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Abstract: The increasing cadmium (Cd) levels in agricultural soils have become a worldwide con-
cern for food crop security. Cd accumulation in the soil-plant system is closely related to other
coexisting factors. In this study, the effects of different levels of Zn or Ni on Cd accumulation in
tomato plants and on the rhizosphere soil bacterial community structure were analyzed by coupling
pot experiments with high-throughput sequencing. The results demonstrated that tomato plants
(Lycopersicon esculentum) in Zn-Cd and Ni-Cd co-contaminated soils exhibited lower relative growth
rates. Co-contamination at low levels tended to reduce the bioaccumulation of heavy metals in the
roots of plants, whereas increased contaminant concentrations produced the opposite effect. In the
presence of 200 mg/kg Zn or 20 mg/kg Ni, the biomass of plant roots increased by 4.95–23.16% and
the Cd content of the plant roots decreased by 17.36–68.93% due to the antagonistic effects between
Cd and Zn/Ni. In addition, the richness and diversity of the bacterial community were significantly
altered under HMs co-contamination, and the number of special bacteria was positively correlated
with the level of heavy metals in the rhizosphere soil. The relative abundance of Proteobacteria
increased and that of Actinobacteria decreased in soils with low levels of heavy metals. This may
improve the tolerance of plant roots to heavy metals and reduce the accumulation of Cd in plant
roots. These findings highlight the important role of coexisting elements in the inhibition of Cd
accumulation in tomatoes and offer important information for the production of safe crops.
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1. Introduction

The accumulation of heavy metals (HMs) in soil has become a significant environmen-
tal problem with rapid urbanization and industrialization [1]. The latest nationwide survey
on the status of soil contamination in China revealed that 16.1% of all samples analyzed
exceeded the environmental quality standards [2,3], with HMs being the main pollutants
(82.4%). The pollution status of HMs in soils from China between 1977 and 2020 was
investigated by Shi et al. [4], with the results indicating that cadmium (Cd) was the most
widespread pollutant in agricultural soils. The mean concentration of Cd was 5.73 times
higher than the limit for agricultural soils when comparing the metal concentration relative
to the standard limit [5]. Importantly, Cd is one of the most toxic and dangerous HMs
for living organisms, even at low concentrations [6]. Moreover, increasing Cd pollution
seriously affects the yield of crops [7]. Cd can also be transferred from contaminated soil to
crops and plants and accumulate in organisms through the food chain, posing severe threats
to human health [8]. Tomatoes (Lycopersicon esculentum, L. esculentum), a vital vegetable
crop worldwide, provide numerous health benefits to humans [9].
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Therefore, a better understanding of the fate of Cd in the soil-tomato system and the
influencing factors is critical for protecting food security.

Many studies have examined the mechanisms underlying Cd toxicity and the up-
take, translocation, and accumulation of Cd in crops [10–12]. The toxicity of Cd inhibits
plant growth, disturbs photosynthesis and transpiration, and reduces the synthesis of
carbohydrates and nucleic acids [13–15]. The uptake and accumulation of Cd in crops are
influenced by many factors, including plant type, Cd concentration, soil pH, and organic
matter [12]. Moreover, coexisting elements in the soil may significantly influence the up-
take and transport of Cd in the crop through antagonistic, additive, and synergistic effects
between HMs [16,17]. While zinc (Zn) and nickel (Ni) are essential micronutrients that are
required for many structural and biochemical functions in plants, they are toxic at high
concentrations [18,19]. Ni in the soil can reduce the absorption of Cd in the roots of maize
and rice [20,21]. Moreover, the presence of Zn can significantly reduce Cd accumulation
and toxicity in many crops (such as wheat, rice, maize, and leaf vegetables) because Cd
and Zn have similar absorption systems and ion competition exists [22–24]. However,
several studies have demonstrated that the application of Zn or Ni does not inhibit Cd
accumulation in some crops [22,25]. Although the influences of coexisting mineral fac-
tors on Cd accumulation in different crops have been widely investigated, the existing
research on the interactions between HMs in the same crop is conflicting. In addition,
there is a scarcity of studies on the interactive effects of Ni combined with Cd treatment on
tomato plants.

