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Abstract: Ensuring the accuracy of flow measurement is crucial to promoting high-quality cigarette
production. In order to monitor the working status of flowmeters, this paper proposes an anomaly
detection method based on the sliding-window recursive Lasso (Least absolute shrinkage and
selection operator), which is able to track the changes in flowmeter operating conditions by self-
adapting model parameters based on observed measurements. Due to the frequent mode switch
and high sampling frequency of flow data, this paper introduces the sliding-window strategy to
remove the effect of outdated data and accelerate the optimization. The tracking errors are used as
a measure of anomaly and different thresholds are introduced based on the operating manual of
cigarette production, which are used to distinguish between mode switch and flowmeter anomalies.
The method’s effectiveness is verified by detecting flowmeter anomalies in a real cigarette production
line. The mean absolute error (MAE) is 8.1479 and the root mean squared error (RMSE) is 2.8544,
which outperforms methods such as Lasso and the ridge regression.

Keywords: anomaly detection; recursive Lasso; sliding-window; flowmeter measurement

1. Introduction

The production process of cigarettes is highly complex, and the blending process of
tobacco with flavoring is a key subprocess that determines the quality of shredded cigarette
products. This process significantly affects the smoking taste of the product and the release
of volatile components in the smoke. The flavoring flowmeter is used to measure the
volume of flavoring that is fed into the tobacco, which consists of different components like
honey and perfumes.It is one of the most important sources of basic data acquisition in the
traceability chain of shredded tobacco production, and is directly related to the accuracy of
adding ingredients, flavoring, and controlling moisture content. The flavoring flowmeter is
widely used in key process nodes of cigarette production.

As the flavoring flowmeter is used online, it will inevitably suffer from performance
degradation like other instrumentations. Therefore, it is necessary to perform effective
online anomaly monitoring during the tobacco manufacturing process to ensure that the
measurement performance of the flavoring flowmeter is always within the allowable
accuracy range. In traditional practice, the flavoring flowmeter is regularly removed
from the production line for inspection and recalibration [1]. However, this practice has
significant negative impacts as it introduces a halt in production. Additionally, the interval
of recalibration is challenging to determine. Hence, performing online monitoring of the
flowmeter using the data collected from the process is highly desirable.

In order to perform online monitoring of the flowmeter measurements, Sun et al. (2017) [2]
proposed a self-diagnosis method by analyzing the vibration frequency of a Roots type

Processes 2023, 11, 1519. https://doi.org/10.3390/pr11051519 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11051519
https://doi.org/10.3390/pr11051519
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr11051519
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11051519?type=check_update&version=2


Processes 2023, 11, 1519 2 of 13

flowmeter, and diagnosed the fault by inspecting whether the relationship between the instan-
taneous flow measurement and the vibration frequency was consistent. Zhao et al. (2021) [3]
proposed an anomaly detection method based on the functional relationship between the
pressure loss of the turbine gas flowmeter and the gas usage, and judged the working state
of the flowmeter by the deviation degree of the pressure loss ratio. Wang et al. (2021) [4]
developed a flowmeter anomaly detection method using a non-singleton Type 3 fuzzy
logic system (FLS) to detect anomaly by comparing the measured terminal estimate signals.
Sun et al. (2009) [5] established the relationship between the vortex energy ratio and the
flow conditions, and proposed an anomaly detection method using the vortex energy ratio
as the state diagnostic index of the vortex flowmeter. However, these methods typically
require the installation of additional sensors or instrumentation, which is difficult and not
applicable in processes like cigarette production.

