higher the discriminating power.

Table 1 shows that the factories with the highest Hotelling T2 values are A2, A3, B1,
and B4. These plants stand out from their counterparts because of their significantly higher
discriminatory power, implying that the processing conditions inside these plants varies
significantly over time. On the other hand, the variables with the highest Hotelling T2
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value are the quantity of sand in the mixture and the moisture of the sand and coarse
aggregates. The amount of water in a concrete mix is a crucial aspect since this modifies
the water/cement ratio, directly impacting the concrete’s quality [31]. However, moisture
has greater discriminating power than water. This also means that the amount of water
does not vary significantly over the time interval. In other words, the moisture determines
at what time of the year the different concrete recipes take place. The sand and aggregate
moisture have a high Hotelling T2 value for all factories. This is not the case for the quantity
of sand, which is high only for the A3 and B4 factories.

4.2. Data Grouping Option 2—Factory Grouping

CPCA is often used to compare several blocks of descriptive variables measured on
similar objects, improving the interpretation of multivariate models [20]. This method is
applied to the second data grouping option, which consists of creating 10 blocks, each
representing a concrete plant regardless of data type.

Recall that the block weights represent the relative importance of the different blocks
in the model. Figure 6A shows that some plants are positioned closer to the center (0,0)
while others are located along the vertical or horizontal axis or a mixture of both. For
example, factory A1 has the shortest distance from the centre. Then, factory B2 can be
explained almost exclusively with w2 (3.4%). On the contrary, factory B4 is explained
almost exclusively with w1 (4.1%) only. Figure 6B presents the overall temporal variations
experienced by all factories (t1 and t2 scores for the full dataset). The interesting aspect
is that the trends are the same as those observed for the first data grouping option in
Figure 4B. However, the global time trends presented are insufficient to entirely explain
seasonal phenomena. To be able to explain seasonality more adequately, three distinctive
scenarios are presented in Figure 7. The first case presents a factory located near the centre
of the w2 vs. w1 plot. The second case presents factories located at high w2 values. The
third case is a factory located at a high w1 value.

Firstly, temporal trends in plant A1 (Figure 7A) do not appear to present any structured
variations. Rather, the data of the time seem relatively noisy. These findings are also
consistent with the positioning of concrete plant A1 in Figure 6A. This plant is relatively
close to the centre (0.0), indicating its low discriminating power. Secondly, factories B1
and B2 illustrated in Figure 7B have several seasonal oscillations over time. Nevertheless,
these oscillations show a certain phase shift, indicating that these oscillations are not purely
seasonal and relate to other factors, as yet unknown. Moreover, in Figure 6A, these factories
are positioned at the extreme vertical (w2), indicating that they have greater discriminating
power. Thirdly, concrete plant B4, shown in Figure 7C, includes an interesting step change
in its time trend. Like plants B1 and B2, plant B4 is located away from the center in
Figure 6A, indicating more significant discriminating power.
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In short, the positioning of w1 and w2 of the plants relative to the centre in
Figure 6A make it possible to criticize their discriminating power and the structured
temporal structure they possess. Although positioning relative to w1 and w2 confers
greater discriminating power than plants near the centre, these two components (w1 and
w2) explain changes of a different nature. In the current dataset, w2 is associated with
seasonal changes, while w1 is associated with significant regime shifts. These conclusions
differ from those previously drawn using the Hotelling T2 metric for each concrete plant
and each variable (Table 1). Therefore, the method selected to group the data does not
allow similar conclusions about the factories or the most discriminating variables.

4.3. Data Grouping Option 3—Parameter Grouping

CPCA analysis is applied to the third option, which consists of grouping the data
according to the types of parameters.