As an important medium for the exchange of plant and soil resources, the rhizosphere
microbiota plays an important role in crop growth [26]. Generally, HM pollution has
negative effects on the rhizosphere microbial community [27]. As a toxic element in soil, Cd
can affect the microbial distribution, and the diversity of the bacterial community decreases
with increasing levels of Cd [28]. High HMs levels can also result in the enrichment of
some microbial species that are tolerant to very high concentrations of HMs [29]. For
crops, changes in the soil microbial community composition and structure can affect the
absorption of Cd and micronutrients (such as Fe, Zn, Mg, and Ca) [30]. Recently, several
studies have explored the impact of changes in the structure of rhizosphere microbial
communities on the accumulation of heavy metals in plants through inoculation with
specific bacterial strains or the application of substances to the soil [24,31,32]. Nonetheless,
our understanding of how the whole indigenous soil microbiome affects Cd accumulation
in crop plants remains limited, especially when considering the complex interactions
between Cd and other HMs in soil-plant systems.

In this study, a pot experiment was conducted, and tomatoes were exposed to different
levels of contamination with Cd, Zn, Ni, and various combinations of these HMs. The plant
growth and HMs concentrations of the tomato plant tissues were determined at the end
of the treatment. Pyrosequencing of the 16S rRNA genes was conducted to detect differ-
ences in the bacterial communities of the rhizosphere soil under the different treatments.
The aims of this study were to (I) explore the growth characteristics of tomatoes under
Cd, Zn, and Ni stress; (II) determine the fates of Cd, Zn, and Ni in soil-tomato systems
under single/combined contamination; and (III) investigate the interaction effects between
the rhizosphere microbial community structure and the HMs uptake and accumulation
processes in tomato plants. It was hypothesized that the coexistence of Cd and other HMs
in tomato-soil systems would significantly affect the migration and accumulation of Cd
in tomato plants through complex interactions between the plant and the rhizosphere
microbial community. These findings can inform the development of strategies for the safe
cultivation of tomato crops in areas contaminated with Cd, Zn, and Ni.

2. Materials and Methods
2.1. Material Preparation

Cherry tomatoes (Lycopersicon esculentum var. cerasiforme) are a high Cd-accumulating
fruit and typically contain two to three times the recommended Cd concentration for fruits
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and vegetables [13,33]. In this study, a commonly cultivated type of cherry tomato (Meiwei,
a high Cd accumulation cultivar) was selected based on the findings of Xu et al. [34]. The
cherry tomato seedlings were obtained from a registered retailer in Songjiang, Shanghai,
China. The seedlings were propagated in a half-strength modified Hoagland’s nutrient solu-
tion in order to maintain suitable seedling development and were grown in a growth cham-
ber (SGZ1000A, China) under cool white fluorescent lights (450 µmol photons·m−2 s−1) at
25 ± 2 ◦C with a 12-h light/dark photoperiod. The modified Hoagland nutrient solution
was composed of Ca(NO3)2·4H2O2 (0.473 g/L), KNO3 (0.253 g/L), NH4NO3(0.40 g/L),
KH2PO4 (0.068 g/L), MgSO4 (0.12 g/L), and microelements. The cultured tomato seedlings
with a similar growth status (plant height: 8 ± 2 cm) were randomly assigned to the
treatment groups.

The pot experiment was conducted at the Donghua University Songjiang Campus
(31◦02′52.92′′ N, 121◦13′37.44′′ E). The soil samples were collected from an agricultural field
located near Songjiang, Shanghai, at a depth of 0–20 cm. The method of topsoil sampling
was as described in the Technical Specification for Soil Environmental Monitoring [35]. The
soil samples were transported to the laboratory, air-dried at room temperature, and passed
through a 2-mm nylon sieve before use in the experiments. Following the method described
by Jiang et al. [36], the pH value of the soil samples was measured at a soil:water ratio of
1:2.5 using a multi-parameter tester (HQ40d, Hach Water Quality Analytical Instruments
(Shanghai) Co., Ltd., Shanghai, China). The soil texture was determined by a combination
of sieving and sedimentation (ISO 11277). The soil organic matter was determined using
wet digestion by the potassium dichromate method. The content of total nitrogen was
measured according to the micro-Kjeldahl method, and the total phosphorus content was
colorimetrically determined by wet digestion with HF–HClO4. The contents of available
nitrogen and phosphorus were measured by the micro-diffusion technique and the Olsen
method, respectively. For the total Cd, Zn, and Ni concentrations in the soil, 0.2 g of soil
samples were digested with a mixture of nitric acid (HNO3), hydrofluoric acid (HF), and
perchloric acid (HClO4) in Teflon crucibles on a hot plate (GDANA-HT10, China). The
physicochemical properties of the initial soil samples were as follows: heavy loam; pH, 7.63;
15.90 g·kg−1 organic matter; 16.96 mg·kg−1 available phosphorus (P); 125.67 mg·kg−1

available nitrogen (N); 307.26 mg·kg−1 total P; 660.05 mg·kg−1 total N; total Cd, Zn, and
Ni concentrations of 0.10, 2.96, and 0.13 mg·kg−1, respectively.