Alternatively, researchers have attempted to apply multivariate statistical methods [6–9] to
detect sensor failures. For instance, Tang et al. (2018) [6] proposed an anomaly detection
and self-correction method for ultrasound flowmeter based on the particle swarm opti-
mized support vector machine. Zhang et al. (2010) [7] introduced an anomaly detection
method for flow accumulator using the least squares support vector machine, which detects
anomaly by comparing the predicted value with the real-time output of the flowmeter.
Chen et al. (2006) [10] performed wavelet analysis on high-frequency flow measurements
to detect anomaly in flowmeter. Yang et al. (2006) [11] constructed a flow database using
measurements obtained under normal operating conditions and identified the operating
status of flowmeter by comparing the sum of squared errors of online measurements with
the standard values. Despite the research progress, several issues related to online moni-
toring still exists: (i) Practical production processes are time-varying and involve frequent
operational mode switches. An online monitoring method must be able to adapt to changes
in the operational conditions.; (ii) The high sampling frequency of practical production
requires the online monitoring method to be computationally efficient.

In this paper, an anomaly detection method for flavoring flowmeter in cigarette produc-
tion based on the recursive Lasso algorithm [12] is proposed, which uses a sliding-window
strategy to enhance modeling efficiency. By re-training the recursive Lasso using the latest
flow measurements and removing outdated measurements, the sliding-window recursive
Lasso can accurately track online flow measurements, and the resulting tracking errors can
be used to detect anomalies in the flowmeter. The method also introduces error thresholds
based on the cigarette production process knowledge, in order to differentiate between
changes in process mode and flowmeter anomalies. The combination of sliding window
strategy and online recursion offers significant advantages over traditional approaches,
providing improved reliability in tracking accuracy and computational efficiency.

This rest of the paper is organized as follows. Section 2 introduces the sliding-window
recursive Lasso method, with emphasis on how to update the parameter in an efficient
way. In Section 3, an online anomaly monitoring method is developed based on the sliding-
window recursive Lasso approach. In Section 4, the proposed method is applied to a real
production line in a cigarette factory, which shows that the proposed method can correctly
identify flowmeter anomaly. Finally, the conclusions of this work are presented Section 4.

2. Methodologies

This section describes the recursive Lasso used in this paper, with emphasis on how to
update the parameters whenever new samples are available. Section 2.1 briefly introduces
the classic Lasso technique, Section 2.2 describes how to recursively update the model
parameters of Lasso, and Section 2.3 further modifies the recursive Lasso by introducing a
sliding-window strategy, and proposes an anomaly detection method based on it.

2.1. Lasso Regression

The Lasso (Least Absolute Shrinkage and Selection Operator) regression [13] is a
shrinkage estimation technique that can handle collinearity resulting from numerous
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influential factors. The Lasso method reduces the regression coefficients associated with
irrelevant variables to zero, making it an effective variable selection tool. However, like
any statistical method, the Lasso has specific assumptions that need to be satisfied for the
results to be accurate. Some of the fundamental assumptions of the Lasso technique are
as follows:

(1) Linearity: Lasso assumes that the relationship between the predictor variables and
the response variable is linear.

(2) Independence: Lasso assumes that the observations are independent of each other. In
other words, the value of one observation should not influence the value of another
observation.

(3) Homoscedasticity: Lasso assumes that the variance of the errors is constant across all
levels of the predictor variables. This is known as homoscedasticity.

(4) Normality: Lasso assumes that the errors are normally distributed.
(5) No multicollinearity: Lasso assumes that there is no perfect or near-perfect linear rela-

tionship between any pair of predictor variables. This is known as multicollinearity.

In this section, recursive Lasso is used to address the anomaly detection problem of
flowmeter measurements by considering an autoregressive model. Hence a time-series
problem is considered here. Assume the time-series problem involve n− 1 time delays, the
n-th sample yn can be related to the previous n− 1 samples. Let yi be the i-th sample for
i = 1, 2, . . . , n− 1, the linear relationship between yn and its previous n− 1 samples can be
modeled by the following Lasso model.

arg min
α

1
2

∥∥∥∥∥yn −
n−1

∑
i=1

yn−iαi

∥∥∥∥∥
2

2

+ µ‖α‖1 (1)

Here α = (α1, . . . , αn−1)
T is the regression coefficient vector, and the regression model

is yn = ∑
p
i=1 yn−iαi + εi, where εi is the noise. The ‖·‖1 term denotes the l1 penalty

function and µ is the penalty parameter. The first term in Equation (1) is the least squares
loss function, while the second term is the penalty function that shrinks the regression
coefficients to obtain a sparse solution. The penalty parameter µ determines how much
weight is put on the sparsity of the regression coefficients. The larger the value of µ, the
stronger the sparsity is, and more zero elements can be obtained in α.