Figure 8A shows that the blocks associated with the weight and the target are very
close. On the contrary, the block associated with moisture is found entirely in the far
corner of the plot. Therefore, its position in the graph indicates that this block has great
discriminatory power. In other words, moisture has the greatest discriminating power
between observations. This also partially corresponds to the conclusions drawn in Table 1
from the first data grouping option. In this sense, in both cases, the moisture of fine and
coarse aggregates has great discriminating power. This is mainly due to the seasonal
variations that the factories undergo. However, this option does not make it possible to
distinguish factories or even specific atypical parameters.
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The seasonal variations are also noticeable in Figure 8B. However, global time trends
are not sufficient to explain seasonal phenomena. The first two principal components
(t1 (2.2%) and t2 (1.5%)) for each block were plotted as a function of time in Figure 9.
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The figure above shows the temporal variations in each of the three data blocks. As the
CPCA was computed with two components, Figure 9A illustrates the trends associated with
the largest source of variance, whereas Figure 9B does so for the second largest. Figure 9
illustrate that the seasonal changes observed in Figure 8B are essentially induced by moisture.
Figure 8A has led to the conclusion that moisture has the most significant source of variance,
which is confirmed by Figure 9. Therefore, moisture explains the perceived step in the second
data grouping’s temporal variation (Figure 6B). However, the impact of moisture is not
obvious at first glance since the moisture measurements are distributed within each block. In
the opposite case, i.e., considering moisture as a block (third data grouping) in its own right
makes it possible to visualize its impact on temporal variations.

4.4. Data Grouping Option 4—Splitting Factories and Parameters

CPCA analysis is applied to the fourth data grouping, which splits the data according
to the factories and parameters.

Figure 10A show 30 blocks because the data have been split according to the concrete
plant and their data type. First, most of the blocks connected to the weight and the target
are close to each other, which indicates a correlation between them. In addition, they
are positioned relatively close to (0.0), indicating a low discriminatory power between
observations. These conclusions coincide with those drawn using the third grouping
of data. However, the blocks associated with the weights of the factories raised at data
grouping option two (B1, B2, and B4) are found further from the centre, indicating their
greater discriminating power. In addition, using the conclusions drawn from data grouping
option one, it is possible to guess that these blocks of masses are distinguished due to the
sand dosage.

On the other hand, moisture blocks are found at the end of the graph. Their location
indicates that humidity has a significant discriminating power. This conclusion is the same
as that drawn for the first and third data grouping. Here again, this is mainly due to the
seasonal variations that the factories undergo. These seasonal variations are also noticeable
in Figure 8B. Incidentally, the time trends presented in this graph are the same as those in
the third data grouping option.
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5. Conclusions

Data can often be presented in meaningful groups of variables, often called blocks.
The novelty in this work is investigating the impact of data blocking on PCA and CPCA.
As such, data grouping was required. To do so, datasets from 10 Canadian concrete plants
are used. The data pertain to three broad categories: weight, moisture, and production
targets. While data grouping may sometimes be straightforward, this is not always the
case. In this case, four grouping alternatives were selected in this work. The first option
combines the ten matrices, one from each concrete plant, to create a single large matrix.
The second option subdivides the data according to the ten concrete plants regardless of
the data type. The third data grouping option subdivides the data according to the three
data types, regardless of the concrete plant. The final option subdivides the data based on
the concrete plant and data type.

The results of the first data grouping made it possible to observe seasonal variations.
Although these variations are difficult to interpret, it was possible to identify specific plants
and variables as being of interest. The results of the second data grouping made it possible
to represent the dynamic behaviour of the plants better. These results also made it possible
to better understand the seasonal variations resulting from the first data grouping. The
major advantage of this data grouping lies in observing the temporal evolution of each
factory. The third data grouping shows the significant impact of moisture. Moreover, this
method allowed us to observe a step change in the data, which is only visible now. Finally,
the fourth data grouping provides conclusions similar to the third. However, this method
makes it possible to visualize the great moisture variability for all plants.

Overall, this work illustrates the importance of data processing on the analysis and
the interpretation. This type of analysis can also be used to improve the process under
study. Such points are broadly applicable to any sufficiently large dataset, be it industrial
in nature or not.
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