2.2. Experimental Design

Three experimental treatment groups were examined in this study: 1. the effect of
Cd treatment on tomato seedlings; 2. the effect of Cd with Zn co-treatment on tomato
seedlings; 3. the effect of Cd with Ni co-treatment on tomato seedlings. In this experiment,
CdCl2·2.5H2O solution, ZnSO4·7H2O solution, and Ni(NO4)2·6H2O solution were used
as the sources of Cd, Zn, and Ni, respectively. The selection of Cd, Zn, and Ni contami-
nation levels was mainly based on extreme pollution situations that have been reported
earlier [37–39]. As shown in Table 1, the three experimental treatment groups comprised
sub-treatments, as follows: (1) the Cd treatment group included four levels of Cd contam-
ination (0, 1, 20, 50 mg kg−1 soil); (2) the Cd with Zn co-treatment group included four
levels of Cd contamination (0, 1, 20, 50 mg kg−1) which were respectively supplemented
with 1, 20, 50 mg Zn kg−1 soil; (3) the Cd with Ni co-treatment group included four levels of
Cd contamination (0, 1, 20, 50 mg kg−1) which were respectively supplemented with 20, 80,
160 mg Ni kg−1 soil. The treated soils were transferred into plastic pots (16 cm × 14 cm),
and all soil samples were cultured at room temperature for 30 days in the dark. In total,
the study comprised 28 experimental treatment combinations, which were replicated three
times in a completely randomized block design.
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Table 1. Concentrations (mg·kg−1 DW soil) of heavy metals added to the soil.

Treatment Groups Cd Concentration Zn Concentration Ni Concentration Nomenclature

Cd single treatment

0 0 0 Cd0(CK)
1 0 0 Cd1
20 0 0 Cd2
50 0 0 Cd3

Cd combined with
Zn treatments

0 200 0 Zn1Cd0
1 200 0 Zn1Cd1
20 200 0 Zn1Cd2
50 200 – Zn1Cd3

0 500 0 Zn2Cd0
1 500 0 Zn2Cd1
20 500 – Zn2Cd2
50 500 – Zn2Cd3

0 1000 0 Zn3Cd0
1 1000 0 Zn3Cd1
20 1000 0 Zn3Cd2
50 1000 0 Zn3Cd3

Cd combined with
Ni treatments

0 0 20 Ni1Cd0
1 0 20 Ni1Cd1
20 0 20 Ni1Cd2
50 0 20 Ni1Cd3

0 0 80 Ni2Cd0
1 0 80 Ni2Cd1
20 0 80 Ni2Cd2
50 0 80 Ni2Cd3

0 0 160 Ni3Cd0
1 0 160 Ni3Cd1
20 0 160 Ni3Cd2
50 0 160 Ni3Cd3

2.3. Plant Culture

Each pot contained 0.85 kg of treated soil and one pre-germinated tomato seedling.
Plant culture was conducted in a phytotron (SGZ-1000 A, Hangzhou Shuolian Instrument
Co., Ltd., Hangzhou, China) at 25–30 ◦C under a 12-h light/dark photoperiod with a
relative humidity of 80%. During the 65 days of culture, the soil in each treatment was
maintained at a water-holding capacity of 65–70% by adding deionized water. The plant
growth conditions remained the same, and the plots were rotated weekly to eliminate
spatial variability in the growth chamber.

2.4. Determination of Plant Growth

All tomato plants were harvested for analysis at the end of the seedling period and be-
fore the fruiting period [38]. At the end of the 65-day treatment, the fresh weight and length
of the plants were measured to evaluate the plant growth response. The relative growth rate
(RGR, g·d−1) of the different treatments was calculated as follows: RGR = (lnW2—lnW1)/t,
where W1 and W2 are the initial fresh weight and final fresh weight (g), respectively, after
65 days of treatment, and t represents the treatment time (days).

2.5. Determination of HM Contents

After 65 days of treatment, the plants were removed from the pots and rinsed in
deionized water. After harvesting, they were divided into roots, stems, and leaves for
analysis of the HMs concentrations. Before analysis, the harvested plants were washed with
distilled water and blotted with tissue paper. The roots, stems, and leaves were dried at
75 ◦C for 48 h. After drying, the ground plant samples were passed through 149 µm nylon
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sieves to obtain a uniform particle size. The ground samples of the roots and shoots were
analyzed for HMs accumulation by the wet digestion method, as described by Miller [40].
A 1 g plant sample, 10 mL of HNO3, and 5 mL of HClO4 were added to a glass flask,
and digestion was performed to obtain the HMs solution. After complete digestion, the
resulting solution was transferred to a volumetric flask and diluted to 25 mL. The total
Cd, Zn, and Ni concentrations of all samples were determined by an atomic absorption
spectrophotometer (TAS-986, USA).