In order to efficiently solve the Lasso regression problem in Equation (1), Efron et al. [14]
proposed the LARS (least angle regression) algorithm. The approximate solution α̂ can be
estimated as follows:

α̂ =
(

YTY + µW
−)−1

YTyn (2)

Here W = diag(|α̂1|, . . . , |α̂n−1|) is a diagonal matrix, and W− is the generalized inverse of
matrix W. The LARS algorithm’s time complexity increases significantly with the number
of data samples, making it unsuitable for online applications. To accelerate the calculation,
the effective set method is often used, which reduces the computation by updating a subset
of variables at each iteration.

It should be noted that the optimization problem in Equation (1) is not differentiable
due to the presence of the l1 norm, making it a non-smooth concave optimization problem.
Thus, the global minimum in α is only guaranteed if the objective function at α contains a
zero vector. The first-order derivative of the approximate solution α̂ can be expressed as
shown in Equation (3):

∂‖α̂‖1 =

{
v ∈ Rm :

{
vi = sgn(α̂i), i f |α̂i| > 0
vi ∈ [−1, 1], i f |α̂i| = 0

}}
(3)

Therefore, the optimal approximate solution of Lasso can be written as:

YT(Yα̂− yn) + µn−1v = 0, vn−1 ∈ ∂‖α̂‖1 (4)
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If the indices of all non-zero elements in α̂ are defined as an “effective-set”, for the calculated
α̂ and v, ordered by the arrangement of non-zero elements in front and zero elements in
the back, we can get α̂ =

(
α̂T

1 , 0T)T
, v =

(
vT

1 , vT
2
)T , and Y can be divided into Y = (Y1, Y2).

So that the optimal solution can be rewritten as follows.{
α̂1 = (Y1

TY1)
−1(Y1

Tyn − µnv1)

−µnv2 = Y1
T
(

Y1 f̂f1 − yn

) (5)

It is worth noting that α can be computed in closed form if the “effective set” and the signs
of the coefficients within the eigenvector α are known.

2.2. Recursive Lasso

In industrial processes, sensor data often exhibits time-varying behavior due to
changes in the underlying operating conditions. Static methods, such as Lasso, may
not be able to effectively track these changes over time. Therefore, in this section, we use
the recursive Lasso algorithm [12] to update the model parameters so that the predictions
of the model remain reliable over time. The recursive Lasso algorithm is an extension of the
original Lasso, it enables online and recursive feature selection and parameter estimation.
Specifically designed for data that changes over time, recursive Lasso is well equipped to
handle time-varying characteristics. It works by adding new data points to the existing
dataset and re-estimating the Lasso coefficients using a homotopy method. By updating the
model parameters in real-time as new data becomes available, the recursive Lasso method
ensures that the model remains accurate and reliable over time. Additionally, the recursive
Lasso algorithm assumes that the data follows a linear model, the noise is additive and has a
normal distribution with zero mean and constant variance, the number of relevant features
remains constant or increases over time, and that the data has a sparse representation. If
these assumptions are satisfied, the recursive Lasso algorithm can effectively update the
model parameters and feature selection in real-time, making it a valuable tool for tracking
time-varying data in industrial processes. Please see Figure 1.

Figure 1. Flow chart of Recursive Lasso algorithm.