2.6. Microbial Analysis of the Soil Samples

When the plants were harvested, rhizosphere soil samples from the CK, Cd1, Cd3,
minimum and maximum Zn-Cd co-contamination treatments, and Ni-Cd co-contamination
treatments were also collected for soil bacterial community analysis. The genomic DNA
in the rhizosphere soil was extracted using an Invitrogen kit (Thermo Fisher Scientific,
USA), according to the manufacturer’s instructions. Polymerase chain reaction (PCR)
amplification of the V4-V5 regions of the bacterial 16S rRNA gene was performed with the
primers 515F (5′-GTGCCAGCMGCCGCGG-3′) and 907R (5′-CCGTCAATTCMTTTRAG
TTT-3′). PCR reactions were performed, and the PCR products were purified, as described
in a previous study [41]. Furthermore, all PCR products were sequenced on an Illumina
Miseq system (Mayo Biotechnology Co., Ltd., Shanghai, China).

2.7. Data Analysis

Three replicates were performed for each experiment, and the experimental data are
expressed as the mean ± SE. The Cd, Zn, and Ni concentrations in the tomato plants were
expressed on a plant dry weight basis (mg kg−1 DW). All figures were plotted using Prism.
Heat maps were generated by Heml to reflect the differences in the abundance distributions
of species between the different groups. All statistical analyses were performed in SPSS.
One-way analysis of variance (ANOVA) with Tukey’s test (p < 0.05) was used to evaluate
significant differences in the plant growth rate and HMs contents of the plant, with the Cd,
Zn, and Ni contamination levels as single factors.

3. Results and Discussion
3.1. Effects of Cd, Zn, and Ni on Plant Growth

After 65 days of treatment, the results revealed that plant growth was significantly
affected by the concentrations of Cd, Zn, and Ni. As shown in Figure 1, under the single
Cd contamination treatment, the RGR of L. esculentum was negatively correlated with the
soil Cd level. Studies have confirmed the negative impact of Cd on the growth of tomato
plants [42,43]. As shown in Table S1, the weight of the tomato plant in the 1 mg kg−1 Cd
treatment significantly increased by 8.45% compared to the control (13.73 g·plant−1), but in
the 20–100 mg kg−1 Cd treatments, the plant weight decreased by 6.26–61.83% compared
to the control (13.73 g·plant−1). This may be because metal ions may activate the enzymes
involved in cytokinin metabolism, which accelerates plant growth [44]. However, Cd has
toxic effects on plant cells when the Cd concentration exceeds a certain level [45]. Similar
observations were reported by Valencia-Hernandez et al. [46].

For the Zn-Cd and Ni-Cd co-contamination treatments, the RGR values of the plants
were lower than those of the Cd alone treatment. Zn, as an enzyme co-factor, participates
in the physiological processes of plants and has an important effect on plant growth [47].
The results indicated that the application of Cd supplemented with Ni or Zn further caused
a significant reduction in the fresh weight of the plant (reduction of 23.90–82.18%) as
compared to the Cd alone treatment (Table S1). It has been reported that Zn might be the
dominant factor underlying reduced plant growth at higher levels of Zn-Cd treatment
than at lower levels [48]. Thus, the reduced biomass of the plants treated with Zn or
Zn-Cd might be due to the toxic effect of excess Zn and the impact of the excess Zn on
the homeostasis of metal ions in tomato plants [23]. Compared with other HMs, Ni has
the highest toxicity, mainly due to the low Ni requirement of crops [14]. Further, plant
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cells might have greater respiration rates under Cd and Ni stress, which significantly affect
cell elongation and meristematic activity [49]. The lower biomass of plants exposed to Ni
and Zn is also related to the inhibitory effects of Ni and Zn on the activities of enzymes
involved in the photosynthetic carbon reduction cycle [50,51]. In summary, the relative
growth rate and biomass of tomato plants were reduced with exposure to Zn-Cd and Ni-Cd
co-contaminated soil, and these effects are likely attributed to alterations in numerous
physiological processes as a result of HM exposure.
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Figure 1. RGR of plants after 65 days of growth under single (a), Zn-Cd co-contamination conditions
(b), and Ni-Cd co-contamination conditions (c). The error bars represent the mean ± S.E. (n = 3). The
different letters within the different treatments indicate the significant difference at the p < 0.05.