Given the Lasso solution α̂(n−1) of Lasso at the n − 1-th time, the recursive Lasso
algorithm can update the model to obtain a new solution α̂(n) using the n data samples
and predict yn+1 at time n + 1, enabling the algorithm to track changes in operational
conditions recursively. To describe the optimization objective for a general case with delay
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of p, we define the data vector as zn = (yn, yn−1, . . . , yn−p) and represent the data matrix
as Zn = (z1, z2, . . . , zn)T . Here, Yn−1 = (y1, y2, . . . , yn−1)

T is the response vector. The
optimization objective for recursive Lasso is given as follows:

α̂(n)
(

t, µ(n)
)
= argmin

α

1
2

∥∥∥∥( Yn−1
tyn

)
−
(

Zn−1
tzn

)
α(n)

∥∥∥∥2

2
+ µ(n)

∥∥∥α(n)
∥∥∥

1
(6)

Here, µ(n) represents the penalty item parameter at time n, and t ∈ [0, 1] is an identifier
for the model update. If t = 0, the regression coefficient α̂(n−1) has not started to be updated.
When 0 < t < 1, it means that the model is fitting a new data point. When t = 1, it means
that the fit of the model is complete, and the regression coefficient α̂(n−1) has been updated
to α̂(n). The algorithm then prepares to collect data at time n + 1 and starts updating at the
next time.

The update process of formula Equation (6) can be summarized by the following steps.
STEP1 :

(
α̂(n−1)(0, µ(n−1))→ α̂(n−1)(0, µ(n))

)
. If t = 0, use the minimum angle regres-

sion algorithm to update the penalty parameter µ(n−1) to µ(n);
STEP2:

(
α̂′(n−1)(0, µ(n))→ α̂(n)(1, µ(n))

)
: If µ = µ(n), calculate the value of α̂ after t

changes from 0 to 1.
In STEP2, it is first necessary to prove that α̂(t, µ(n)) is a smooth function of segments

with respect to t. To make the notation easier, let α(t) = α̂(t, µ(n)). When 0 ≤ t ≤ 1, the
“effective set” at time n is obtained by STEP1 and the signs of the non-zero coefficients in α
remain the same, making solution α(t) of Lasso smooth. If at t∗ ∈ (0, 1) the “effective set”
changes, then it is called a turning point. At t = t∗, the “effective set” and the sign of the
coefficients in α are updated and remain fixed until the next turning point is reached. Keep
iterating this process until t = 1, and the final solution α(t) will be obtained.

According to the “effective set” obtained in STEP1, we can divide α(0) into two sets:
the set of non-zero coefficients and the set of zero coefficients. Let us denote them as
αT = (α1

T , 0T), where α1
T corresponds to the non-zero coefficients and 0T corresponds

to the zero coefficients. We also define vT = (v1
T , v2

T) ∈ ∂|α(0)|1, where ∂|α(0)|1 is the
subdifferential of the l1-norm of α(0), and v1 and v2 correspond to the subgradients of the
non-zero and zero coefficients, respectively.

Lemma 1. Assume that for all 1 ≤ i ≤ n, α1i 6= 0, |v2i| < 1, there exists t∗ > 0, and for all
t ∈ [0, t∗), the “effective set” of Equation (6) and the sign of the internal coefficient of α are the
same as α(0).

Proof. The optimal condition of Equation (6) is as follows:

ZT
n−1(Zn−1α− Yn−1) + t2zn(zT

n α− yn) + µ(n)ω = 0 (7)

Here ω = ∂‖α‖1, if t is small enough, there exists a solution αT = (α1(t)T , 0T) and
ω(t)T = (v1

T , ω2(t)T) ∈ ∂‖α(t)‖1, that satisfy the optimal condition.

We can partition the data vector zn into two parts based on the “effective-set”, that is
zn = (zT

n,1, zT
n,2) and rewrite the optimality condition as follows.{
ZT

n−1,1(Zn−1,1α1(t)− Yn−1) + t2zn,1(zT
n,1α1(t)− yn) + µ(n)v1 = 0

ZT
n−1,2(Zn−1,1α1(t)− Yn−1) + t2zn,2(zT

n,1α1(t)− yn) + µ(n)ω2(t) = 0
(8)

where α1(t) of the first equation,

α1(t) = (ZT
n−1,1Zn−1,1 + t2zn,1zT

n,1)
−1(ZT

n−1,1Yn−1 + t2ynzn,1 − µv1) (9)
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It can be seen that α1(t) is a continuous function of t, because α
(0)
1 = α1, and all

elements in α1 are strictly greater than 0. Thus, for all t < t∗1 , there exists a t such that
all elements within alpha1(t) remain sign-invariant for the positive sign. Likewise, we
can get:

−µω2(t) = ZT
n−1,2(Zn−1,1α1(t)− Yn−1) + t2zn,2(zT

n,1α1(t)− yn) (10)

Similarly, ω2(t) is a continuous function of t. Because ω2(0) = v2, there exists a t∗2
such that for all t < t∗2 , and the absolute values of all elements in ω2(t) are strictly less
than 1. Thus we can obtain t∗ = min(t∗1 , t∗2) to get the desired result. In summary, α(t) is
smooth until t reaches the turning point. There are two conditions for t to reach the turning
point: one of the elements in α1(t) becomes 0, or one of the elements in ω2(t) reaches 1 in
absolute value. Now we derive how to calculate the turning point.

Let Z̃ =

(
Zn−1

zT
n

)
, Ỹ =

(
Yn−1

yn

)
, and divide Z̃ into Z̃ = (Z̃1, Z̃2) according to the

“effective-set”. Then rewrite Equation (10) using the Sherman Morrison formula [15]:

α1(t) = α̃1 −
(t2 − 1)ē

1 + β(t2 − 1)
u (11)

Here, α̃1 = (Z̃T
1 Z̃1)

−1(Z̃T
1 Ỹ − µv1), ē = zT

n,1α̃1 − yn, β = zT
n,1(Z̃

T
1 Z̃1)

−1zn,1 and
µ = (Z̃T

1 Z̃1)
−1zn,1. Let the value of t be t1i when α1i(t) = 0 one can get:

t1i = (1 + (
ēµi
α̃1i
− β)−1)

1
2 (12)

For the case that the absolute value of ω2(t) reaches 1 and we can obtain the following
equation.  zT

n,1α1(t)− yn = ē
1+β(t2−1)

Z̃1α1(t)− Ỹ = ẽ− (t2−1)ē
1+β(t2−1) Z̃1u

(13)

where ẽ = Z̃1α̃1 − Y, rewrite Equation (10) as:

−µω2(t) = Z̃T
2 ẽ +

(t2 − 1)ē
1 + β(t2 − 1)

(zn,2 − Z̃T
2 Z̃1u) (14)

Let ci be the i-th column of Z̃2 and z(i) be the i-th element of zn,2. Only when the following
equation holds, ∣∣∣∣cT

i ẽ +
(t2 − 1)ē

1 + β(t2 − 1)
(z(i) − cT

i Z̃1u)
∣∣∣∣ = µ (15)

the absolute value of the i-th element in ω2(t) will become 1.
Let t+2,j (or t−2,j) be the value of t when ω2j(t) = 1 (or ω2j(t) = −1), the following can

be obtained. 
t+2,j = (1 + (

ē(x(j)−cT
j Z̃1u)

−u−cT
j ẽ

)−1)
1
2

t−2,j = (1 + (
ē(x(j)−cT

j Z̃1u)

u−cT
j ẽ

)−1)
1
2

(16)

So the turning point is t′ = min{mini t1i, minjt+2,j, minjt−2,j}.
In summary, the update procedures of the recursive Lasso can be obtained as Algorithm 1.
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Algorithm 1 : Lasso online update (adding observations).

STEP1: calculate α(n−1) = α(0, µn−1) to α(n) = α(1, µn).

STEP2: Initialize the non-zero coefficients of α(0, µn) to the “effective set”, let v = sgn(α(0, µn)).

Let v1 and zn,1 be the subvectors of v and zn according to the “effective set”, and Z̃1 be a

submatrix of Z̃ whose columns are the “effective set”. initialization α̃1 = (Z̃T
1 Z̃1)

−1(Z̃T
1 Ỹ−µv1).