In contrast, the application of certain concentrations of Zn (200 mg·kg−1) or Ni
(20 mg·kg−1) with 1–20 mg·kg−1 Cd increased the root fresh weight by 77.13% and 50.95%,
respectively, in comparison to the Cd treatment alone (Table S1). It has been claimed that
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Cd has a harmful impact on tomato roots, greatly impairing cell elongation and resulting in
cell death [52]. The increase in the root fresh weight might be due to the reduced accumula-
tion of Cd in the plant roots as a result of competition between Cd and Zn/Ni [21,53,54].
However, the high Zn/Ni levels with Cd treatment led to a significant reduction in the fresh
weight of the plants (Table S1). It has been reported that higher Zn levels combined with Cd
can increase the Cd concentration in plants; meanwhile, higher Zn treatment (300 mg·kg−1)
significantly reduced the plant weight and caused oxidative stress in plants [48].

3.2. Accumulation and Transformation of Cd, Zn, and Ni in Tomato Plants

The concentrations of Cd, Zn, and Ni in the shoots and roots of L. esculentum are
shown in Figure 2. Overall, the Cd, Zn, and Ni concentrations in the plant increased with
increasing HMs contamination of the soil. The average HMs content of the different parts
of the plant for all treatments was as follows: root > stem > leaf. The HMs concentration
in the shoots of L. esculentum was 2–3 times lower than that in the roots. Previous studies
indicated that more than 70% of Cd accumulates in the tomato roots under Cd stress [52,55].
This may serve as a defense mechanism against Cd stress to reduce the toxic effect of Cd on
the aboveground parts of the tomato plant.
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Figure 2. Concentrations of Cd in the shoots (a,b) and roots (c,d) of L. esculentum under single or
co-contamination conditions. The error bars represent the mean ± S.E. (n = 3). The different letters
within the different treatments indicate the significant difference at the p < 0.05.

The impact of co-pollution on the accumulation and migration of HMs in the soil-
plant system is related to the degree of pollution. Compared with the single Cd treatment,
the 200 mg kg−1 Zn with Cd treatment resulted in a decrease in Cd accumulation in the
roots (17.36–22.12%). There is no special transport protein for Cd in plants; Cd enters
the roots of the plant through essential element transport proteins [56]. Cd and Zn have
similar chemical properties and absorption transporters (such as OsIRT1, OsHMA2, and
OsZIP7), and this may be the reason for the antagonistic effect between Cd and Zn [57,58].
Cd might be extruded from the roots by Zn application due to the specific up-regulation
of Cd-transporting ATPase; this could contribute to the lower Cd accumulation in the
roots under the Cd + Zn treatment compared to the Cd only treatment. Additionally,
Zn supplementation could activate metallothionein expression and increase the content
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of phenolic compounds in the roots, which could chelate HMs or remove free radicals,
attenuating oxidative damage under Cd stress [59,60]. However, higher concentrations
of Zn can not only aggravate the toxic effects of Cd on plants but can also facilitate the
translocation of Cd [61,62]. Therefore, high supplementation of Zn in the Cd treatment
resulted in a slight increase in Cd accumulation in the roots and shoots as compared with
the single Cd treatment.

The effects of Zn-Cd co-contamination on the Zn content of plants are shown in
Figure 3. The combination of Cd+Zn produced a 5.97–37.74% reduction in Zn accumu-
lation in the roots and a 36.80–123.07% increase in Zn accumulation in the shoots, as
compared to the Zn only treatment. Moreover, the Zn contents of the roots and shoots
significantly decreased with increasing Cd supply. Increased Cd accumulation in the plant
is likely to negatively affect Zn accumulation because Cd and Zn compete for the same
transporter and binding compounds. This is in accordance with the results observed in
Cd-hyperaccumulators (Cosmos bipinnatus and Catharanthus roseus) [61,63] and other crops
(wheat, rice, and maize) [22,23,64]. In addition, under excessive Cd and Zn stress, more Zn
is transported to the shoots and more Cd is trapped in the roots due to the important role of
Zn in enzyme reactions and gene expression to maintain shoot growth and photosynthesis.
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Unlike the Zn-Cd treatment, the Cd and Ni co-contamination treatment successively
decreased the Cd concentration in the roots of L. esculentum by 15.74–56.08% compared
with the individual Cd treatment (Figure 2b). For the Ni-Cd treatments, increasing the Ni
contamination level from 0 to 20 mg/kg increased the total Cd accumulation in plant shoots
from 0.28 to 12.42 mg/kg dry weight of plant, while further increases in the contamination
level to 160 mg/kg did not cause further increases in Cd accumulation. Under the same
concentrations of Cd and Ni in the culture medium, the Cd absorption capacity of the plant
is more than twice that of Ni due to the different binding affinities of metal transporters in
plants [65]. This may be the reason for the high accumulation of Cd in the plant shoots under
the combined contamination of low-concentration (20 mg kg−1) Ni and 20 mg kg−1 Cd.

In the current study, the Ni content of the roots of L. esculentum was dependent on the
Ni level. Compared to the Ni-only treatment, the Ni-Cd treatment at lower levels decreased
the Ni concentration of the tomato roots by 20.39–31.14% and the Ni concentration of
the tomato shoots by 28.96–39.68% (Figure 4). These results suggest that the interaction
pattern between Cd and Ni in tomato plants is antagonistic. As shown in Figure 2, Ni
contamination at higher levels inhibited Cd enrichment in the plant roots and reduced Cd
transport to the shoots. Previous research has revealed that the concentration of Cd in the
roots of rice decreases with increasing Ni addition, and Cd is mainly distributed in the root
cell walls and soluble fractions [21]. The polysaccharides and proteins contained in the
plant cell wall can provide polar substances such as hydroxyl or carboxyl groups that bind
to HM ions, thereby inhibiting the further transport of HM ions. This is consistent with
the results of Zhang et al. [21], but contrary to the results of Khaliq et al. [66], where the
addition of Cd enhanced the uptake of Ni by the roots.

In general, Cd-Zn and Cd-Ni co-contamination at low levels tended to reduce the
bioaccumulation of HMs in the roots of tomato plants. However, according to the maxi-
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mum allowable value specified in the Chinese food standard [67], the Cd contents in the
aboveground parts of the plant greatly exceeded the threshold for cereal food security
(0.05 mg/kg for Cd), at least for the present growth stage. This indicates that these levels of
contamination will pose serious threats to human health if humans consume foods derived
from crops grown in these Cd-contaminated soils. Therefore, proactive measures are still
needed to prevent human exposure to crops grown on Cd-contaminated agricultural soils
in the future.

Processes 2023, 11, 1523 9 of 17 
 

 

roots of rice decreases with increasing Ni addition, and Cd is mainly distributed in the 
root cell walls and soluble fractions [21]. The polysaccharides and proteins contained in 
the plant cell wall can provide polar substances such as hydroxyl or carboxyl groups that 
bind to HM ions, thereby inhibiting the further transport of HM ions. This is consistent 
with the results of Zhang et al. [21], but contrary to the results of Khaliq et al. [66], where 
the addition of Cd enhanced the uptake of Ni by the roots. 

  
Figure 4. Concentrations of Ni in the shoots (a) and roots (b) of L. esculentum under single or co-
contamination conditions. The error bars represent the mean ± S.E. (n = 3). 

In general, Cd-Zn and Cd-Ni co-contamination at low levels tended to reduce the 
bioaccumulation of HMs in the roots of tomato plants. However, according to the maxi-
mum allowable value specified in the Chinese food standard [67], the Cd contents in the 
aboveground parts of the plant greatly exceeded the threshold for cereal food security 
(0.05 mg/kg for Cd), at least for the present growth stage. This indicates that these levels 
of contamination will pose serious threats to human health if humans consume foods de-
rived from crops grown in these Cd-contaminated soils. Therefore, proactive measures 
are still needed to prevent human exposure to crops grown on Cd-contaminated agricul-
tural soils in the future. 

3.3. Effects of Cd, Zn, and Ni on the Community Diversity of the Soil Microorganisms 
The microbial richness and diversity of the rhizosphere soil under the different HM 

treatments are shown in Table 2. The Chao, Ace, and Shannon indices in the soils contam-
inated with Cd alone were much smaller than those of the uncontaminated soil, indicating 
that community diversity in these contaminated soils decreased. As some microorganisms 
are highly sensitive to HM toxicity, they will become extinct after exposure to high con-
centrations of HM [68]. However, compared to the single Cd treatment (Cd1 and Cd3), the 
Zn-Cd and Ni-Cd co-treatments increased the diversity and richness of the soil bacterial 
community. The findings revealed that certain concentrations of Zn or Ni tended to en-
hance the microbial diversity of the rhizosphere soil in the co-contamination treatments. 

Table 2. Microbial diversity indices in the soil under different heavy metal treatments. 