Initialize turning point t′ = 0.

STEP3: Calculate the next turning point t′. If the turning point is smaller than the previous

turning point or if the turning point is greater than 1, skip to STEP5. If the i-th element

in α1(t′) becomes 0, choose case 1. Otherwise, if the absolute value of the j-th element in

ω2(t′) reaches 1, choose case 2.

CASE1: 1© The i-th element in α1(t′) becomes 0;

2© remove i from the “active set”;

3© set vi to 0.

CASE2: 1© The absolute value of the j-th element of ω2(t′) reaches 1;

2© Add j to the “valid set”;

3© If the element reaches 1 (or −1), set vj to 1 (or −1).

STEP4: Update v1, Z̃1 and zn,1 according to the updated “effective set”;

Update α̃1 = (Z̃T
1 Z̃1)

−1(Z̃T
1 Ỹ− µv1).

STEP5: Computes the final result when t = 1, where the value of α(n) is given by the active

set of α̃1.

2.3. The Sliding-Window Strategy for Anomaly Detection

The frequent mode switching of cigarettes production operating conditions and high
sampling frequency of flowmeter requires the model to efficiently and accurately track the
data. To achieve this, we employ a sliding-window strategy [16] that removes the oldest
samples and includes the latest samples in the updating procedures. The flow chart of the
sliding-window strategy is shown in Figure 2.

In Figure 2, assume the solution α(n) at time n has been obtained, when a new data
point is obtained, the oldest sample is discarded and the new observation can be included
and the recursive Lasso method can be used to obtain the new model parameters. Assuming
z1 = (y0, y−1, . . . , y−p), Z = (z2, . . . , zn)T Y = (y2, y3, . . . , yn)T , the objective function to be
optimized is given by:

α(t, µ) = argmin
α

1
2

∥∥∥∥( ty1
Y

)
−
(

tz1
Z

)
α

∥∥∥∥2

2
+ µ‖α‖1 (17)

The entire update path becomes α(n) = α(1, µn) to α(n′) = α(0, µn′). According to this
update path, the update method can be divided into for two steps:

The update process of Equation (17) can be summarized as the following steps.
STEP1: α̂(n)(1, µ(n))→ α̂′(n)(1, µ(n′)) When t = 1, use the minimum angle regression

algorithm [14] to update the penalty item parameter µ(n) to µ(n′);
STEP2: α̂(n)(1, µ(n′))→ α̂(n)(0, µ(n)) When µ = µ(n′), calculate t from 1 to 0.
Once the model update is finished, it is now possible to use the model the track the

flowmeter observations. Since the flowmeter is checked regularly to ensure its accuracy,
we can obtain a set of unevenly sampled check points (which are the actual values of the
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flowmeter). Denote the check points to Ȳ = (ȳt, ȳ2t, . . . ȳnt). Then the optimization problem
can be rewritten as follows.

α(t, µ) = argmin
α

1
2

∥∥∥∥( ty1
Y

)
−
(

tz1
Z

)
α

∥∥∥∥2

2
+ µ‖α‖1 + λ

n

∑
i=1

(yi − ȳit) (18)

Figure 2. Flow chart of Recursive Lasso algorithm under sliding window.

In order to detect anomaly in the process, we consider the residual absolute value ε̂
between the predicted value ŷ and the flowmeter measurement ȳ to evaluate the status of
the flowmeter.If the residual absolute value exceeds a certain threshold, it indicates that
there might be an anomaly in the process, and the flowmeter needs to be checked. The
threshold can be determined based on the statistical properties of the residual errors or by
setting it empirically. Once an anomaly is detected, a notification can be sent to the operator
or maintenance team to take action.

ε̂ = |y− ŷ| (19)

According to practical settings of the tobacco factory, if the residual ε̂ exceeds a certain
threshold, then operational mode switch or flowmeter anomaly is detected. In addition, a
higher threshold can be used to distinguish between switch in process mode and flowmeter
anomaly. Once an anomaly in the flowmeter has occurred, the operators are then required
for further inspection.