System Shannon Simpson Ace Chao Coverage 
CK 6.991645 0.004494 4196.907 4198.966 0.982454 
Cd1 6.072421 0.006859 2857.150 2846.419 0.984998 
Cd3 5.823361 0.020838 3063.735 3014.942 0.984634 

Zn1Cd1 6.070820 0.007931 2932.663 2938.172 0.985992 
Zn3Cd3 6.757506 0.004557 4106.077 4030.048 0.985002 
Ni1Cd1 5.706493 0.011493 2876.45 2862.277 0.986712 
Ni3Cd3 6.066191 0.012557 3875.397 3810.785 0.979581 

  

Figure 4. Concentrations of Ni in the shoots (a) and roots (b) of L. esculentum under single or
co-contamination conditions. The error bars represent the mean ± S.E. (n = 3).

3.3. Effects of Cd, Zn, and Ni on the Community Diversity of the Soil Microorganisms

The microbial richness and diversity of the rhizosphere soil under the different HM
treatments are shown in Table 2. The Chao, Ace, and Shannon indices in the soils contami-
nated with Cd alone were much smaller than those of the uncontaminated soil, indicating
that community diversity in these contaminated soils decreased. As some microorganisms
are highly sensitive to HM toxicity, they will become extinct after exposure to high concen-
trations of HM [68]. However, compared to the single Cd treatment (Cd1 and Cd3), the
Zn-Cd and Ni-Cd co-treatments increased the diversity and richness of the soil bacterial
community. The findings revealed that certain concentrations of Zn or Ni tended to enhance
the microbial diversity of the rhizosphere soil in the co-contamination treatments.

Table 2. Microbial diversity indices in the soil under different heavy metal treatments.

System Shannon Simpson Ace Chao Coverage

CK 6.991645 0.004494 4196.907 4198.966 0.982454
Cd1 6.072421 0.006859 2857.150 2846.419 0.984998
Cd3 5.823361 0.020838 3063.735 3014.942 0.984634

Zn1Cd1 6.070820 0.007931 2932.663 2938.172 0.985992
Zn3Cd3 6.757506 0.004557 4106.077 4030.048 0.985002
Ni1Cd1 5.706493 0.011493 2876.45 2862.277 0.986712
Ni3Cd3 6.066191 0.012557 3875.397 3810.785 0.979581

3.4. Effects of Cd, Zn, and Ni on the Community Structure of the Soil Microorganisms
3.4.1. Microbial Community at the Phylum Level

Figure 5 below shows the bacterial community composition at the phylum level. In
all soil samples, Proteobacteria (27.9–52.0%) was the most dominant phylum, followed by
Actinobacteria (6.6–21.1%), Bacteroidetes (4.2–26.9%), Acidobacteria (4.6–18.6%), and Chloroflexi
(3.6–12.5%). Among these, Proteobacteria are ubiquitous in the rhizosphere environments of
different plant species; they have good tolerance to HM contamination [69–71]. Wang et al.
also found that Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria are the most
dominant phyla in Cd-contaminated wheat rhizosphere soil [72].

Microorganisms will accumulate richness by interacting with HMs; this leads to the
evolution of some HM-tolerant groups that are more adapted to the current environment.
As shown in Figure 5a, the relative abundance of Proteobacteria decreased with increasing
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Cd concentration. Proteobacteria play an important role in soil C and N cycling, and
their relative abundance is positively correlated with several C and N cycling enzyme
activities [73]. Thus, the current results indicate that high Cd levels may influence soil
nutrient cycling, thus inhibiting the root growth of L. esculentum. Compared with the soil
contaminated with Cd alone, the relative abundance of Proteobacteria in the Zn-Cd and
Ni-Cd co-contaminated soils increased with increasing Cd levels. High concentrations of
HMs and toxic substances serve as a source of energy and nutrition for Proteobacteria [74].
Thus, an increase in the relative abundance of Proteobacteria in contaminated soil might be
helpful in maintaining a stable nutritional level for the growth of L. esculentum and may
improve the ability of L. esculentum to resist Cd toxicity [75].
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In addition, the phyla Actinobacteria, Bacteroidetes, and Acidobacteria were more enriched
in the Cd-treated rhizosphere soil in comparison to the uncontaminated soil. Acidobacteria
and Bacteroidetes are reported to resist HM toxicity due to their complexation and ad-
sorption capacities [76]. However, the relative abundances of these microorganisms
(Actinobacteria, Bacteroidetes, and Acidobacteria) were significantly lower in the Zn-Cd and
Ni-Cd co-polluted soils than in the soils polluted with the same concentrations of Cd. More-
over, Actinobacteria were positively associated with the available Cd in the contaminated
soils [77], indicating that the significant reduction in Cd accumulation in the roots in the
presence of Zn or Ni might be related to a decrease in the available Cd concentration in the
rhizosphere soil.

In principal component analysis (PCA), a shorter distance between the microbial
samples represents higher structural similarity. The current PCA revealed that the bacterial
communities in the different soils were clustered according to their HMs concentrations. As
shown in Figure 5b, the samples with severe HMs concentrations were closely packed on
the negative axis of PC2, while the samples with lower HMs concentrations were clustered
together on the positive axis of PC2. Meanwhile, the bacterial communities of the Cd1,
Ni1Cd1, and Zn1Cd1 treatments exhibited similar structures. Together, these findings
demonstrate that the microbial community compositions of the rhizosphere soil were
significantly influenced by the different concentrations of Cd contamination, with greater
effects in the case of a high concentration of Cd combined with other HM pollution.

3.4.2. Microbial Community at the Genus Level

The heat map in Figure 6 highlights the top 30 genera that accounted for the most
sequences. The right side of the figure shows the meaning of the color gradient. The
higher the abundance, the more red the color, and the lower the abundance, the more
blue the color [77,78]. The rhizosphere of the Cd-contaminated soil exhibited higher
abundances of unclassified_Acidobacteria and unclassified_Cytophagaceae as compared to the
uncontaminated soil. Unclassified_Acidobacteria and unclassified_Cytophagaceae are affiliated
with the phyla Acidobacteria and Bacteroidetes, respectively. Acidobacteria and Bacteroidetes are
more tolerant of HMs contamination [79], and when the Cd concentration is high, Bacteroides
can promote the transformation of nutrients. On the contrary, the depletion of Acidobacteria
and Bacteroidetes in the rhizosphere soil of the Zn-Cd and Ni-Cd co-pollution treatments
might be an indirect effect due to increases in the relative abundances of other microbial
taxa [80]. The highest abundance of Sphingomonas, which belongs to Alphaproteobacteria at
the class level and Proteobacteria at the phylum level, was observed in the uncontaminated
rhizosphere soil (8.43%). Sphingomonas can promote the growth of host plants by stimulating
the root secretion of plant auxins and cytokinins [81,82] and immobilizing HMs [83]. The
current results indicate that single and combined HMs pollution of soils may have a
negative influence on the enrichment of the Sphingomonas genera, thus inhibiting the root
growth of the plant.

Additionally, the relative abundances of Pseudomonas (belonging to the Proteobacteria
phylum) and Leptolyngbya (belonging to the Cyanobacteria phylum) in the Ni1Cd1, Ni3Cd3,
Zn1Cd1, and Zn3Cd3 treatments were higher than those in the Cd1 and Cd3 treatments. The
abundance of the bacterial genus Pseudomonas was inhibited in soil treated with Cd [84],
whereas it was enriched in the Zn-Cd and Ni-Cd co-polluted rhizosphere soil, and this
could affect plant growth and HMs absorption. A previous study found that Pseudomonas,
a well-known plant growth-promoting bacteria (PGPR), reduced metal-induced stress in
plants [70,82], and thus, the enrichment of some special species of Pseudomonas (such as
Pseudomonas sp. TCd-1) might form a natural barrier to decrease Cd uptake by plants [85].
Thus, it can be assumed that the changes in the relative abundances of Proteobacteria and
Actinobacteria at the phylum level and Pseudomonas at the genus level in HMs-co-polluted
soil may enhance the Cd tolerance of plants and reduce the Cd accumulation in plants.
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4. Conclusions

The absorption and transport behaviors of Cd in a soil-tomato system under different
pollution conditions were studied in a pot experiment. The results demonstrated that
exposure to multiple contamination (Zn-Cd and Ni-Cd) stresses significantly alters the
microbial diversity of the rhizosphere soils, which indirectly affects the absorption and
accumulation processes of Cd in the roots of tomato plants. Furthermore, several bacterial
groups are stimulated by Cd-Zn or Cd-Ni co-stress, likely contributing to the tolerance
and bioaccumulation behavior of Cd in plants. These findings improve our empirical and
theoretical understanding of the interaction effects between Cd, Zn, and Ni in soil-crop
systems. Although the accumulation of pollutants in the growth stage of the tomato plant
was preliminarily discussed in this study, the effects in other stages of the plant cycle
require further investigation. In future studies, the uptake and accumulation of Cd in
the tomato fructification stage should be investigated in order to evaluate the risk of Cd
exposure in the food chain.
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