3. Application Results and Discussion

This section presents the application results of the proposed anomaly detection method
on a dataset collected from a tobacco factory in central China. The data was collected at the
cigarette preliminary processing stage, which processes the tobacco raw materials (strips
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and stems) into cut tobacco for rolling. It is mainly composed of three process sections,
namely lamina pre-treatment section, cut lamina making section and casing and flavoring
section, involving 9 working units and 11 flow control points.

Under actual working conditions, the working conditions of preliminary processing
stage constantly changes according to different production tasks. Therefore, it is required
to use a model that can adapt to change of working conditions. We apply the proposed
sliding-window recursive Lasso method to detect anomalies in flowmeter data collected
from a humidification unit. The dataset consists of 12,771 samples collected over a period
of 30 h, during which the operational modes of the unit switched 4 times. An anomaly in
the flowmeter occurred, resulting in a congestion of flows. The proposed method is applied
to identify the anomaly and used root mean squared error (RMSE) and mean absolute error
(MAE) [17] values as indicators to compared with Lasso [18] and Ridge [19,20]. Details of
the dataset and experimental setup are provided in the methodology section.

In order to obtain an initial model for the recursive Lasso, it is necessary to train
the model using a small part of data before online application. Therefore, a small set of
316 samples are used for initial model construction and the length of sliding window is
set as 5. To show how the recursive Lasso behaves under stable conditions, a total of
1265 samples are considered and the prediction results are shown in Figure 3.

Figure 3. The prediction results of sliding-window recursive Lasso under steady flow state.

In Figure 3, it can be seen from the upper plot that the predicted flow values track
the real flow values very well and the results are further verified by the absolute value
of residuals in the lower plot. It can be seen that about 99.28% of the absolute prediction
residuals are below 5kg/h, and 100% of the absolute prediction residuals are below 7 kg/h.
This indicates that when the system is in a stable state, the tracking error of the sliding
window is expected to be no more than 7 kg/h.

Next, the 12,771 samples under full working conditions from 2020/10/06 08:31:08 to
2020/10/07 14:21:18 are considered. First, an initial Lasso model is constructed using the
first 2554 samples and the remaining 10,217 samples are used for online prediction. Figure 4
shows the prediction results of different models for the flow data at the conditioning point
of the cut stem casing unit. Lasso, the ridge regression, and sliding-window recursive Lasso
all use past values to predict current values. Therefore, when an abnormality occurs, the
predictions will deviate from the actual values.From Figure 4 it is evident that the sliding-
window recursive Lasso outperforms Lasso and the ridge regression in predicting the flow
data. The predicted values of the sliding-window recursive Lasso model better follow the
actual values compared to the other two methods, indicating its superior performance in
capturing the underlying patterns and trends in the data. In contrast, Lasso and the ridge
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regression show a relatively larger deviation from the actual values, indicating their limited
ability to capture the complex dynamics of the system.

(a)

(b)

(c)

Figure 4. The prediction results under full working conditions (the red lines represent prediction, the
blue lines represent actual values and the black line represents the flow indicator line of 140 kg/h for
a kind of special tobacco stem products). (a) Prediction results of sliding-window recursive Lasso.
(b) Prediction results of Lasso. (c) Prediction results of the ridge regression.

Based on the analysis of the absolute values of the tracking errors shown in Figure 5,
the proposed method used three thresholds to distinguish between mode switches and
flowmeter anomalies. The first threshold, indicated by the red line (10 kg/h), and the
second threshold, indicated by the green line (20 kg/h), was used to identify abnormal
conditions such as mode switches or flowmeter anomalies. It can be seen that all four mode
switches exceed the 10 kg/h threshold, which is consistent with real-world practice. The
third threshold, indicated by the black line (50 kg/h), was used to determine whether the
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abnormal conditions are flowmeter anomalies. As in the case of mode switches, the sliding-
window recursive Lasso can adapt to the changes quickly, while in the case of flowmeter
anomaly, it is difficult to track the real values in an accurate way. Hence exceeding of the
third threshold almost surely indicates there is an anomaly in the flow measurements. This
is in accordance with the practical situation. The sliding-window recursive Lasso achieved
the highest detection accuracy with the lowest false alarm rate, followed by Lasso and
the ridge regression, as shown in the results presented in Figure 5 The sliding-window
recursive Lasso was able to accurately detect all four mode switches and the flowmeter
anomaly that occurred in the 3900–4100 sampling points. While Lasso was able to identify
both mode switches and the flowmeter anomaly, it could not distinguish between them and
thus had a higher false alarm rate. On the other hand, the ridge regression only identified
two of the four mode switches and mistakenly treated them as anomalies, resulting in the
lowest detection accuracy with the highest false alarm rate.

(a)

(b)

(c)

Figure 5. Anomaly detection results under flowmeter anomaly(the red line represents the first
threshold (10 kg/h), the green line represents second threshold (20 kg/h) and the black line represents
the third threshold (50 kg/h). (a) Anomaly detection results of sliding-window recursive Lasso.
(b) Anomaly detection results of Lasso. (c) Anomaly detection results of the ridge regression.
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The Table 1 presents a comparison of the performance of three different methods for
detecting anomalies in flowmeter data collected from a humidification unit. It shows the
mean absolute error (MAE) and root mean squared error (RMSE) values for each method.
The Ringe method had an MAE of 16.3249 and an RMSE of 4.0404, the Lasso method had an
MAE of 22.3342 and an RMSE of 4.7259, while the sliding-window recursive Lasso method
had an MAE of 8.1479 and an RMSE of 2.8544. Both MAE and RMSE were significantly
decreased compared to the other two methods, indicating that the sliding-window recursive
Lasso method outperformed the other two methods in detecting anomalies in the flowmeter
data. These findings are consistent with the results shown in Figure 5, further supporting
the effectiveness of the sliding-window recursive Lasso method.

Table 1. Comparison of detection accuracy between Lasso algorithm, sliding-window recursive Lasso
algorithm and the ridge regression.

Method MAE RMSE

Ridge 16.3249 4.0404
Lasso 22.3342 4.7259

Sliding-window Recursive Lasso 8.1479 2.8544

4. Conclusions

In this paper, an anomaly detection method based on sliding window recursive Lasso
is proposed for tobacco flowmeters. First, the initial regression coefficients are calculated
using the traditional lasso regression method to ‘warm up’ the recursive algorithm. Sec-
ondly, when new data are obtained, a sliding window strategy is used to incorporate the
effect of new data and eliminate that of outdated data. Then, the model parameters are
updated in real-time using online recursion based on the newly sampled data, so that when
the industrial process changes, the model can still be adjusted according to the changed
sampling points, and the model prediction results are always reliable. Finally, the absolute
difference between the predicted and measured values at the verification point can be
used as the index for flowmeter anomaly detection and pattern recognition, allowing for
efficient and accurate detection of anomalies in the flowmeter. The proposed method
introduces a sliding window strategy that effectively eliminates the impact of outdated
data. By adaptively updating the model parameters in real-time based on new sampled
data, the model is well adapted to the changing situation of modern industrial processes.
The proposed method introduces a sliding window strategy that effectively eliminates the
impact of outdated data. By adaptively updating the model parameters in real-time based
on new sampled data, the model is well adapted to the changing situation of modern indus-
trial processes. This innovative approach offers a significant advantage over conventional
methods such as Lasso and the ridge regression. Experimental results on real-world data
from a tobacco factory demonstrate the effectiveness of the proposed method, achieving
remarkable results with a mean absolute error (MAE) of 8.1479 and a root mean square error
(RMSE) of 2.8544. The combination of the sliding window strategy and online recursion
ensures that the model prediction results are always reliable and responsive to changes in
the industrial process, making the proposed method highly suitable for anomaly detection
in flowmeters.
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